首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Enterobacteriaceae members are largely distributed in the environment and responsible for a wide range of bacterial infections in hospitalized patients. Pseudomonas aeruginosa (P. aeruginosa) causes severe nosocomial infections associated with severe inflammation due to its potent virulent factors including lipopolysaccharide (LPS). The aim of this study is to assess the bacterial LPS effect on Enterobacteriaceae biofilm and other virulence factors in vitro. The effect of P. aeruginosa LPS on biofilm formation of two other species of Enterobacteriaceae (Escherichia coli and Klebsiella pneumoniae) was assessed using a standard biofilm assay. PCR was performed on genes of biofilm and virulence factors. Expression of biofilm, type-1-fimbriae and serum resistance genes in treated and untreated cells was measured with RT-PCR. P. aeruginosa LPS has the ability to stimulate biofilm formation and stabilize the already formed biofilm significantly in all tested strains. In addition, LPS significantly increased the level of expression of Bss, FimH, and Iss genes when measured by RT-PCR. P. aeruginosa LPS has a direct stimulatory effect on the biofilm formation, type-1-fimbriae, and serum resistance in both E. coli and K. pneumoniae. So, the presence of P. aeruginosa in mixed infection with Enterobactereacea leads to increase their virulence.

  相似文献   

3.
4.
Bacteriophage infection has profound effects on bacterial biology. Clustered regular interspaced short palindromic repeats (CRISPRs) and cas (CRISPR-associated) genes are found in most archaea and many bacteria and have been reported to play a role in resistance to bacteriophage infection. We observed that lysogenic infection of Pseudomonas aeruginosa PA14 with bacteriophage DMS3 inhibits biofilm formation and swarming motility, both important bacterial group behaviors. This inhibition requires the CRISPR region in the host. Mutation or deletion of five of the six cas genes and one of the two CRISPRs in this region restored biofilm formation and swarming to DMS3 lysogenized strains. Our observations suggest a role for CRISPR regions in modifying the effects of lysogeny on P. aeruginosa.  相似文献   

5.
Many virulence genes in plant bacterial pathogens are coordinately regulated by “global” regulatory genes. Conducting DNA microarray analysis of bacterial mutants of such genes, compared with the wild type, can help to refine the list of genes that may contribute to virulence in bacterial pathogens. The regulatory gene algU, with roles in stress response and regulation of the biosynthesis of the exopolysaccharide alginate in Pseudomonas aeruginosa and many other bacteria, has been extensively studied. The role of algU in Xylella fastidiosa, the cause of Pierce's disease of grapevines, was analyzed by mutation and whole-genome microarray analysis to define its involvement in aggregation, biofilm formation, and virulence. In this study, an algU::nptII mutant had reduced cell-cell aggregation, attachment, and biofilm formation and lower virulence in grapevines. Microarray analysis showed that 42 genes had significantly lower expression in the algU::nptII mutant than in the wild type. Among these are several genes that could contribute to cell aggregation and biofilm formation, as well as other physiological processes such as virulence, competition, and survival.  相似文献   

6.
7.
Prevention of the initiation of biofilm formation is the most important step for combating biofilm-associated pathogens, as the ability of pathogens to resist antibiotics is enhanced 10 to 1000 times once biofilms are formed. Genes essential to bacterial growth in the planktonic state are potential targets to treat biofilm-associated pathogens. However, the biofilm formation capability of strains with mutations in these essential genes must be evaluated, since the pathogen might form a biofilm before it is eliminated. In order to address this issue, this work proposes a systems-level approach to quantifying the biofilm formation capability of mutants to determine target genes that are essential for bacterial metabolism in the planktonic state but do not induce biofilm formation in their mutants. The changes of fluxes through the reactions associated with the genes positively related to biofilm formation are used as soft sensors in the flux balance analysis to quantify the trend of biofilm formation upon the mutation of an essential gene. The essential genes whose mutants are predicted not to induce biofilm formation are regarded as gene targets. The proposed approach was applied to identify target genes to treat Pseudomonas aeruginosa infections. It is interesting to find that most essential gene mutants exhibit high potential to induce the biofilm formation while most non-essential gene mutants do not. Critically, we identified four essential genes, lysC, cysH, adk, and galU, that constitute gene targets to treat P. aeruginosa. They have been suggested by existing experimental data as potential drug targets for their crucial role in the survival or virulence of P. aeruginosa. It is also interesting to find that P. aeruginosa tends to survive the essential-gene mutation treatment by mainly enhancing fluxes through 8 metabolic reactions that regulate acetate metabolism, arginine metabolism, and glutamate metabolism.  相似文献   

8.
Type II toxin–antitoxin (TA) systems are two-gene modules widely distributed among prokaryotes. GNAT toxins associated with the DUF1778 antitoxins represent a large family of type II TAs. GNAT toxins inhibit cell growth by disrupting translation via acetylation of aminoacyl-tRNAs. In this work, we explored the evolutionary trajectory of GNAT toxins. Using LC/MS detection of acetylated aminoacyl-tRNAs combined with ribosome profiling, we systematically investigated the in vivo substrate specificity of an array of diverse GNAT toxins. Our functional data show that the majority of GNAT toxins are specific to Gly-tRNA isoacceptors. However, the phylogenetic analysis shows that the ancestor of GNAT toxins was likely a relaxed specificity enzyme capable of acetylating multiple elongator tRNAs. Together, our data provide a remarkable snapshot of the evolution of substrate specificity.  相似文献   

