首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物过氧化物酶体在活性氧信号网络中的作用   总被引:2,自引:0,他引:2  
过氧化物酶体是高度动态、代谢活跃的细胞器,主要参与脂肪酸等脂质的代谢及产生和清除不同的活性氧(reactive oxygen species, ROS)。ROS是细胞有氧代谢的副产物。当胁迫长期作用于植物,过量的ROS会引起氧胁迫,损害细胞结构和功能的完整性,导致细胞代谢减缓,活性降低,甚至死亡;但低浓度的ROS则作为分子信号,感应细胞ROS/氧化还原变化,从而触发由环境因素导致的过氧化物酶体动力学以及依赖ROS信号网络改变而产生快速、特异性的应答。ROS也可以通过直接或间接调节细胞生长来控制植物的发育,是植物发育的重要调节剂。此外,过氧化物酶体的动态平衡由ROS、过氧化物酶体蛋白酶及自噬过程调节,对于维持细胞的氧化还原平衡至关重要。本文就过氧化物酶体中ROS的产生和抗氧化剂的调控机制进行综述,以期为过氧化物酶体如何感知环境变化,以及在细胞应答中,ROS作为重要信号分子的研究提供参考。  相似文献   

2.
过氧化物酶体是高度动态、代谢活跃的细胞器,主要参与脂肪酸等脂质的代谢及产生和清除不同的活性氧(reactive oxygen species,ROS)。ROS是细胞有氧代谢的副产物。当胁迫长期作用于植物,过量的ROS会引起氧胁迫,损害细胞结构和功能的完整性,导致细胞代谢减缓,活性降低,甚至死亡;但低浓度的ROS则作为分子信号,感应细胞ROS/氧化还原变化,从而触发由环境因素导致的过氧化物酶体动力学以及依赖ROS信号网络改变而产生快速、特异性的应答。ROS也可以通过直接或间接调节细胞生长来控制植物的发育,是植物发育的重要调节剂。此外,过氧化物酶体的动态平衡由ROS、过氧化物酶体蛋白酶及自噬过程调节,对于维持细胞的氧化还原平衡至关重要。本文就过氧化物酶体中ROS的产生和抗氧化剂的调控机制进行综述,以期为过氧化物酶体如何感知环境变化,以及在细胞应答中,ROS作为重要信号分子的研究提供参考。  相似文献   

3.
线粒体是真核生物细胞重要的细胞器,不仅通过氧化磷酸化为细胞生命活动提供能量,而且与细胞代谢和胁迫信号的传导、钙离子稳态、活性氧(reactive oxygen species,ROS)产生及细胞凋亡等重要生物过程密切相关。线粒体的质量控制系统对于维持细胞正常生理功能具有重要作用,其功能障碍将导致多种疾病的发生。该文综述了哺乳动物线粒体质量调控的分子机制,为通过调控线粒体质量维持机体健康、降低疾病发生提供理论依据。  相似文献   

4.
大量研究证明活性氧(ROS)在气孔运动中起信号分子的作用。保卫细胞中ROS的产生依赖于特定的酶,其中NADPH氧化酶组分RBOH已得到深入研究,并已证实其参与生物与非生物胁迫反应。植物激素包括脱落酸(ABA)、水杨酸(SA)、乙烯、生长素及细胞分裂素等,它们均通过ROS的介导来调控气孔运动。生物胁迫(如毒性细菌和真菌)也会调控气孔运动。ROS参与这些调控过程。保卫细胞中存在多层次对ROS产生及其作用的调节,抗氧化活性物质和ROS敏感蛋白(如蛋白激酶和磷酸酶)均可传递ROS信号并调节气孔运动。ROS对离子通道调节的证据也越来越多。保卫细胞由于可通过ROS整合复杂的信号途径,已成为研究植物ROS信号转导过程的良好模式系统。  相似文献   

