首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cells exposed to glucocorticoids at 37 degrees C activated glucocorticoid-receptor complexes (complexes with affinity for nuclei and DNA) are formed after nonactivated complexes. Activation thus appears to be an obligatory physiological process. To investigate this process we have characterized cytoplasmic complexes formed in rat thymocytes at 0 and 37 degrees C. Complexes in cytosols stabilized with molybdate were analyzed by sucrose gradient centrifugation and by chromatography on DNA-cellulose, DEAE-cellulose, and agarose gels. Two major complexes were observed: the nonactivated complex, eluted from DEAE at approximately 200 mM KCl, was formed at 0 and 37 degrees C, gave S20,w = 9.2 S, Stokes radius = 8.3 nm, and calculated Mr = 330,000; the activated complex, eluted from DEAE at approximately 50 mM KCl, appeared only at 37 degrees C, gave S20,w = 4.8 S, Stokes radius = 5.0 nm, and Mr = 100,000. A third, minor complex, probably mero-receptor, which appeared mainly at 37 degrees C, bound to neither DNA nor DEAE, and gave S20,w = 2.9 S, Stokes radius = 2.3 nm, and Mr = 27,000. With three small columns in series (DNA-cellulose, DEAE-cellulose and hydroxylapatite), the three complexes can be separated in 5-10 min. By this method we have examined the stability of complexes under our conditions. We conclude that in intact thymus cells glucocorticoid-receptor complexes occur principally in two forms, nonactivated and activated, and that activation is accompanied by a large reduction in size. The origin of the mero-receptor complex remains uncertain.  相似文献   

2.
Cytosols from rat thymus cells incubated with glucocorticoid contain nonactivated and activated receptors and mero-receptor complexes, in relative amounts that depend on the incubation conditions. These forms can be separated by a rapid minicolumn chromatographic technique based on their differential affinities for DNA, DEAE, and hydroxylapatite. We have used this method to examine the effects of ATP, pyrophosphate (PPi), and related compounds on cytosolic complexes. In addition to ATP, already known to promote activation at 0 degrees C, PPi, ADP, and other triphosphates at millimolar concentrations promoted activation of nonactivated complexes. AMP and Pi had little effect. ATP and PPi at millimolar concentrations also reduced binding of activated complexes to DNA. Characterization of the ATP- and PPi-activated complexes by gel filtration and ion exchange chromatography revealed two DNA-binding forms. One was essentially identical (Stokes radius of approximately 5.4 nm, elution from DEAE at approximately 50 mM KCl) to the normal activated complex obtained directly from cells incubated at 37 degrees C. The other had a Stokes radius of approximately 3.1 nm and had no affinity for DEAE. Analysis by minicolumns and gel filtration showed that ATP and PPi prevented formation of mero-receptor complexes, a process which occurs relatively rapidly in untreated thymus cytosols. These compounds did not alter properties of preformed mero-receptor. The accumulation of 3.1-nm complexes in thymus cytosols in which formation of mero-receptor is prevented suggests that this form is an intermediate, normally short-lived, in the conversion of 5.4 nm complexes to mero-receptor.  相似文献   

3.
We have investigated the stability of the [3H]dexamethasone 21-mesylate-labeled nonactivated glucocorticoid-receptor complex in rat thymus cytosol containing 20 mM sodium molybdate. Cytosol complexes were analyzed under nondenaturing conditions by gel filtration chromatography in the presence of molybdate and under denaturing conditions by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. When analyzed under nondenaturing conditions, complexes from fresh cytosol and from cytosol left for 2 h at 3 degrees C eluted from gel filtration as a single peak of radioactivity with a Stokes radius of approximately 7.7 nm, suggesting that no proteolysis of the complexes had occurred in either cytosol. When analyzed under denaturing conditions, however, whereas the fresh cytosol gave a receptor band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at Mr approximately 90,000 (corresponding to the intact complex), the cytosol that had been left for 2 h at 3 degrees C gave only a fragment (Mr approximately 50,000). This fragment, just as the intact complex, could be thermally activated to a DNA-binding form. Proteolysis of the receptor could be blocked by preparing the cytosol in the presence of EGTA, leupeptin, or a heat-stable factor present in the cytosol of rat liver and WEHI-7 mouse thymoma cells. From these results we conclude: (i) 20 mM molybdate does not protect the nonactivated glucocorticoid-receptor complex present in rat thymus cytosol against proteolysis under conditions which are commonly used for cell-free labeling of the receptor, and (ii) the demonstration of a Stokes radius of approximately 8 nm for the nonactivated glucocorticoid-receptor complex is not sufficient to indicate that the receptor complex is present in its intact form.  相似文献   

