首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two estrogen antagonists, CI-628 (CI) and tamoxifen (TX), were used to examine the relationship between estrogen priming of lordosis behavior and progestin receptor induction in the hypothalamus-preoptic area (HPOA) of ovariectomized female rats. Lordosis behavior was assessed by measuring lordosis quotients (LQ) in response to injection of 2 micrograms of estradiol benzoate (EB) followed 48 hr later by 500 micrograms of progesterone (P). Behavior testing began 4 hr after P injection. The effects of antiestrogens were assessed by injecting CI and TX (1-2 mg) from 0 to 48 hr prior to EB. Levels of cytosol progestin receptor in the HPOA were determined by quantifying the specific binding of 0.5 nM [3H]R5020 to cytosols from animals receiving the same EB and antiestrogen treatments used in behavioral testing. TX given concurrently with or CI given 2 hr before EB abolished both lordosis behavior and induction of HPOA progestin receptors. In contrast, CI given 12 hr prior to EB abolished lordosis but permitted a 95% elevation in the concentration of progestin binding sites in the HPOA. TX or CI given 48 hr before EB resulted in moderate levels of lordosis (mean LQs from 56 to 69) and induction of HPOA progestin receptors from 85 to 130% above noninjected controls. However, CI given 24 hr prior to EB produced less than a 40% increase in brain R5020 binding even though lordosis behavior was equivalent to that seen in the 48-hr animals (mean LQ = 53). These data indicate that the effects of antiestrogens on female sexual behavior and on the synthesis of brain progestin receptors depend on which antiestrogen is used and the time interval between administration of estrogen and antiestrogen. They also demonstrate that under some conditions estrogen induction of cytosol progestin receptors in the HPOA can be dissociated from estrogen priming of lordosis behavior in rats.  相似文献   

2.
3.
Dexamethasone receptors were measured by conventional equilibrium steroid binding studies in rat liver and brain cytosol, during late prenatal and postnatal development, Receptor binding could be detected in both cytosol preparations as early as the 17th day of gestation. Receptor levels in the cytosol from intact animals reached adult values by the 1st day after birth in both tissues. Using adrenalectomized animals an increase which reached adult values was observed during the first postnatal week for liver and the second postnatal week for brain. At physiological concentrations of endogenous glucocorticoids depletion of receptor from the cytosol of intact animals was minimal at postnatal day 1 and reached adult levels by day 7. chromatographie analysis in DEAE-Sephadex A50 minicolumns of unactivated and activated receptor constituents revealed the same pattern as that of adult animals. Glucocorticoid receptor complex from developing liver and brain was shown to be capable of binding to isolated adult liver nuclei after in vitro activation. However full capacity, for nuclear binding was observed in vivo, after injection of inducing doses of [3H]dexamethasone: By the end of the first week after birth adult nuclear binding capacity was observed in experiments in vivo while values peaked during the second week, in both tissues studied.  相似文献   

4.
In an attempt to learn whether modulation of steroid hormone receptor by arachidonate is generalized or not, the arachidonate effect was examined in cytosol estrogen (ER), progestin (PR), androgen (AR) and glucocorticoid receptors (GCR) from the central and peripheral tissues of rats by sucrose density gradient centrifugation, and gel filtration on LH20 columns or dextran-coated charcoal absorption. Arachidonate and other long-chain fatty acids appear to inhibit the specific binding of estrogen ([3H]R2858), progestin ([3H]R5020), androgen ([3H]R1881) and glucocorticoid ([3H]dexamethasone) to the respective receptors in brain (neonatal cerebral cortex and hypothalamus-preoptic area, HPOA), uterus and prostate, with the exception of the potentiating effect on the brain estrogen receptors. The potency of the unsaturated fatty acids paralleled to some degree the number of cis double bonds and carbon, in that oleate (C18:1) arachidonate (C20:4) docosahexaenoate (C22:6). The arachidonate inhibition was dose-dependent in the tissue steroid hormone receptors, except for dose-dependent potentiation of the brain cortical estrogen receptors. Inhibitory potency as expressed by the concentration for 50% maximum inhibition (Ki) was in the range of 11-18 microM for the receptors other than the uterine estrogen receptors with the value of 44 microM, suggesting lower sensitivity for the estrogen receptor to the arachidonate effect in the uterus. Analysis on kinetics and Scatchard plot revealed the non-competitive type of the inhibition. In addition, arachidonate lowered dose-dependently the peak of labelled progestin or estrogen binding to the 8S receptor proteins, which were collected from fractions in the 8S region of the cytosols from intact or diethylstibestrol-primed rat uteri. These results suggest the generalized modulatory effect of arachidonate on the steroid hormone receptors in the central and peripheral tissues. Arachidonate could affect, negatively or positively, the estrogen receptors, and negatively the progestin, androgen and glucocorticoid receptors, through a possibly direct but weak binding at sites different from steroid binding sites on the receptor molecules. A potential messenger role of arachidonate itself has been implicated in the regulation or modulation of the steroid hormone receptors.  相似文献   