5.
王棚涛  赵晶  余欢欢 《植物学报》2014,49(4):490-503
大量研究证明活性氧(ROS)在气孔运动中起信号分子的作用。保卫细胞中ROS的产生依赖于特定的酶, 其中NADPH氧化酶组分RBOH已得到深入研究, 并已证实其参与生物与非生物胁迫反应。植物激素包括脱落酸(ABA)、水杨酸(SA)、乙烯、生长素及细胞分裂素等, 它们均通过ROS的介导来调控气孔运动。生物胁迫(如毒性细菌和真菌)也会调控气孔运动。ROS参与这些调控过程。保卫细胞中存在多层次对ROS产生及其作用的调节, 抗氧化活性物质和ROS敏感蛋白(如蛋白激酶和磷酸酶)均可传递ROS信号并调节气孔运动。ROS对离子通道调节的证据也越来越多。保卫细胞由于可通过ROS整合复杂的信号途径, 已成为研究植物ROS信号转导过程的良好模式系统。  相似文献   

6.
光动力治疗是一种利用特定波长的激光激发光敏剂产生活性氧物种(ROS),进而对肿瘤细胞进行杀伤的治疗模式。然而,ROS的半衰期很短,且只能作用在产生部位附近,这明显限制了光动力治疗的疗效。细胞器是细胞能正常工作和运转不可缺失的部分。因此,将光敏剂有效地靶向递送至细胞器是一种提高光动力治疗效果的有效策略。本文将介绍有机靶向光敏剂的设计原理、靶向策略、目前面临的挑战和未来的发展方向。  相似文献   

7.
活性氧(reactive oxygen species,ROS)是一种重要的信号分子,能介导多条信号通路,从而影响宿主细胞的生长与增殖。衣原体为细胞内寄生菌,其感染过程会导致ROS的表达水平增加,ROS可介导多种信号通路,通过氧化修饰蛋白、改变细胞内氧化还原平衡,从而影响衣原体的生长与繁殖。对ROS介导的信号通路在衣原体感染过程中的作用机制作一综述。  相似文献   

8.
<正>PD-1(programmed death-1)通过负调控T细胞功能和存活维持免疫稳态。阻断PD-1信号会放大移植物抗宿主反应(GVHD),而目前对于PD-1的抑制功能与T细胞代谢的相互作用尚不明确。本文作者发现,在同种异体骨髓移植之后,小鼠和人的同种异体反应T细胞均伴随着PD-1及ROS的上调。这种PD-1和ROS高表达的特征仅存在于同种异体反应T细胞,而不存在于同基因的T细胞中。阻断PD-1信号通路会减少线粒体ROS和总细胞ROS,PD-1介导的ROS增加源自脂肪酸氧  相似文献   

9.
为了探讨荧光显微技术在酿酒酵母细胞不同研究方面的作用,通过GFP标记目标蛋白的同源重组的方法和免疫荧光技术标记两种蛋白,最后利用荧光显微镜观察酵母细胞中某种蛋白定位及两种蛋白共定位情况;分别用荧光染液DAPI、FM4-64、BODIPY、Filipin、DHE和Annexin V试剂处理酵母细胞之后,利用荧光显微镜观察细胞中的细胞核、液泡、脂滴、麦角固醇、ROS和细胞凋亡的情况。结果显示,荧光显微技术在酵母细胞蛋白定位、细胞器观察及细胞中ROS和细胞凋亡等研究方面具有重要作用。  相似文献   

10.
光氧化胁迫条件下叶绿体中活性氧的产生、清除及防御   总被引:2,自引:0,他引:2  
活性氧(ROS)具有双重作用,高浓度引起细胞损伤,低浓度起保护作用。在光氧化胁迫条件下,光合作用高能态的反应与O2丰富供应使叶绿体成为活性氧丰富的来源。当ROS的积累超过抗氧化剂防护系统清除能力,叶绿体及细胞不可逆的光氧化损伤就会出现。而高等植物的质粒是半自主的细胞器,有它们自己的基因组学及转录、翻译机制来控制ROS生成、保护光合作用机构免受光氧化损伤。因此,本文就光氧化胁迫期间,叶绿体中ROS的乍成、功能与防护机制进行了综述。  相似文献   