4.
Summary The investigation on hydrodynamic parameters of molybdate-stabilized glucocorticoid-receptor complexes from HeLa cell cytosol permitted resolution of four distinct forms. The first one could be detected in concentrated cytosols at low salt concentrations, and had the following properties: sedimentation coefficient = 9 S; R s = 9.3 nm; M r = 357,800; f/f o = 1.83; axial ratio (prolate ellipsoid) = 16. When these cytosol extracts were diluted, a second form could be detected with sedimentation coefficient = 8.3 S; R s = 9.05 nm; M r = 320,700;f/f o = 1.84; axial ratio = 16. Under high salt conditions, glucocorticoid-receptor complexes in concentrated cytosol had the following properties: sedimentation coefficient = 6.4 S; R s, = 6.7 nm; M r = 183,100;f/f o = 1.64; axial ratio = 12. When either these cytosol extracts were diluted, or glucocorticoid-receptor complexes were subjected to repeated analysis, a fourth form was detected with sedimentation coefficient = 3.76 S; R s = 5.67; M r = 91,000; f/f o = 1.75; axial ratio = 14. Besides salt concentration and dilution, the time elapsed between sample dilution and analysis appeared to affect the hydrodynamic properties of glucocorticoid-receptor complexes. On the basis of our findings, it has been concluded that the most likely structure of molybdate-stabilized glucocorticoid-receptor complexes of HeLa cell cytosol can be represented by association of monomers in homodimers, and homotetramers. A homotrimer form could not be deduced from our findings, and the 320,700 glucocorticoid-receptor complex we observed has been suggested to represent an unresolved mixture of trimers and tetramers.  相似文献   

5.
Using a variety of physico-chemical techniques we have recently characterized three distinct forms of glucocorticoid-receptor complexes present in the cytosol from rat thymus cells incubated with glucocorticoid; the relative proportions of these complexes are dependent on the conditions to which the cells or cytosols are exposed. Two of these complexes correspond to the well established nonactivated and activated receptor forms, while the third has properties consistent with mero-receptor. Based on their differential affinities for DNA- and DEAE-cellulose we have developed a rapid mini-column chromatographic procedure for separating these three forms and have used it to examine the stability of complexes in cytosol preparations. We have found that activated glucocorticoid-receptor complexes from rat thymus cells are relatively unstable under cell-free conditions in that they undergo time-dependent losses in DNA binding and are converted to mero-receptor. In contrast, cytosolic glucocorticoid-receptor complexes prepared from WEHI-7 mouse thymoma cells are remarkably stable under similar conditions. Mixing experiments with equal portions of rat thymus and WEHI-7 cytosol revealed that the difference between the two tissues cannot be accounted for merely by differences in amounts of proteolytic enzymes, since addition of rat thymus cytosol to WEHI-7 cytosol containing activated glucocorticoid-receptor complexes does not result in their conversion to mero-receptor. However, the WEHI-7 cytosol affords considerable protection to activated glucocorticoid-receptor complexes in thymus cytosol. The stabilizing factor from WEHI-7 cytosol is heat stable (survives 100 degrees C for 30 min), insensitive to pH over a wide range (4.0-10.0), and appears to be macromolecular. It does not inhibit activation, and thus appears distinct from the previously described endogenous glucocorticoid receptor stabilizing factor responsible for stabilization of thymocyte receptor binding capacity (Leach et al., J. Biol. Chem. 257: 381-388, 1982). We propose that the factor is an endogenous inhibitor of the protease(s) responsible for mero-receptor formation.  相似文献   

