首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reproductive isolation is a prerequisite to form and maintain a new species. Multiple prezygotic and postzygotic reproductive isolation barriers have been reported in plants. In the model plant, Arabidopsis thaliana conspecific pollen tube precedence controlled by AtLURE1/PRK6-mediated signaling has been recently reported as a major prezygotic reproductive isolation barrier. By accelerating emergence of own pollen tubes from the transmitting tract, A. thaliana ovules promote self-fertilization and thus prevent fertilization by a different species. Taking advantage of a septuple atlure1null mutant, we now report on the role of AtLURE1/PRK6-mediated signaling for micropylar pollen tube guidance. Compared with wild-type (WT) ovules, atlure1null ovules displayed remarkably reduced micropylar pollen tube attraction efficiencies in modified semi-in vivo A. thaliana ovule targeting assays. However, when prk6 mutant pollen tubes were applied, atlure1null ovules showed micropylar attraction efficiencies comparable to that of WT ovules. These findings indicate that AtLURE1/PRK6-mediated signaling regulates micropylar pollen tube attraction in addition to promoting emergence of own pollen tubes from the transmitting tract. Moreover, semi-in vivo ovule targeting competition assays with the same amount of pollen grains from both A. thaliana and Arabidopsis lyrata showed that A. thaliana WT and xiuqiu mutant ovules are mainly targeted by own pollen tubes and that atlure1null mutant ovules are also entered to a large extent by A. lyrata pollen tubes. Taken together, we report that AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube attraction representing an additional prezygotic isolation barrier.

A modified ovule targeting assay revealed that AtLURE1/PRK6-mediated signaling promotes micropylar guidance of Arabidopsis thaliana pollen tubes while discriminating tubes of related Arabidopsis lyrata.  相似文献   

2.
In angiosperms, pollen tube growth is critical for double fertilization and seed formation. Many of the factors involved in pollen tube tip growth are unknown. Here, we report the roles of pollen-specific GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE-LIKE (GDPD-LIKE) genes in pollen tube tip growth. Arabidopsis thaliana GDPD-LIKE6 (AtGDPDL6) and AtGDPDL7 were specifically expressed in mature pollen grains and pollen tubes and green fluorescent protein (GFP)-AtGDPDL6 and GFP-AtGDPDL7 fusion proteins were enriched at the plasma membrane at the apex of forming pollen tubes. Atgdpdl6 Atgdpdl7 double mutants displayed severe sterility that was rescued by genetic complementation with AtGDPDL6 or AtGDPDL7. This sterility was associated with defective male gametophytic transmission. Atgdpdl6 Atgdpdl7 pollen tubes burst immediately after initiation of pollen germination in vitro and in vivo, consistent with the thin and fragile walls in their tips. Cellulose deposition was greatly reduced along the mutant pollen tube tip walls, and the localization of pollen-specific CELLULOSE SYNTHASE-LIKE D1 (CSLD1) and CSLD4 was impaired to the apex of mutant pollen tubes. A rice pollen-specific GDPD-LIKE protein also contributed to pollen tube tip growth, suggesting that members of this family have conserved functions in angiosperms. Thus, pollen-specific GDPD-LIKEs mediate pollen tube tip growth, possibly by modulating cellulose deposition in pollen tube walls.  相似文献   

3.
Pollen tubes expand by tip growth and extend directionally toward the ovule to deliver sperms during pollination. They provide an excellent model system for the study of cell polarity control and tip growth, because they grow into uniformly shaped cylindrical cells in culture. Mechanisms underlying tip growth are poorly understood in pollen tubes. It has been demonstrated that ROP1, a pollen-specific member of the plant-specific Rop subfamily of Rho GTPases, is a central regulator of pollen tube tip growth. Recent studies in pollen from Arabidopsis and other species have revealed a ROP-mediated signalling network that is localized to the apical PM region of pollen tubes. The results provide evidence that the localization of this signalling network establishes the site for tip growth and the localized activation of this signalling network regulates the dynamics of tip F-actin. These results have shown that the ROP1-mediated dynamics of tip F-actin is a key cellular mechanism behind tip growth in pollen tubes. Current understanding of the molecular basis for the regulation of the tip actin dynamics will be discussed.  相似文献   