5.
The content of receptors to estradiol and testosterone was determined in cytoplasmic and nuclear fractions of hypothalamus and brain cortex of male rats in the early postnatal period. Receptors to both estradiol and testosterone were revealed in cytosol and nuclear fractions, with the decrease in their concentration observed from days 1 to 5. The data obtained demonstrate that receptors to sexual hormones take part in the brain differentiation and regulation of hypophysis gonadotropic function by male or female type.  相似文献   

6.
A synthetic progestin, R5020, was used to identify cytoplasmic progestin receptors in the hypothalamuspreoptic area (HPOA) of ovariectomized mice. These high-affinity receptors exhibited an apparent dissociation constant of approx. 1 nM. The receptors were specific for progestins. [3H]R5020 binding was inhibited by more than 50% with a 50-fold excess of either radioinert R5020 or progesterone. 5 alpha-Dihydroprogesterone inhibited binding to a lesser extent. 3 alpha-Hydroxy-5 alpha-pregnane-20-one and cortisol did not compete for [3H]R5020 binding. Administration of estradiol benzoate (10 micrograms), 48 h prior to death, resulted in a 54% increase in the HPOA progestin receptor concentration when compared to oil-injected controls. These data demonstrate that there are specific and saturable cytoplasmic progestin receptors in the mouse HPOA and that the concentration of these receptors is increased after estrogen treatment.  相似文献   

7.
8.
Testosterone plays an essential role in sexual differentiation of the male sheep brain. The ovine sexually dimorphic nucleus (oSDN), is 2 to 3 times larger in males than in females, and this sex difference is under the control of testosterone. The effect of testosterone on oSDN volume may result from enhanced expansion of soma areas and/or dendritic fields. To test this hypothesis, cells derived from the hypothalamus-preoptic area (HPOA) and cerebral cortex (CTX) of lamb fetuses were grown in primary culture to examine the direct morphological effects of testosterone on these cellular components. We found that within two days of plating, neurons derived from both the HPOA and CTX extend neuritic processes and express androgen receptors and aromatase immunoreactivity. Both treated and control neurites continue to grow and branch with increasing time in culture. Treatment with testosterone (10 nM) for 3 days significantly (P < 0.05) increased both total neurite outgrowth (35%) and soma size (8%) in the HPOA and outgrowth (21%) and number of branch points (33%) in the CTX. These findings indicate that testosterone-induced somal enlargement and neurite outgrowth in fetal lamb neurons may contribute to the development of a fully masculine sheep brain.  相似文献   

9.
The neonatal administration of testosterone propionate to Wistar rats resulted in anovulatory adults in persistent vaginal oestrus. Clomiphene citrate had a similar effect. In both groups of adults, hyperplasia of the uterine epithelium and occasional metaplasia was observed. The uterine nuclear and cytosol oestrogen and progestin receptors of these anovulatory rats were found to have affinities for their respective ligands similar to those of normal females. The nuclear oestrogen receptor comprised occupied and unoccupied components, as in normal females. The content of the nuclear oestrogen receptor was comparable with that of females in the late dioestrous or pro-oestrous phase. This content was higher in the clomiphene-treated group. Despite the relatively high nuclear oestrogen receptor content the content of progestin receptors, a putative index of the oestrogenic response, was lower in the treated rats than in normal adult females throughout the cycle. Administration of oestradiol to both treatment groups resulted in depletion of cytosol oestrogen receptor content 1 h later, which, however, was not reflected by an increase in the content of nuclear oestrogen receptors. There was no measurable increase in progesterone receptor content in treated rats after daily administration of oestrogen (5 microgram/rat) for 3 days. These changes in sex-hormone-receptor interactions involving an impairment of the normal oestrogenic response may be associated with the abnormal differentiation of the uterus in these sterile, anovulatory animals.  相似文献   