6.
We have previously shown that the purified or unfractionated cytosolic, activated glucocorticoid receptor of rat liver consists of a polypeptide with a Stokes radius of approximately 6 nm, a sedimentation coefficient of 4S and a molecular mass of approximately 90,000 Daltons. We have confirmed previous observations by other authors that if sodium molybdate is introduced into the cytosol preparation buffer the non-activated glucocorticoid receptor appears as an 8 nm, 9S species with an apparent molecular mass of 330,000 Daltons. In order to study the physicochemical parameters of the glucocorticoid receptor prior to ligand binding, we have used an enzyme-linked immunosorbent assay (ELISA) based on antibodies raised in rabbits against the purified activated glucocorticoid receptor. In isotonic buffer, the non-liganded glucocorticoid receptor was shown to have a Stokes radius of 6 nm in the absence and 8 nm in the presence of molybdate. Furthermore, experimental conditions known to result in activation of the glucocorticoid receptor complex (increased ionic strength, increased temperature) did not lead to activation of the 6 nm non-liganded glucocorticoid receptor as judged from the lack of binding of the treated, non-liganded receptor to DNA-cellulose. The existence of both 6 and 8 nm forms of nonactivated, non-liganded glucocorticoid receptor in vitro suggests that dissociation of an 8 nm form to a 6 nm form, if it occurs in vivo, is probably not the only molecular event constituting the activation of the glucocorticoid receptor.  相似文献   

7.
We have studied the kinetics, on time scales of minutes and seconds, of formation and interconversion of glucocorticoid-receptor complexes in rat thymus cells under physiological conditions. Nonactivated and activated complexes were measured by a minicolumn technique that permits rapid, multiple simultaneous assays. The rate-limiting step in formation of nuclear complexes was activation, which at 37 degrees C had a half-time of 30-60 s. Activation in cells at 25 degrees C followed first order kinetics. Nuclear binding at 37 degrees C was too fast to measure, and probably has a half-time below 10 s. Earlier findings suggesting that triamcinolone acetonide and dexamethasone give higher steady state ratios of activated to nonactivated complexes than cortisol and corticosterone have been supported by showing that these ratios are concentration-independent, and are unlikely to be due to degradation or dissociation of complexes after cell disruption. A simple cyclic model of receptor kinetics, in which each glucocorticoid is characterized by its dissociation rate constant, accounts quantitatively for these results and many others. The model is based on the assumptions that activation is irreversible, and that energy is required for regenerating functional receptors after each cycle. It yields steady state ratios of activated to nonactivated complexes in agreement with experiment without introducing steroid-specific allosteric influences on activation, and suggests a new mechanism for explaining agonist-antagonist relationships.  相似文献   

8.
Abstract

We studied the effects of temperature, ribonucleotides and sodium molybdate on the activation and DNA cellulose binding of estrogen, glucocorticoid, progesterone and androgen receptor complexes in MCF-7 cells. Using DNA cellulose binding as a measure of receptor activation, we found that ribonucleotides activated all four of these receptor complexes. Temperature also activated glucocorticoid receptor complexes efficiently but activated progesterone and androgen receptor complexes less well. Temperature did not activate estrogen receptor complexes. Sodium molybdate blocked either ATP or temperature induced activation of glucocorticoid, progesterone and androgen receptor complexes but only partially blocked estrogen activation. Sodium molybdate also prevented the formation of multiple forms of estrogen and glucocorticoid receptor complexes seen on DEAE cellulose and hydroxylapatite chromatography of crude cytosol. The mechanism by which ribonucleotide enhances and molybdate inhibits activation are discussed.  相似文献   

