首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-specific incorporation of distinct non-canonical amino acids into proteins via genetic code expansion requires mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs are ideal for genetic code expansion and have been extensively engineered for developing mutually orthogonal pairs. Here, we identify two novel wild-type PylRS/tRNAPyl pairs simultaneously present in the deep-rooted extremely halophilic euryarchaeal methanogen Candidatus Methanohalarchaeum thermophilum HMET1, and show that both pairs are functional in the model halophilic archaeon Haloferax volcanii. These pairs consist of two different PylRS enzymes and two distinct tRNAs with dissimilar discriminator bases. Surprisingly, these two PylRS/tRNAPyl pairs display mutual orthogonality enabled by two unique features, the A73 discriminator base of tRNAPyl2 and a shorter motif 2 loop in PylRS2. In vivo translation experiments show that tRNAPyl2 charging by PylRS2 is defined by the enzyme''s shortened motif 2 loop. Finally, we demonstrate that the two HMET1 PylRS/tRNAPyl pairs can simultaneously decode UAG and UAA codons for incorporation of two distinct noncanonical amino acids into protein. This example of a single base change in a tRNA leading to additional coding capacity suggests that the growth of the genetic code is not yet limited by the number of identity elements fitting into the tRNA structure.  相似文献   

2.
Transfer RNA (tRNA) translocates inside the ribosome during translation. We studied the interaction strengths between the ribosome and tRNA at various stages of translocation. We utilized an optical trap to measure the mechanical force to rupture tRNA from the ribosome. We measured the rupture forces of aminoacyl tRNA or peptidyl tRNA mimic from the ribosome in a prepeptidyl transfer state, the pretranslocational state, and the posttranslocational state. In addition, we measured the interaction strength between the ribosome and aminoacyl-tRNA in presence of viomycin. Based on the interaction strengths between the ribosome and tRNA under these conditions, 1), we concluded that tRNA interaction with the 30S subunit is far more important than the interaction with the 50S subunit in the mechanism of translocation; and 2), we propose a mechanism of translocation where the ribosomal ratchet motion, with the aid of EF-G, drives tRNA translocation.  相似文献   

3.
Translation is the process by which ribosomes direct protein synthesis using the genetic information contained in messenger RNA (mRNA). Transfer RNAs (tRNAs) are charged with an amino acid and brought to the ribosome, where they are paired with the corresponding trinucleotide codon in mRNA. The amino acid is attached to the nascent polypeptide and the ribosome moves on to the next codon. Thus, the sequential pairing of codons in mRNA with tRNA anticodons determines the order of amino acids in a protein. It is therefore imperative for accurate translation that tRNAs are only coupled to amino acids corresponding to the RNA anticodon. This is mostly, but not exclusively, achieved by the direct attachment of the appropriate amino acid to the 3'-end of the corresponding tRNA by the aminoacyl-tRNA synthetases. To ensure the accurate translation of genetic information, the aminoacyl-tRNA synthetases must display an extremely high level of substrate specificity. Despite this highly conserved function, recent studies arising from the analysis of whole genomes have shown a significant degree of evolutionary diversity in aminoacyl-tRNA synthesis. For example, non-canonical routes have been identified for the synthesis of Asn-tRNA, Cys-tRNA, Gln-tRNA and Lys-tRNA. Characterization of non-canonical aminoacyl-tRNA synthesis has revealed an unexpected level of evolutionary divergence and has also provided new insights into the possible precursors of contemporary aminoacyl-tRNA synthetases.  相似文献   

4.
The selection of cognate tRNAs during translation is specified by a kinetic discrimination mechanism driven by distinct structural states of the ribosome. While the biochemical steps that drive the tRNA selection process have been carefully documented, it remains unclear how recognition of matched codon:anticodon helices in the small subunit facilitate global rearrangements in the ribosome complex that efficiently promote tRNA decoding. Here we use an in vitro selection approach to isolate tRNATrp miscoding variants that exhibit a globally perturbed tRNA tertiary structure. Interestingly, the most substantial distortions are positioned in the elbow region of the tRNA that closely approaches helix 69 (H69) of the large ribosomal subunit. The importance of these specific interactions to tRNA selection is underscored by our kinetic analysis of both tRNA and rRNA variants that perturb the integrity of this interaction.  相似文献   