10.
The content of receptors to testosterone and estradiol in hypothalamus of the male rats was studied during their sexual maturation (7, 14, 21, 28, 35 and 42 days). In all the age groups of animals the concentration of receptors to testosterone in the cytoplasmic and nuclear fractions of hypothalamus was at a relatively constant level, except in 7 day old males in which the minimal concentration of cytoplasmic and the maximal concentration of nuclear receptors were noted. The highest values of estradiol-binding sites in cytosol of hypothalamus were observed on the 7th and 14th days and in the nuclear fraction on the 28th, 35th and 42nd days of life. The binding of both the hormones with their receptors is a specific process characterized by a high affinity. A suggestion is put forward that receptors both to androgens and estrogens take part in the brain sexual differentiation.  相似文献   

11.
1. Specific [3H]estradiol binding activity with characteristics of estrogen receptors was found in the cytosols and nuclear extracts of the adrenal cortex proper and special zone of the brushtail possum (Trichosurus vulpecula). 2. The specific estradiol receptor had a sedimentation coefficient on sucrose gradients of approximately 9S and a molecular weight on gel filtration of more than 200,000. The adrenal cortex cytosol binds [3H]estradiol with high affinity (Ka 5.5 X 10(9) M-1), and limited capacity (Bmax 62.7 fmol/mg cytosol prot). In competition experiments with different steroids the receptor showed a high affinity for four estrogens and a very low affinity to androgens, progesterone and cortisol. 3. There was no difference in the affinity and maximum binding capacity of the cytosols from cortex proper in male and female animals, but the binding capacity of the special zone of females was half that of cortex proper. Estradiol receptors were found in the kidney, liver, lung, testis and muscle but only in the adrenal and prostate was the binding capacity relatively high compared with the uterus. 4. The specific binding capacity of [3H]estradiol to cytosols of adrenal cortex at different stages of the estrus cycle and pregnancy was unrelated to that of the uterus. In the adrenal the receptor concentration was lowest at estrus, when uterine concentration was high, while in late pregnancy the binding of adrenal cortex and uterus cytosols was almost the same. 5. The possible physiological significance of the presence of a specific estrogen receptor in male and female possums is discussed.  相似文献   

12.
Methods for the measurement of nuclear receptors for oestradiol and progesterone in sheep myometrium have been established. Scatchard analysis of nuclear receptors gave dissociation constants (nM) on days 0 and 112 of pregnancy of 1.95 and 1.76 for oestradiol and 4.20 and 4.12 for progesterone, respectively. The concentration of nuclear and cytosol high-affinity receptors for oestradiol and progesterone has been determined during the first 112 days of gestation; and possible roles of oestradiol and progesterone in the regulation of myometrial hypertrophy and function are discussed.The rate of hypertrophy, as measured by changes in protein : DNA and RNA : DNA ratios, was maximal during days 56–84 and declined thereafter. The level of cytosol oestradiol receptor decreased rapidly between day 0 (oestrus) and day 28, and then more slowly between days 28 and 112, when expressed per unit of cytosol protein. However, when expressed per unit of DNA the level increased after day 28 to a peak at day 84, then decreased markedly to day 112. The level of nuclear oestradiol receptor declined from a peak at oestrus to very low levels on days 56–84, then increased markedly to day 112. The concentration of cytosol progesterone receptor declined from a peak at oestrus to low levels on days 28–112. The changes in the level of nuclear progesterone receptor were more complex; the level increased between oestrus and day 28, declined markedly to day 56, then increased again to high levels on days 84–112.The data suggest that oestradiol does not have any important role in stimulating myometrial growth, since the level of nuclear receptor for oestradiol was low when the rate of hypertrophy was maximal. The changes in nuclear progesterone receptor level were less clearly separated, temporally, from changes in rate of hypertrophy, and the possible influence of progesterone on myometrial growth remains unclear.  相似文献   