9.
Laser light-scattering has been used to investigate the size of native proteoglycan aggregates (PGA-aA1) from day-8 chick limb-bud chondrocyte cultures isolated under associative extraction and purification conditions in 0.4M guanidinium chloride (GdnHCl) solution. Dynamic light-scattering measurements yielded a hydrodynamic radius, Rs, of 244 ± 10 nm for PGA-aA1 in 0.4M GdnHCl, and a weight-average molecular weight (M w) of 150 ± 50 × 106 was obtained from a Zimm plot. Disaggregation in 4.0M GdnHCl aqueous solution yielded proteoglycan subunits (PGS) with Rs = 39 ± 2 nm, M w = 1.6 ± 0.3 × 106, which reassembled in 0.4M GdnHCl to form “reconstituted native” aggregates (PGA-raA1) with Rs = 121 ± 6 nm, M w = 17 ± 3 × 106. A second specimen of PGA-aA1 had Rs = 192 ± 10 nm, M w = 100 ± 10 × 106. The latter value was estimated from an empirical relationship between M w and Rs. After dissociation, this specimen reassembled to form PGA-raA1 with Rs = 85 ± 5 nm, M w = 12 ± 1 × 106. These data are compared with those for a specimen of reconstituted aggregate (PGA-A1) that had been extracted under dissociative conditions and then reaggregated by dialysis to 0.4M GdnHCl aqueous solution, for which Rs = 138 ± 9 nm, M w = 45 ± 8 × 106. From these values, we have calculated the weight-average number of subunits per aggregate Nw: 111 for PGA-aA1 and 12 for raA1 (70 and 7 for the second PGA-aA1 and PGA-raA1 specimen, respectively) as compared to 32 for PGA-A1. The numbers of subunits per aggregate were also determined from electron micrographs of spread specimens. The latter results show the same trends as those obtained by light scattering, but lead in each case to lower numbers of subunits per aggregate. These data demonstrate conclusively that PGA samples exhibit a higher degree of aggregation in solution than visualized in typical electron microscopy (EM) preparations, probably due to disaggregation during EM specimen preparation. Since Nw determined both by light scattering (LS) and by EM are larger for native versus reconstituted aggregate samples, our data point to a more compact aggregation of subunits along the hyaluronic acid (HA) chains in the former.  相似文献   

10.
D B Tully  J A Cidlowski 《Biochemistry》1989,28(5):1968-1975
Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing [3H]triamcinolone acetonide [( 3H]TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, [3H]TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins prior to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. When similar experiments were conducted under conditions of large receptor excess, using 3' [32P]-MMTV LTR DNA, the trace quantity of DNA formed a stable 10-14S complex with DNA-cellulose pretreated cytosols or with untreated cytosols in the presence of excess Escherichia coli competitor DNA. If trace quantities of the 3' [32P]-MMTV LTR DNA were incubated with untreated crude cytosols, much larger complexes were formed, indicating the association of other cytosolic proteins with the MMTV LTR DNA fragment. Activated [3H]TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA, but with lower apparent affinities in the order MMTV LTR DNA fragment much greater than pBR322 fragment containing a single GRE DNA consensus sequence greater than non-GRE-containing pBR322 fragment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Neutron scattering studies are reported on subcomponent C1q of component C1 of human complement, and on C1, the complex of C1q with subunit C1r2C1s2. For C1q, the molecular weight was determined as 460,000. The radius of gyration at infinite contrast Rc is 12.8 nm. The Rc values for the proteolytically cleaved forms of C1q, namely the heads and the stalks, are 1.5 to 2 nm and 11 nm, respectively, and thus the axis-to-arm angle of C1q is estimated at 45 °. Neutron data for subunit C1r2C1s2 are published elsewhere. The neutron data on C1 lead to an Rc value of 12.6 nm for proenzymic C1 and a molecular weight of 820,000. The wideangle scattering curve of C1q exhibits a minimum at Q = 0.28 nm?1 and a maximum at 0.39 nm?1; on the addition of C1r2C1s2, this minimum disappears. The neutron data on C1 indicate that C1q and C1r2C1s2 have complexed with a large conformational change in one or both parts. No conformational changes can be detected on the activation of C1 by this method.  相似文献   