11.
植物中参与活性氧调控的基因网络   总被引:4,自引:0,他引:4  
宋莉璐  张荃 《生命科学》2007,19(3):346-352
植物体内活性氧(reactive oxygen species,ROS)是氧化还原反应的必然副产物,具极高的活性和毒性,从而对细胞产生毒害。同时,活性氧作为信号分子对很多生理过程诸如植物生长发育、细胞程序化死亡及生物和非生物胁迫应答起调控作用。植物中ROS双重作用的协调机制目前尚不明确,确定的是细胞中ROS维持于稳定水平需要精细的调节。拟南芥中至少包括152个基因组成的网络参与ROS的调控,该网络具高度的灵活性和互补性。本文综述了ROS网络中鉴定的一些关键基因及细胞学定位和协同作用,ROS信号转导,尤其是叶绿体中ROS信号的调控。  相似文献   

12.
胡志东  徐建青 《病毒学报》2011,27(4):395-401
线粒体是真核细胞至关重要的细胞器,在细胞生命周期中参与了很多关键进程,如ATP的供给、Ca2+动态平衡的维持、活性氧簇(Reactive oxygen species,ROS)的产生与清除、细胞凋亡等[1]。因此,不难想象,线粒体能够通过自身参与的各种生理  相似文献   

13.
植物线粒体、活性氧与信号转导   总被引:9,自引:6,他引:9  
活性氧(ROS)的产生是需氧代谢不可避免的结果。在植物细胞中,线粒体电子传递链(ETC)的复合物Ⅰ和Ⅱ是ROS产生的主要的部位。交替氧化酶和可能的内源鱼藤酮不敏感的NADH脱氢酶通过保持ETc的相对氧化状态限制线粒体产生ROS。线粒体基质中的抗氧化酶系统与小分子量的抗氧化剂一道起ROS的解毒作用。ROS除了引起细胞的伤害外,在植物中还能够作为一种普遍存在的信号分子起作用。在低浓度时,ROS能诱导防御基因的表达和引起适应反应;在高浓度时,引起细胞死亡。一氧化氮是植物合成和释放的一种气体,也可作为信号分子调节植物的生长和发育。  相似文献   

14.
最近有关活性氧物质 (ROS)的研究取得了突飞猛进的进展,尤其是其作为第二信使介导了许多生理性与病理性细胞事件,包括细胞分化、过度生长、增殖及凋亡.为了避免ROS的毒性产生特异性的信号转导,ROS的产生与代谢必须被严格调控;其具体的调控机制一直是人们关注的焦点. 最近有关ROS区域化观点的提出解决了这一问题. NADPH是生成ROS的主要来源. 研究发现,NADPH氧化酶及其衍生的ROS存在于机体的多种组织内,且在细胞中呈区域化分布,对细胞内信号的精确调控具有至关重要的作用. NADPH一方面通过小窝/脂筏组装成功能型复合物,从而产生ROS区域化;另一方面,NADPH通过其不同亚细胞定位亚基与各种靶蛋白之间的相互作用,产生ROS特异性. 本文系统综述了NADPH衍生的ROS信号区域化,为进一步理解ROS信号在各种生理或病理过程的分子调控机制提供理论依据.  相似文献   

15.
c-JunN端激酶(JNK)通路是细胞感受外界环境变化的重要途径,与细胞增殖、分化、凋亡等生命过程息息相关.活性氧(ROS)具有很高的生物学活性,可作为第二信使参与到JNK信号通之中.ROS可通过ASK1、Src激酶、GSTπ、MLK3、RIP-TRAF2复合体、MKPs等信号蛋白活化JNK,也可以充当IKK/NF-κ B、ERK等信号通路与JNK信号通路交叉时话的桥梁.另外JNK有时可出现在ROS上游,可通过促进ROS产生或聚集而发挥生物学作用.本文将对近年来ROS介导JNK信号通路网络调控的研究进展作一综述.  相似文献   