13.
A synthetic progestin, 16α-ethyl-21-hydroxy-19-nor-4-pregnene-3,20-dione (ORG 2058), was utilized to measure progesterone receptors from the rabbit uterus. This steroid has a high affinity for both cytosol and nuclear receptors, with KD values of 1.2 nM (at 0–4°C) and 2.3 nM (at 15°C), respectively. Administration of estradiol-17β or a non-steroidal antiestrogen, tamoxifen, for 5 days to estrous rabbits led to a progressive rise in the cytosol receptor levels: from 34 000 to 120 000 (estradiol-17β) and 80 000 (tamoxifen) receptors/ cell, without any major influence on the nuclear receptor content. A single intravenous injection of progesterone (5 mg/kg) elicited a 3-fold increase in the mean nuclear receptor content at 30 min after injection (from 18 000 to 48 000 receptors/nucleus). Nuclear receptor accumulation was short-lived and returned to control levels within 4 h after treatment. A second dose of progesterone given 24 h later doubled the nuclear receptor level (from 18 000 to 35 000 receptor/nucleus). The concomitant decline in the cytosol receptor content was twice that accounted for by the nuclear receptor accumulation (70 000 vs. 30 000, and 40 000 vs. 17 000 receptors/cell, after the first and second progesterone injection, respectively). Following progesterone administration, the cytosol receptor level reached a nadir by 30 min, exhibited minimal replenishment within the ensuing 24 h, and remained at approx. 50% of the pretreatment values. After a single dose or two consecutive doses of progesterone, total uterine progesterone receptor content declined to about 60% of the level prior to each dose, a nadir being reached at 2 h after treatment.  相似文献   

14.
In an attempt to learn how nonsteroidal factors modulate brain progestin and glucocorticoid receptors, the effects of saturated and unsaturated fatty acids, and phosphatidylinositol on the binding of [3H]R5020 or [3H]dexamethasone, determined by sucrose density gradient and gel filtration on LH20, were examined in the cerebral cortical cytosol from 10-day-old female rats which contain a considerable amount of progestin and glucocorticoid receptors. Unsaturated fatty acids such as oleic (C18:1), arachidonic (C20:4) and docosahexaenoic acid (C22:4) depressed the [3H]R5020 or [3H]dexamethasone binding in increasing order, but saturated fatty acids had no effect. Arachidonic and docosahexaenoic acids, which were strong inhibitors, lowered the binding dose dependently. The fatty acid inhibition on brain progestin and glucocorticoid receptors was thus a function of acid dose and degree of acid unsaturation. Interestingly, prostaglandin D2 did not show any effect. Among phospholipids tested the inhibitory effect of phosphatidylinositol on the [3H]R5020 binding was evident, but no significant effect was found with phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine or sphingomyelin. The phosphatidylinositol inhibition was dose dependent. Analysis on kinetics and Scatchard plot have revealed the noncompetitive type of inhibition by arachidonic acid and phosphatidylinositol. From these results it is suggested that the unsaturated nonestrified fatty acid, arachidonic acid, and phosphoinositides modulate the brain progestin and, possibly, glucocorticoid receptors through their binding at sites different from steroid binding sites on the respective receptor molecules.  相似文献   

15.
16.
To assess the effect of endogenous thyroid hormone on hepatic EGF receptors in developing mice we measured EGF binding to plasma membrane receptors in liver and brain of mice with congenital hypothyroidism and in euthyroid controls at 20, 30 and 40 days of age. At 20 days hepatic EGF receptor binding was low in both hypothyroid and control animals. Between 20 and 30 days the hepatic binding increased dramatically in the euthyroid animals, an increase that was greater in males than females. The increase in binding was due to an increase in the high affinity receptor population. Among hypothyroid animals there were no changes in hepatic EGF receptor binding with increasing age. In cerebral cortex EGF binding was similar in euthyroid and hypothyroid animals at all ages. These results suggest that thyroxine has regulatory effects on the postnatal ontogeny of hepatic EGF receptors.  相似文献   

17.
Abstract

Progesterone receptor levels in MCF-7 human breast cancer cells increase as a specific response to estrogen and to some nonsteroidal antiestrogens. In the present study we demonstrate that the type and quantity of serum present during culture of these cells modifies the level of progestin binding activity, but not the level of estradiol binding activity.

MCF-7 cells maintained in media supplemented with 5% charcoal-dextran treated calf serum (CDCS) contain 0.3 - 0.4 pmol of cytosol progesterone receptor (PRc) per mg DNA. When cells previously maintained in 5% CDCS-media are shifted to media containing 5% charcoal-dextran treated fetal calf serum (CDFCS), the level of progestin binding increases after day 16, and stabilizes at 2 - 3 pmol/mg DNA at days 30 to 40. Shifting these cells back to 5% CDCS-media, reduces PRc to 0.2 - 0.4 pmol/mg DNA within 3 days. This reduction is dose dependent with a half-optimal decrease at 1% CDCS, and a full decrease at 2% CDCS (4d incubation). Nuclear progestin binding was uniformly low (0.2 - 0.4 pmol/mg DNA) and unaffected by type or concentration of serum, and no consistent change in cytosol or nuclear estrogen receptor levels was observed. These cytoplasmic progestin binding sites are translocated to the nucleus by progesterone, and are similar to estradiol (E2) induced sites by Scatchard binding and sucrose gradient analysis. Similar serum-dependent changes are also observed in the T47D human breast cancer cell line where growth in CDFCS-media results in 4-fold higher progestin binidng levels than observed in CDCS-media. Our findings suggest the presence of non-dialyzable stimulatory factor(s) in CDFCS that influence the progestin receptor level the highlight the fact that serum components can alter dramatically the cellular progestin binding activity.  相似文献   