12.
The binding characteristics of partially purified glucocorticoid receptor complexes from hormone sensitive, non-differentiating BCL1 cells to sequentially deproteinized BCL1 chromatin-cellulose was investigated. [3H]Triamcinolone acetonide (TA)-receptor complexes were purified (approx. 30-fold) from DEAF-cellulose columns by salt elution which allowed receptor activation only in the absence of molybdate. Addition of 10 mM molybdate completely blocked salt activation. The binding pattern of the activated [3H]TA-receptor complexes to chromatin-cellulose extracted with 0–8 M guanidine hydrochloride revealed three regions of increased binding activity (acceptor sites), at 2, 5 and 7 M guanidine hydrochloride. Acceptor site binding was markedly reduced for chromatin extracted with 3, 6 and 8 M guanidine hydrochloride. Non-activated receptor complexes demonstrated very low binding to deproteinized chromatin. It was also shown that chromatin binding required glucocortical receptors and that free ligand or ligand bound to other proteins did not bind significantly to chromatin. In addition, binding of [3H]TA-receptor complexes to partially deproteinized chromatin was competable by unlabeled TA-receptor complexes. Scatchard analysis demonstrated that chromatin from non-differentiating BCL1 cells possesses multiple, high-affinity binding sites which differ in their affinity for the glucocorticoid receptor. Partially deproteinized chromatin from lipopolysaccharide-stimulated BCL1 cells demonstrated a different pattern of receptor binding, i.e., receptor binding was significantly greater to chromatin previously extracted with 6–8 M guanidine hydrochloride. These results suggest that differentiation alters the state of chromatin and the interaction of non-histone protein/DNA acceptor sites with glucocorticoid receptors. These alterations may play a role in the acquisition of hormone resistance.  相似文献   

13.
An anti-human T lymphocyte serum specific to the receptor for sheep erythrocytes (E) was produced by immunizing sheep with the complex autologous E-soluble E receptor (ERs). The soluble receptor (Rs) was obtained by heating human lymphocytes at 45 °C for 1 hr. The anti-Rs serum has been shown to inhibit E-rosette formation, to be cytotoxic to T cells, to identify T lymphocytes by indirect immunofluorescence, and to stimulate blastogenesis. The reaction of anti-Rs with Rs was directly demonstrated by two newly developed methods: agglutination of complexes formed by the treatment of formolized E with Rs (EFRs complexes) and adhesion of a protein A producer strain of Staphylococcus aureus to EFRs treated with anti-Rs. The anti-Rs antibodies could be neutralized by Rs present in supernatant of heated peripheral lymphocytes, inhibiting the above reactions and therefore providing methods to quantitate Rs in biological preparations. The importance of these assays is that Rs plays an immunoregulatory activity, and high levels of Rs in serum are associated with depressed cell-mediated immunity.  相似文献   

14.
Glucocorticoid receptors of rat kidney and liver were compared by physicochemical and immunochemical methods to investigate the role of proteolysis in the formation of corticosteroid binder IB. Kidney cytosol prepared in the presence of sodium molybdate contained receptor forms comparable to rat liver glucocorticoid receptor; [3H]triamcinolone acetonide-labeled receptors eluted from Sephacryl S-300 as a multimeric 6.1 nm component in the presence of molybdate and as a monomeric 5.7 nm component in the absence of molybdate. Both forms were recognized by the monoclonal antibody BUGR-1 which was raised against rat liver glucocorticoid receptor. When kidney cytosol was prepared in the absence of molybdate, labeled receptor complexes eluted from Sephacryl S-300 as a 5.8 nm component in the presence of molybdate. However, in the absence of molybdate, the receptor eluted as a smaller 3.4 nm component which was identical with the size of activated kidney glucocorticoid receptor chromatographed in either the presence or absence of molybdate. The 3.4 nm activated kidney glucocorticoid receptor did not bind to DEAE-cellulose under conditions where activated liver receptor was retained. These properties of the activated kidney receptor are characteristic of corticosteroid binder IB. Incubation of the activated kidney receptor complex with BUGR-1 resulted in a shift in apparent Stokes radius from 3.4 nm to 5.4 nm, indicating immunochemical similarity with rat liver receptor. Identification of the immunoreactive receptor subunit by Western blotting demonstrated that kidney cytosol prepared in the presence of molybdate contained a major 94-kDa immunoreactive component which co-migrated with rat liver glucocorticoid receptor, while cytosol prepared in the absence of molybdate contained principally a 44-kDa immunoreactive species. These results suggest that corticosteroid binder IB can be generated by in vitro proteolysis and does not represent a polymorphic form of the glucocorticoid receptor.  相似文献   