5.
The ribosome translates the genetic information of an mRNA molecule into a sequence of amino acids. The ribosome utilizes tRNAs to connect elements of the RNA and protein worlds during protein synthesis, i.e. an anticodon as a unit of genetic information with the corresponding amino acid as a building unit of proteins. Three tRNA-binding sites are located on the ribosome, termed the A, P and E sites. In recent years the tRNA-binding sites have been localized on the ribosome by three different techniques, small-angle neutron scattering, cryo-electron microscopy and X-ray analyses of 70 S crystals. These high-resolution glimpses into various ribosomal states together with a large body of biochemical data reveal an intricate interplay between the tRNAs and the three ribosomal binding sites, providing an explanation for the remarkable features of the ribosome, such as the ability to select the correct ternary complex aminoacyl-tRNA.EF-Tu.GTP out of more than 40 extremely similar tRNA complexes, the precise movement of the tRNA(2).mRNA complex during translocation and the maintenance of the reading frame.  相似文献   

6.
We investigated the structural basis of the kinetic effect on coding specificity by the D-arm mutant (G24 to A) of Escherichia coli tRNATrp. A set of tRNA genes with structural alterations in the D-arm was constructed by site-directed mutagenesis in vitro, and we determined the in vivo translational activities of these tRNAs. Our results suggest that a hydrogen-bond donor in the major groove of the D-helix at position 24 is required for the expansion of tRNA wobble coding specificity. From inspection of tRNA crystal structure, we identified a potential new tertiary pairing of base 24 with the base at position 9 (this base links the acceptor and D-stems). We constructed tRNAs with mutations at position 9 and showed that the phenotypes of position 11-24 D-arm mutants are indeed dependent on the identity of base 9. Our analysis of the effects of these mutations on the interactions of tRNA with the ribosome and with aminoacyl-tRNA synthetase suggests that the conformation or conformational dynamics of the middle of the tRNA molecule alters the kinetics of the interaction with the ribosomal coding site. The 9-23 and putative 9-24 tertiaries, and perhaps other normal tertiary interactions in this region, modulate these kinetics to increase or decrease coding specificity.  相似文献   

7.
Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-canonical amino acid (ncAA) into the polypeptide chain. While this strategy is attractive for genome expansion in biotechnology and bioengineering endeavors, improving the yield is hampered by a lack of understanding of where the shift can occur in an elongation cycle of protein synthesis. Lacking a clear answer to this question, current efforts have focused on designing +1-frameshifting tRNAs with an extra nucleotide inserted to the anticodon loop for pairing with a quadruplet codon in the aminoacyl-tRNA binding (A) site of the ribosome. However, the designed and evolved +1-frameshifting tRNAs vary broadly in achieving successful genome expansion. Here we summarize recent work on +1-frameshifting tRNAs. We suggest that, rather than engineering the quadruplet anticodon-codon pairing scheme at the ribosome A site, efforts should be made to engineer the pairing scheme at steps after the A site, including the step of the subsequent translocation and the step that stabilizes the pairing scheme in the +1-frame in the peptidyl-tRNA binding (P) site.  相似文献   

8.
By using single-molecule fluorescence resonance energy transfer (smFRET), we observe the real-time dynamic coupling between the ribosome, labeled at the L1 stalk, and transfer RNA (tRNA). We find that an interaction between the ribosomal L1 stalk and the newly deacylated tRNA is established spontaneously upon peptide bond formation; this event involves coupled movements of the L1 stalk and tRNAs as well as ratcheting of the ribosome. In the absence of elongation factor G, the entire pretranslocation ribosome fluctuates between just two states: a nonratcheted state, with tRNAs in their classical configuration and no L1 stalk-tRNA interaction, and a ratcheted state, with tRNAs in an intermediate hybrid configuration and a direct L1 stalk-tRNA interaction. We demonstrate that binding of EF-G shifts the equilibrium toward the ratcheted state. Real-time smFRET experiments reveal that the L1 stalk-tRNA interaction persists throughout the translocation reaction, suggesting that the L1 stalk acts to direct tRNA movements during translocation.  相似文献   

9.
Various post-translational modifications can naturally occur on proteins, regulating the activity, subcellular localization, interaction, or stability of the proteins. However, it can be challenging to decipher the biological implication or physiological roles of site-specific modifications due to their dynamic and sub-stoichiometric nature. Genetic code expansion method, relying on an orthogonal aminoacyl-tRNA synthetase/tRNA pair, enables site-specific incorporation of non-canonical amino acids. Here we focus on the application of genetic code expansion to study site-specific protein post-translational modification in vitro and in vivo. After a brief introduction, we discuss possibilities of incorporating non-canonical amino acids containing post-translational modifications or their mimics into target proteins. This approach is applicable for Ser/Thr/Tyr phosphorylation, Tyr sulfation/nitration/hydroxylation, Lys acetylation/acylation, Lys/His mono-methylation, as well as Arg citrullination. The next section describes the use of a precursor non-canonical amino acid followed by chemical and/or enzymatic reactions to afford the desired modification, such as Cys/Lys acylation, ubiquitin and ubiquitin-like modifications, as well as Lys/Gln methylation. We also discuss means for functional regulation of enzymes involving in post-translational modifications through genetically incorporated non-canonical amino acids. Lastly, the limitations and perspectives of genetic code expansion in studying protein post-translational modification are described.  相似文献   