18.
MPA (medroxyprogeste)rone acetate) has been shown to be te)ratogenic in rabbits but not in rats or mice (Andrew and Staples 1977). Since normal steroid action appears to be mediated, in large part, through interaction with specific steroid receptors, it was postulated that the species difference in teratogenicity might be due to a difference in the interaction of MPA with target cells. A primary event in steroid-cell interaction is the binding of a steroid to intracellular receptors. Studies were initiated to measure the specific nature of MPA binding to glucocorticoid and progestin receptors in appropriate rat and rabbit target tissues. The competition of MPA with 3H-dexamethasone binding in liver cytosol (glucocorticoid receptor) and with 3H-progesterone binding in uterine cytosol (progesterone receptor) was determined. In rabbit liver cytosol, MPA was as effective at competing for specific dexamethasone binding as the natural glucocorticoids and considerably more effective than the nonspecific steroids. In rat liver cytosol MPA was only 10% as effective as the natural glucocorticoids and the competition could not be distinguished from that of nonspecific steroids. A similar species difference was not seen in uterine cytosol; MPA competed with progesterone in a similar fashion in both rat and rabbit. These data demonstrate a distinct species difference in the competitive nature of MPA for the glucocorticoid receptor but not for the progestin receptor. The results suggest that MPA, or possibly a metabolite, may be teratogenic in rabbits by binding with specific glucocorticoid receptors to inhibit or alter normal steroidal function in embryo-fetal development.  相似文献   

19.
The postnatal development of [3H]dihydroalprenolol binding to beta-adrenergic receptors has been studied in frontal cortex, cerebellum, striatum, and hypothalamus of the rat after prenatal and perinatal exposure to diazepam. Dams were injected subcutaneously with single daily doses of 1 mg of diazepam/kg from day 7 to 20 of gestation or from day 15 of gestation to day 6 after birth. Prenatal exposure had no effect on litter size or length of gestation or on the postnatal development of body and brain weights of the progeny. However, a reduced mortality of the pups was observed in relation to vehicle-treated controls until postnatal day 10. Prenatal diazepam administration decreased [3H]dihydroalprenolol binding in frontal cortex, striatum, and hypothalamus but not in cerebellum. This decrease in beta-adrenergic receptor binding was due to a decrease in receptor density rather than in receptor affinity. In contrast, perinatal diazepam exposure led to a transient decrease in [3H]dihydroalprenolol binding limited to the frontal cortex. The permanent reduction in number of beta-adrenergic receptors, which depends on the scaling and duration of the drug application period, points to the necessity of a prolonged evaluation of effects of exposure to psychotropic drugs in early stages of brain development.  相似文献   

20.
Zearalenone is a resorcylic acid lactone compound that is produced by fungal infection of edible grains and is believed to influence reproduction by binding to estrogen receptors. In order to study the potential estrogenic effects of this compound in the brain, we examined the effects of zearalenone on the expression of neuronal progestin receptors and feminine sexual behavior in female rats. Ovariectomized rats were treated with zearalenone (0.2, 1.0, or 2.0 mg), estradiol benzoate, or vehicle daily for 3 days. They were then either perfused, and progestin receptors visualized by immunocytochemistry, or injected with progesterone and tested for sexual receptivity with male rats. Progestin receptor-containing cells were counted in the medial preoptic area and ventromedial hypothalamus. The two highest doses of zearalenone increased the concentration of neuronal progestin receptors, as did 10 microg of estradiol. The highest dose of zearalenone (2 mg) also induced progestin receptor staining density comparable to that of 10 microg of estradiol benzoate. In behavioral tests, ovariectomized animals treated with 2 mg of zearalenone followed by progesterone showed levels of sexual receptivity comparable to females treated daily with estradiol benzoate (2 microg) followed by progesterone. These studies suggest that, although structurally distinct and less potent than estradiol, zearalenone can act as an estrogen agonist in the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号