15.
Both the nonactivated and activated forms of the chick oviduct cytosol progesterone receptor-hormone complexes displayed first-order dissociation kinetics at temperatures between 0 and 25 degrees C. The rate constant was always 2-3-times greater for the nonactivated than for the activated complex. The thermodynamic parameters calculated from the Eyring plot for the nonactivated and activated forms, respectively, were: delta H+ = 28.6 +/- 0.2 and 29.9 +/- 1.5 kcal/mol; -T delta S+ = 7.4 +/- 0.6 and 7.7 +/- 1.6 kcal/mol; and delta G+ = 21.3 +/- 0.5 and 22.1 +/- 0.1 kcal/mol. These values suggest that activation results in an increase in enthalpy of the ligand-receptor interaction, thus stabilizing the complex. The dissociation rate constants for the native complex obtained by two different experimental approaches, namely, isotope dilution ('chase') and dissociation against charcoal, indicated the absence of cooperativity in the receptor-ligand binding.  相似文献   

16.
The cytosolic glucocorticoid receptor of 21st gestational day rat epiphyseal chondrocytes has been evaluated. The receptor, a single class of glucocorticoid binding component approached saturation, utilizing [3H]triamcinolone acetonide ([3H]TA) as the radiolabeled ligand, at approximately 1.8-2.0 x 10(-8) M. The dissociation constant (Kd) reflected high-affinity binding, equaling 4.0 +/- 1.43 x 10(-9) M (n = 7) for [3H]TA. The concentration of receptor estimated from Scatchard analysis was approximately 250 fmol/mg cytosolic protein and when calculated on a sites/cell basis equalled 5800 sites/cell. The relative binding affinities of steroid for receptor were found to be triamcinolone acetonide greater than corticosterone greater than hydrocortisone greater than progesterone greater than medroxyprogesterone acetate much greater than 17 alpha-hydroxyprogesterone much greater than testosterone greater than 17 beta-estradiol. Cytosolic preparations activated in vitro by warming (25 degrees C for 20 min) were shown to exhibit an increased affinity for DNA-cellulose. 46% of the total specifically bound activated ligand-receptor complex was bound to DNA-cellulose. Cytosol maintained at 0-4 degrees C in the presence of 10 mM molybdate or activated in vitro in the presence of molybdate, bound to DNA-cellulose at 8 and 10% respectively. DEAE-Sephadex elution profiles of the nonactivated receptor were indicative of a single binding moiety which eluted from the columns at 0.4 M KCl. Elution profiles of activated receptor were suggestive of an activation induced receptor lability. The 0.4 M KCl peak was diminished, while a concomitant increase in the 0.2 M KCl peak was only modestly discernible. Evaluation of endogenous proteolytic activity in chondrocyte cytosol using [methyl-14C]casein as substrate show a temperature-dependent proteolytic activity with a pH optimum of 5.9-6.65. The proteolytic activity was susceptible to heat inactivation and was inhibitable, by 20 mM EDTA. The sedimentation coefficient of the nonactivated receptor was 9.3s (n = 6) on sucrose density gradients and exhibited steroid specificity and a resistance to activation induced molecular alterations when incubated in the presence of 10 mM molybdate. Receptor activation in vitro, in the absence of molybdate induced an increased receptor susceptibility to proteolytic attack and/or enhanced ligand receptor dissociation as evidenced by a diminution of the 9.3s binding form without a concomitant increase in 5s or 3s receptor fragments.  相似文献   

17.
Glucocorticoid-receptor complexes in rat thymus cytosol were characterized by gel-filtration chromatography on Agarose A-1.5 m and Sephacryl S-300. Two forms of non-transformed complex were identified at low ionic strength in the presence of molybdate, with Stokes radii of approx 8 nm and 6 nm. The 8 nm molybdate-stabilized form could be converted to the 6 nm form by chromatography on Sephacryl S-300 or Lipidex 1000 or by incubation with dextran-charcoal or phospholipase C, but not by chromatography on Sephadex G-25; none of the treatments promoted receptor transformation. It is suggested that the change in Stokes radius from 8 to 6 nm results from the removal of a lipid factor responsible for maintaining the complex in the 8 nm form.  相似文献   