10.
We describe an optimized procedure for replacing the dihydrouridine residues of charged tRNAs with Cy3 and Cy5 dyes linked to a hydrazide group, and demonstrate that the labeled molecules are functional in ribosomal activities including 30S initiation complex formation, EF–Tu-dependent binding to the ribosome, translocation, and polypeptide synthesis. This procedure should be straightforwardly generalizable to the incorporation of other hydrazide-linked fluorophores into tRNA or other dihydrouridine-containing RNAs. In addition, we use a rapid turnover FRET experiment, measuring energy transfer between Cy5-labeled tRNAfMet and Cy3-labeled fMetPhe-tRNAPhe, to obtain direct evidence supporting the hypothesis that the early steps of translocation involve movements of the flexible 3′-single-stranded regions of the tRNAs, with the considerable increase in the distance separating the two tRNA tertiary cores occurring later in the process.  相似文献   

11.
In E. coli, the SecM nascent polypeptide causes elongation arrest, while interacting with 23S RNA bases A2058 and A749-753 in the exit tunnel of the large ribosomal subunit. We compared atomic models fitted by real-space refinement into cryo-electron microscopy reconstructions of a pretranslocational and SecM-stalled E. coli ribosome complex. A cascade of RNA rearrangements propagates from the exit tunnel throughout the large subunit, affecting intersubunit bridges and tRNA positions, which in turn reorient small subunit RNA elements. Elongation arrest could result from the inhibition of mRNA.(tRNAs) translocation, E site tRNA egress, and perhaps translation factor activation at the GTPase-associated center. Our study suggests that the specific secondary and tertiary arrangement of ribosomal RNA provides the basis for internal signal transduction within the ribosome. Thus, the ribosome may itself have the ability to regulate its progression through translation by modulating its structure and consequently its receptivity to activation by cofactors.  相似文献   

12.
The expansion of the genetic code consisting of four bases and 20 amino acids into diverse building blocks has been an exciting topic in synthetic biology. Many biochemical components are involved in gene expression; therefore, adding a new component to the genetic code requires engineering many other components that interact with it. Genetic code expansion has advanced significantly for the last two decades with the engineering of several components involved in protein synthesis. These components include tRNA/aminoacyl-tRNA synthetase, new codons, ribosomes, and elongation factor Tu. In addition, biosynthesis and enhanced uptake of non-canonical amino acids have been attempted and have made meaningful progress. This review discusses the efforts to engineer these translation components, to improve the genetic code expansion technology.  相似文献   

13.
Incorporation of unnatural amino acids into proteins in vivo, known as expanding the genetic code, is a useful technology in the pharmaceutical and biotechnology industries. This procedure requires an orthogonal suppressor tRNA that is uniquely acylated with the desired unnatural amino acid by an orthogonal aminoacyl-tRNA synthetase. In order to enhance the numbers and types of suppressor tRNAs available for engineering genetic codes, we have developed a convenient screening system to generate suppressor tRNAs with good orthogonality from the available library of suppressor tRNA mutants. While developing an amber suppressor tRNA, we discovered that amber suppressor tRNA with poor orthogonality inhibited the growth rate of the host, indicating that suppressor tRNA demonstrates a species-specific toxicity to host cells. We verified this species-specific toxicity using amber suppressor tRNA mutants from prokaryotes, eukaryotes, and archaea. We also confirmed that adding terminal CCA to Methanococcus jannaschii tRNATyr mutant is important to its toxicity against Escherichia coli. Further, we compared the toxicity of the suppressor tRNA toward the host with differing copy numbers. Using the combined toxicity of suppressor tRNA toward the host with blue–white selection, we developed a convenient screening system for orthogonal suppressor tRNA that could serve as a general platform for generating tRNA/aaRS pairs and thereby obtained three suppressor tRNA mutants with high orthogonality from the tRNA library derived from Mj tRNATyr.  相似文献   