9.
10.
11.
12.
Pf prophages are ssDNA filamentous prophages that are prevalent among various Pseudomonas aeruginosa strains. The genomes of Pf prophages contain not only core genes encoding functions involved in phage replication, structure and assembly but also accessory genes. By studying the accessory genes in the Pf4 prophage in P. aeruginosa PAO1, we provided experimental evidence to demonstrate that PA0729 and the upstream ORF Rorf0727 near the right attachment site of Pf4 form a type II toxin/antitoxin (TA) pair. Importantly, we found that the deletion of the toxin gene PA0729 greatly increased Pf4 phage production. We thus suggest the toxin PA0729 be named PfiT for Pf 4 i nhibition t oxin and Rorf0727 be named PfiA for Pf iT a ntitoxin. The PfiT toxin directly binds to PfiA and functions as a corepressor of PfiA for the TA operon. The PfiAT complex exhibited autoregulation by binding to a palindrome (5′-AATTC N5GTTAA -3′) overlapping the -35 region of the TA operon. The deletion of pfiT disrupted TA autoregulation and activated pfiA expression. Additionally, the deletion of pfiT also activated the expression of the replication initiation factor gene PA0727. Moreover, the Pf4 phage released from the pfiT deletion mutant overcame the immunity provided by the phage repressor Pf4r. Therefore, this study reveals that the TA systems in Pf prophages can regulate phage production and phage immunity, providing new insights into the function of TAs in mobile genetic elements.  相似文献   

13.
Pseudomonas aeruginosa is a key opportunistic pathogen characterized by its biofilm formation ability and high-level multiple antibiotic resistance. By screening a library of random transposon insertion mutants with an increased biofilm-specifc antibiotic susceptibility, we previously identified 3 genes or operons of P. aeruginosa UCBPP-PA14 (ndvB, PA1875–1877 and tssC1) that do not affect biofilm formation but are involved in biofilm-specific antibiotic resistance. In this study, we demonstrate that PA0756–0757 (encoding a putative two-component regulatory system), PA2070 and PA5033 (encoding hypothetical proteins of unknown function) display increased expression in biofilm cells and also have a role in biofilm-specific antibiotic resistance. Furthermore, deletion of each of PA0756, PA2070 and PA5033 resulted in a significant reduction of lethality in Caenorhabditis elegans, indicating a role for these genes in both biofilm-specific antibiotic resistance and persistence in vivo. Together, these data suggest that these genes are potential targets for antimicrobial agents.  相似文献   

14.
Quorum sensing (QS) is a system of stimuli and responses in bacterial cells governed by their population density, through which they regulate genes that control virulence factors and biofilm formation. Despite considerable research on QS and the discovery of new antibiotics, QS-controlled biofilm formation by microorganisms in clinical settings has remained a problem because of nascent drug resistance, which requires screening of diverse compounds for anti-QS activities. Cinnamon is a dietary phytochemical that is traditionally used to remedy digestive problems and assorted contagions, which suggests that cinnamon might contain chemicals that can hinder the QS process. To test this hypothesis, the anti-QS activity of cinnamon oil against P. aeruginosa was tested, measured by the inhibition of biofilm formation and other QS-associated phenomena, including virulence factors such as pyocyanin, rhamnolipid, protease, alginate production, and swarming activity. To this end, multiple microscopy analyses, including light, scanning electron and confocal microscopy, revealed the ability of cinnamon oil to inhibit P. aeruginosa PAO1 biofilms and their accompanying extracellular polymeric substances. This work is the first to demonstrate that cinnamon oil can influence various QS-based phenomena in P. aeruginosa PAO1, including biofilm formation.  相似文献   

15.
16.
Toxin-antitoxin (TA) modules are gene pairs specifying for a toxin and its antitoxin and are found on the chromosomes of many bacteria including pathogens. Here we report how each of five such TA systems in E. coli affect bacterial cell death differently in liquid media and during biofilm formation. Of all these systems, only the TA system mazEF mediated cell death both in liquid media and during biofilm formation. At the other extreme, as our results have revealed here, the TA system dinJ-YafQ is unique in that it is involved only in the death process during biofilm formation. Cell death governed by mazEF and dinJ-YafQ seems to participate in biofilm formation through a novel mechanism.  相似文献   

17.
18.
19.
Pseudomonas aeruginosa is a gram-negative pathogenic bacterium with a high adaptive potential that allows proliferation in a broad range of hosts or niches. It is also the causative agent of both acute and chronic biofilm-related infections in humans. Three cup gene clusters (cupA-C), involved in the assembly of cell surface fimbriae, have been shown to be involved in biofilm formation by the P. aeruginosa strains PAO1 or PAK. In PA14 isolates, a fourth cluster, named cupD, was identified within a pathogenicity island, PAPI-I, and may contribute to the higher virulence of this strain. Expression of the cupA genes is controlled by the HNS-like protein MvaT, whereas the cupB and cupC genes are under the control of the RocS1A1R two-component system. In this study, we show that cupD gene expression is positively controlled by the response regulator RcsB. As a consequence, CupD fimbriae are assembled on the cell surface, which results in a number of phenotypes such as a small colony morphotype, increased biofilm formation and decreased motility. These behaviors are compatible with the sessile bacterial lifestyle. The balance between planktonic and sessile lifestyles is known to be linked to the intracellular levels of c-di-GMP with high levels favoring biofilm formation. We showed that the EAL domain-containing PvrR response regulator counteracts the activity of RcsB on cupD gene expression. The action of PvrR is likely to involve c-di-GMP degradation through phosphodiesterase activity, confirming the key role of this second messenger in the balance between bacterial lifestyles. The regulatory network between RcsB and PvrR remains to be elucidated, but it stands as a potential model system to study how the equilibrium between the two lifestyles could be influenced by therapeutic agents that favor the planktonic lifestyle. This would render the pathogen accessible for the immune system or conventional antibiotic treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号