18.
J E Bodwell  N J Holbrook  A Munck 《Biochemistry》1984,23(18):4237-4242
We have found that nonactivated and activated forms of the rat thymus glucocorticoid-receptor complex (GRC) will react with reactive sulfhydryl matrices to form covalently immobilized complexes that can subsequently be eluted with reducing agents. The interaction of GRCs with these matrices depends on the nature of both the immobilized sulfhydryl group and the type of leaving group attached. One matrix, agarose CL-4B-diaminoethyl-succinyl-thioethylamine-2-thiopyridyl+ ++ (DSTT), binds total receptor-bound steroid. A second matrix, agarose CL-4B-diaminoethyl-succinyl-cysteinyl-2-thiobenzoic acid (DSCT), binds activated but not nonactivated complexes. The reaction of activated complexes with the DSCT matrix is apparently through a sulfhydryl group located near the DNA binding domain, as soluble DNA interferes with the reaction. This sulfhydryl group(s) appears to be located in a portion of the GRC that is resistant to degradation, since proteolytic digestion of activated GRC to a point where DNA binding is lost results in only a moderate decrease in binding with the DSCT matrix. Purified receptor, covalently labeled with [3H]dexamethasone to the sulfhydryl associated with the steroid binding domain, was able to bind to DSCT matrix, providing evidence for distinct sulfhydryl groups associated with the steroid and DNA binding domains.  相似文献   

19.
We have used a monoclonal antibody to purify glucocorticoid-receptor complexes from WEHI-7 mouse thymoma cells. Molybdate-stabilized, nonactivated complexes were found to contain two distinct proteins which could be separated by polyacrylamide gel electrophoresis under denaturing and reducing conditions. One of the proteins, 100 kDa, was labeled when cytosol was incubated with the affinity ligand [3H]dexamethasone 21-mesylate. The second protein, 90 kDa, was not labeled. Several lines of evidence, including Western blot analysis of purified nonactivated complexes, indicate that only the 100-kDa protein is directly recognized by the antibody. The 90-kDa protein appears to be purified as a component of the nonactivated complex due to noncovalent association with the 100-kDa protein. Both the 100-kDa and 90-kDa components of the nonactivated complex become labeled with 35S when cells are grown in medium containing [35S]methionine. Using cells labeled in this manner, we have shown that activated (i.e. DNA-binding) cytosolic complexes, formed by warming either in intact cells or under cell-free conditions, contain only the 100-kDa protein. Complexes extracted from nuclei of warmed cells similarly contain only the 100-kDa protein. These results indicate that the 100-kDa and 90-kDa components of nonactivated complexes separate upon activation. Purification of nonactivated complexes from cells grown in medium containing [32P]orthophosphoric acid indicates that both the 100-kDa and 90-kDa components are phosphoproteins which can be labeled with 32P. Therefore, resolution of the two proteins will be essential in order to determine whether the receptor is dephosphorylated on activation.  相似文献   

20.
Soluble complexes of low density lipoproteins (LDL) with heparin (HEP) and chondroitin sulphate (CS) in the absence of divalent cations have been studied by means of a micro-rolling-ball ciscometer to obtain information about molecular size and structure of the aggregates. The rheological results were supplied and corroborated by light scattering measurements, electrophoresis and analytical ultracentrifugation. Molar binding ratios were measured using gel filtration assays and ultracentrifugation. At a certain weight ratio of LD To HEP the solutions showed a significant viscosity maximum. At this weight ratio 2–3 LDL particles are held together 1–2 HEP chains. The hydrodynamic radius RH of this complex is about 16.3 ± 0.90 nm and the rotational diffusion constant is > 7.1 × 103 s?1. With excess HEP the radius of the aggregates is almost the same as that of free LDL (RH = 11.9 ± 0.70 nm). Quantitative binding studies revealed that in this case 1–2 HEP molecules are bound to a single LDL particle. An interaction was also found with CS and LDL but complex formation in this case showed different characteristics. Very low density lipoproteins (VLDL) and high density lipoproteins (HDL) gave no rheologically effective aggregates with HEP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号