4.
H Li  Y Lin  R M Heath  M X Zhu    Z Yang 《The Plant cell》1999,11(9):1731-1742
We have shown that Rop1At, a pollen-specific Rop GTPase that is a member of the Rho family of small GTP binding proteins, acts as a key molecular switch controlling tip growth in Arabidopsis pollen tubes. Pollen-specific expression of constitutively active rop1at mutants induced isotropic growth of pollen tubes. Overexpression of wild-type Arabidopsis Rop1At led to ectopic accumulation of Rop1At in the plasma membrane at the tip and caused depolarization of pollen tube growth, which was less severe than that induced by the constitutively active rop1at. These results indicate that both Rop1At signaling and polar localization are critical for controlling the site of tip growth. Dominant negative rop1at mutants or antisense rop1at RNA inhibited tube growth at 0.5 mM extracellular Ca(2+), but growth inhibition was reversed by higher extracellular Ca(2+). Injection of anti-Rop antibodies disrupted the tip-focused intracellular Ca(2+) gradient known to be crucial for tip growth. These studies provide strong evidence for a Rop GTPase-dependent tip growth pathway that couples the control of growth sites with the rate of tip growth through the regulation of tip-localized extracellular Ca(2+) influxes and formation of the tip-high intracellular Ca(2+) gradient in pollen tubes.  相似文献   

5.
The pollen-specific promoter of the LAT52 gene is known to direct expression of marker proteins during the last stages of pollen maturation and in very early pollen tube growth.We have examined the expression of LAT52-GUS during later stages of pollen tube growth in style and ovary of the relatively long-styled species Nicotiana alata. GUS activity was detected histochemically and found to be present in germinating pollen grains of N. alata and in tubes growing through the upper part of the style. No GUS activity was detected in 99% of the pollen tubes growing through the lower part of the style, but activity was present in tubes within the ovary. This finding indicates that the LAT52 promoter is regulated in growing pollen tubes, and is most active during the earliest and latest stages of pollen tube growth. GUS activity was also detected in some ovules, where it presumably marked the release of pollen tube cytoplasm into the ovule. The distribution of ovules with GUS activity within the ovary is not consistent with high-precision pollen tube guidance to the ovule. Received: 16 August 1999 / Revision accepted: 20 December 1999  相似文献   

6.
7.
Regulation of pollen tube growth by Rac-like GTPases   总被引:13,自引:0,他引:13  
Plant Rac-like GTPases have been classified phylogenetically into two major groups-class I and class II. Several pollen-expressed class I Rac-like GTPases have been shown to be important regulators of polar pollen tube growth. The functional participation by some of the class I and all of the class II Arabidopsis Rac-like GTPases in pollen tube growth remains to be explored. It is shown that at least four members of the Arabidopsis Rac GTPase family are expressed in pollen, including a class II Rac, AtRac7. However, when over-expressed as fusion proteins with GFP, both pollen- and non-pollen-expressed AtRacs interfered with the normal pollen tube tip growth process. These observations suggest that these AtRacs share similar biochemical activities and may integrate into the pollen cellular machinery that regulates the polar tube growth process. Therefore, the functional contribution by individual Rac GTPase to the pollen tube growth process probably depends to a considerable extent on their expression characteristics in pollen. Among the Arabidopsis Racs, GFP-AtRac7 showed association with the cell membrane and Golgi bodies, a pattern distinct from all previously reported localization for other plant Racs. Over-expressing GFP-AtRac7 also induced the broadest spectrum of pollen tube growth defects, including pollen tubes that are bifurcated, with diverted growth trajectory or a ballooned tip. Transgenic plants with multiple copies of the chimeric Lat52-GFP-AtRac7 showed severely reduced seed set, probably many of these defective pollen tubes were arrested, or reduced in their growth rates that they did not arrive at the ovules while they were still receptive for fertilization. These observations substantiate the importance of Rac-like GTPases to sexual reproduction.  相似文献   

8.
The pollen receptor kinases (PRK) are critical regulators of pollen tube growth. The Arabidopsis genome encodes eight PRK genes, of which six are highly expressed in pollen tubes. The potential functions of AtPRK1 through AtPRK5, but not of AtPRK6,in pollen growth were analyzed in tobacco. Herein, AtPRK6 was cloned, and its function was identified. AtPRK6 was expressed specifically in pollen tubes. A yeast two-hybrid screen of AtPRK6 against 14 Arabidopsis Rop guanine nucleotide exchange factors (RopGEFs) showed that AtPRK6 interacted with AtRopGEF8 and AtRopGEF12. These interactions were confirmed in Arabidopsis mesophyll protoplasts. The interactions between AtPRK6 and AtRopGEF8/12 were mediated by the C-termini of AtRopGEF8/12 and by the juxtamembrane and kinase domain of AtPRK6, but were not dependent on the kinase activity. In addition, transient overexpression of AtPRK6::GFP in Arabidopsis protoplasts revealed that AtPRK6 was localized to the plasma membrane. Tobacco pollen tubes overexpressing AtPRK6 exhibited shorter tubes with enlarged tips. This depolarized tube growth required the kinase domain of AtPRK6 and was not dependent on kinase activity. Taken together, the results show that AtPRK6,through its juxtamembrane and kinase domains (KD), interacts with AtRopGEF8/12 and plays crucial roles in polarized growth of pollen tubes.  相似文献   