14.
The L shape of tRNA is stabilized by the 'tertiary core' region, which contains base-pairing interactions between the D and T loops. Distortions of the L shape accompany tRNA movement across the ribosomal surface. Here, using single-turnover rapid kinetics assays, we determine the effects of mutations within the tertiary core of P site-bound tRNA(fMet) on three measures of the rate of translocation, the part of the elongation cycle involving the most extensive tRNA movement. Mutations in the strictly conserved G18.U55 base pair result in as much as an 80-fold decrease in the rate of translocation, demonstrating the importance of the 18-55 interaction for rapid translocation. This implicates the core region as a locus for functionally important dynamic interactions with the ribosome and leads to the proposal that translocation of ribosome-bound tRNAs may be sequential rather than concerted.  相似文献   

15.
Ribosomes translate genetic information encoded by messenger RNAs (mRNAs) into proteins. Accurate decoding by the ribosome depends on the proper interaction between the mRNA codon and the anticodon of transfer RNA (tRNA). tRNAs from all kingdoms of life are enzymatically modified at distinct sites, particularly in and near the anticodon. Yet, the role of these naturally occurring tRNA modifications in translation is not fully understood. Here we show that modified nucleosides at the first, or wobble, position of the anticodon and 3'-adjacent to the anticodon are important for translocation of tRNA from the ribosome's aminoacyl site (A site) to the peptidyl site (P site). Thus, naturally occurring modifications in tRNA contribute functional groups and conformational dynamics that are critical for accurate decoding of mRNA and for translocation to the P site during protein synthesis.  相似文献   

16.
Stabilization of the ribosomal complexes plays an important role in translational control. Mechanisms of ribosome stabilization have been studied in detail for initiation and elongation of eukaryotic translation, but almost nothing is known about stabilization of eukaryotic termination ribosomal complexes. Here, we present one of the mechanisms of fine-tuning of the translation termination process in eukaryotes. We show that certain deacylated tRNAs, remaining in the E site of the ribosome at the end of the elongation cycle, increase the stability of the termination and posttermination complexes. Moreover, only the part of eRF1 recognizing the stop codon is stabilized in the A site of the ribosome, and the stabilization is not dependent on the hydrolysis of peptidyl-tRNA. The determinants, defining this property of the tRNA, reside in the acceptor stem. It was demonstrated by site-directed mutagenesis of tRNAVal and construction of a mini-helix structure identical to the acceptor stem of tRNA. The mechanism of this stabilization is different from the fixation of the unrotated state of the ribosome by CCA end of tRNA or by cycloheximide in the E site. Our data allow to reveal the possible functions of the isodecoder tRNAs in eukaryotes.  相似文献   

17.
Fluorescent labeling of tRNAs for dynamics experiments   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

18.
Engaging the ribosome: universal IFs of translation   总被引:1,自引:0,他引:1  
Eukaryotic initiation factor 1A (eIF1A) and the GTPase IF2/eIF5B are the only universally conserved translation initiation factors. Recent structural, biochemical and genetic data indicate that these two factors form an evolutionarily conserved structural and functional unit in translation initiation. Based on insights gathered from studies of the translation elongation factor GTPases, we propose that these factors occupy the aminoacyl-tRNA site (A site) on the ribosome, and promote initiator tRNA binding and ribosomal subunit joining. These processes yield a translationally competent ribosome with Met-tRNA in the ribosomal peptidyl-tRNA site (P site), base-paired to the AUG start codon of a mRNA.  相似文献   

19.
Analysis of the updated compilation of more than 8,000 tRNA gene sequences confirmed our previously reported finding that in pairs of consensus tRNAs with complementary anticodons, their second bases in the acceptor stems are also complementary. This dual complementarity points to the following: (1) the operational code embodied in the acceptor stem, and the classic genetic code embodied in the anticodon could have had the same common ancestor; (2) new tRNAs most likely entered primitive translation in pairs with complementary anticodons; and (3) this process of code expansion was directed by the primordial double-strand coding. However, we did not find the dual complementarity when testing all tRNA pairs in which anticodons were complementary only at the central position, but not complementary at least at one of the flanking two positions. This observation, together with certain additional evidence, suggests that both codes were still being shaped (with only the second base established at the time) when the first protein aminoacyl-tRNA synthetases could have already started replacing their ribozymic precursors.  相似文献   

20.
The GTPase elongation factor (EF)-G is responsible for promoting the translocation of the messenger RNA-transfer RNA complex on the ribosome, thus opening up the A site for the next aminoacyl-tRNA. Chemical modification and cryo-EM studies have indicated that tRNAs can bind the ribosome in an alternative 'hybrid' state after peptidyl transfer and before translocation, though the relevance of this state during translation elongation has been a subject of debate. Here, using pre-steady-state kinetic approaches and mutant analysis, we show that translocation by EF-G is most efficient when tRNAs are bound in a hybrid state, supporting the argument that this state is an authentic intermediate during translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号