16.
信号配体诱导的活性氧生成   总被引:2,自引:0,他引:2  
活性氧(reactiveoxygenspecies,ROS)是生物体内一类活性含氧化合物的总称,主要包括超氧阴离子、羟自由基和过氧化氢等。细胞内有多种部位能生成ROS,主要包括线粒体、内质网、NADPH氧化酶复合体、脂氧合酶系、环氧合酶系等。静息条件下,细胞内ROS的水平被控制在很低的范围。而在细胞受到各种生理或病理因素作用时,当多种细胞外信号分子作用于其膜受体,ROS生成可以受到受体活化的诱导而“有目的”地快速增加,从而作为细胞内信号分子参与细胞增殖,分化和凋亡等各种细胞行为。  相似文献   

17.
活性氧(reactive oxygen species,ROS)是植物体代谢所产生的小分子化合物,既是生长发育和防御途径的关键调节因子,又是需氧代谢的有毒副产物。植物细胞的生理过程受一个被活性氧调节的氧化还原网状途径的调控,本文从植物体内ROS产生的部位与时空特异性、ROS信号与NO和Ca2+波信号的互作等方面综述了ROS信号对植物抗性的调控作用研究进展。  相似文献   

18.
叶绿体中活性氧的产生和清除机制   总被引:4,自引:0,他引:4  
陈花  吴俊林  李晓军 《现代生物医学进展》2008,8(10):1979-1981,1971
正常情况下植物细胞内活性氧(reactive oxygen species ROS)的产生和清除是平衡的,但是,一旦植物遭受环境胁迫,ROS的积累超过抗氧化剂防护系统清除能力,就会产生氧胁迫损伤细胞。由于叶绿体作为光合作用的场所与其他细胞器相比更易遭受氧化胁迫的伤害。因此,叶绿体进化了更强的防御机制调控电子传递链的氧化还原平衡及叶绿体基质中的氧化还原状态。活性氧具有双重效应.高浓度的活性氧对植物细胞有很强的毒害作用,低浓度时可充当信号分子参与植物的某些防卫反应过程,本文就叶绿体中活性氧的产生(三线态叶绿素、PSI和PSI I电子传递链)、网络清除(抗氧化剂,SOD,As—Glu循环系统,硫氧还蛋白)机制以及功能作用进行了综述。  相似文献   

19.
活性氧(reactive oxygen specis ROS)在三氧化二砷(arsenic trioxide,As_2O_3)诱导肿瘤细胞凋亡中扮演重要角色。本研究用一种天然蒽醌类物质——大黄素(emodin)作为提高HeLa细胞ROS水平的手段,考察其对As_2O_3促凋亡敏感性的影响,并探究可能涉及的信号传导机制。结果显示大黄素10μmol/L提高ROS并增加了HeLa细胞在As_2O_32μmol/L作用下的凋亡率,对正常成纤维细胞却无影响。该联合作用可以促进HeLa细胞线粒体跨膜电位降低;抑制转录因子NF-kB激活。本研究提示:大黄素通过提高ROS介导凋亡信号传导的增强和生存信号传导的抑制,增加HeLa细胞对As_2O_3促凋亡的敏感性。  相似文献   

20.
信号分子介导藻类细胞程序性死亡的研究进展   总被引:1,自引:0,他引:1  
藻类是水生态系统中的重要初级生产者,在物质转换和能量迁移过程中发挥重要作用。细胞程序性死亡(PCD)作为一种细胞自我调控的死亡模式,受到多种信号分子的控制。研究发现藻类细胞在遭受环境胁迫的情况下,在形态和生理上均表现出类PCD的特征,同时伴随着活性氧/一氧化氮/钙离子(ROS/NO/Ca2+)水平的变化。研究认为, ROS/NO/Ca2+作为信号分子介导藻细胞内的caspase-like酶活性变化,从而触发藻细胞的类程序性死亡。然而,对信号分子是如何在环境胁迫下的藻类细胞中引发类PCD仍知之甚少。文章综述了信号分子ROS/NO/Ca2+介导藻类类PCD的研究进展以及信号分子间的级联关系,并对今后类PCD在该领域待开展的研究进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号