9.
Double fertilization in flowering plants requires the delivery of two immotile sperm cells to the female gametes by a pollen tube, which perceives guidance cues, modifies its tip growth direction, and eventually enters the micropyle of the ovule. In spite of the recent progress, so far, little is known about the signaling events in pollen tubes in response to the guidance cues. Here, we show that MPK3 and MPK6, two Arabidopsis (Arabidopsis thaliana) mitogen-activated protein kinases, mediate the guidance response in pollen tubes. Genetic analysis revealed that mpk3 mpk6 double mutant pollen has reduced transmission. However, direct observation of mpk3 mpk6 mutant pollen phenotype was hampered by the embryo lethality of double homozygous mpk3–/– mpk6–/– plants. Utilizing a fluorescent reporter-tagged complementation method, we showed that the mpk3 mpk6 mutant pollen had normal pollen tube growth but impaired pollen tube guidance. In vivo pollination assays revealed that the mpk3 mpk6 mutant pollen tubes were defective in the funicular guidance phase. By contrast, semi-in vitro guidance assay showed that the micropylar guidance of the double mutant pollen tube was normal. Our results provide direct evidence to support that the funicular guidance phase of the pollen tube requires an in vivo signaling mechanism distinct from the micropyle guidance. Moreover, our finding opened up the possibility that the MPK3/MPK6 signaling pathway may link common signaling networks in plant stress response and pollen-pistil interaction.In flowering plants, successful fertilization is dependent on extensive cell-cell communication between male and female gametophytes. After landing on a compatible stigma surface, a mature pollen grain germinates to form a pollen tube, which penetrates the stigma, perceives guidance cues along the growth path, and modifies its tip growth direction toward the ovule (Hülskamp et al., 1995). In Arabidopsis (Arabidopsis thaliana), the pollen tube guidance can be divided into two phases: funicular guidance, in which the pollen tube emerges from the septum and proceeds to a funiculus, and micropylar guidance, in which the pollen tube grows toward and enters the micropyle of an ovule (Hülskamp et al., 1995).In pollen tube, it is believed that receptors on the tube tip perceive various guidance cues and regulate downstream signaling pathways to modify tip reorientation toward the ovule (Higashiyama, 2010; Takeuchi and Higashiyama, 2011). Two receptor-like kinase genes, Lost In Pollen tube guidance1 (LIP1) and LIP2, are involved in guidance control of pollen tubes. LIP1 and LIP2 were anchored to the membrane in the pollen tube tip region via palmitoylation, which was essential for their guidance control (Liu et al., 2013). Therefore, LIP1 and LIP2 are the essential components of the receptor complex in micropylar guidance. The Glu receptor-like channels facilitate Ca2+ influx across the plasma membrane and regulate pollen tube growth and morphogenesis (Michard et al., 2011). This interesting work revealed that there is a signaling mechanism between the male gametophyte and pistil tissue that is similar to the amino acid-mediated communication in animal nervous systems (Michard et al., 2011). Recent findings also highlight the importance of the endoplasmic reticulum (ER), ion homeostasis, and protein processing in pollen tube guidance (Li et al., 2011; Lu et al., 2011; Li and Yang, 2012). Two pollen-expressed cation proton exchangers (CHXs), CHX21 and CHX23, were reported to mediate K+ transport in ER and are essential for the pollen tube to respond to directional signals from the ovule in Arabidopsis (Lu et al., 2011). POLLEN DEFECTIVE IN GUIDANCE1 plays an important role in micropylar guidance in pollen tube (Li et al., 2011). It is an ER luminal protein involved in ER protein retention and interacts with a luminal chaperone involved in Ca2+ homeostasis and ER quality control (Li et al., 2011). Therefore, the ER quality control is likely an important mechanism in surveillance of signaling factors in pollen tube guidance (Li and Yang, 2012).In spite of the recent progresses, so far, little is known about the cytoplasmic signaling events in pollen tubes in response to the guidance cues. Mitogen-activated protein kinase (MAPK, or MPK) cascades are conserved signaling pathways that respond to extracellular stimuli and regulate various cellular activities. In Arabidopsis, MPK3 and MPK6 are induced by various biotic and abiotic stresses and collaboratively play important roles in defense response and plant development (Zhang, 2008). Here, we show that MPK3 and MPK6 are also critical to pollen tube guidance. Utilizing a fluorescent reporter-tagged complementation method, we demonstrated that mpk3 mpk6 pollen was defective in pollen tube guidance at the funicular guidance phase. Intriguingly, the micropylar guidance of mpk3 mpk6 pollen tube is not affected.  相似文献   

10.
The fertilization process of plants is governed by different kinds of cell-cell interactions. In higher plants, these interactions are required both for recognition of the pollen grain by the female reproductive system and to direct the growth of the pollen tube inside the ovary. Despite many years of study, the signaling mechanisms that guide the pollen tube toward its target, the ovule, are largely unknown. Two distinct types of principles, mechanical and chemotropic, have been suggested to account for the directed growth of the pollen tube. The first of these two types of models implies that the guidance of the pollen tube depends on the architecture and chemical properties of the female reproductive tissues, whereas the latter suggests that the ovule provides a signal for the target-directed growth of the pollen tube. To examine such a role for the ovules, we analyzed the growth path of pollen tubes in mutants defective in ovule development in Arabidopsis. The results presented here provide unique in vivo evidence for an ovule-derived, long-range activity controlling pollen tube guidance. A morphological comparison of the ovule mutants used in this study indicates that within the ovule, the haploid embryo sac plays an important role in this long-range signaling process.  相似文献   

11.
Bra r 1 encodes a Ca2+-binding protein specifically expressed in anthers of Brassica rapa. In this study, we isolated a genomic clone of Bra r 1 and found sequences similar to Pollen Box core motifs and LAT56/59 box, pollen-specific cis-acting element, in the 5' upstream region of Bra r 1. Reporter gene fusion revealed that the Bra r 1 promoter directs male gametophytic expression in Nicotiana tabacum, Arabidopsis thaliana and B. napus, showing strong expression in mature pollen grains similar to that of endogenous Bra r 1. Genomic DNA of Bra r 1 was introduced into tobacco plants and the highest accumulation of Bra r 1 protein was observed in mature pollen in the same manner as reporter gene expression. Using in vitro-germinated pollen tubes of transgenic tobacco, we firstly demonstrated the subcellular localization of Bra r 1 in pollen tubes. Bra r 1 protein was distributed throughout the pollen tube of transgenic tobacco and slightly intense signals of Bra r 1 were observed in the tip region. In long-germinated pollen tubes, Bra r 1 was detected only in the cytoplasmic compartments while no signals were observed in the empty part of the pollen tube, indicating that cytoplasmic movement toward the tube tip is accompanied by Bra r 1. Hence, we suggest that Bra r 1 is involved in pollen germination and pollen tube growth.  相似文献   

12.
Pollen tube polar growth is a key physiological activity for angiosperms to complete double fertilization, which is highly dependent on the transport of polar substances mediated by secretory vesicles. The exocyst and Sec1/Munc18 (SM) proteins are involved in the regulation of the tethering and fusion of vesicles and plasma membranes, but the molecular mechanism by which they regulate pollen tube polar growth is still unclear. In this study, we found that loss of function of SEC1A, a member of the SM protein family in Arabidopsis thaliana, resulted in reducing pollen tube growth and a significant increase in pollen tube width. SEC1A was diffusely distributed in the pollen tube cytoplasm, and was more concentrated at the tip of the pollen tube. Through co-immunoprecipitation-mass spectrometry screening, protein interaction analysis and in vivo microscopy, we found that SEC1A interacted with the exocyst subunit SEC6, and they mutually affected the distribution and secretion rate at the tip of the pollen tube. Meanwhile, the functional loss of SEC1A and SEC6 significantly affected the distribution of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex member SYP125 at the tip of the pollen tube, and led to the disorder of pollen tube cell wall components. Genetic analysis revealed that the pollen tube-related phenotype of the sec1a sec6 double mutant was significantly enhanced compared with their respective single mutants. Therefore, we speculated that SEC1A and SEC6 cooperatively regulate the fusion of secretory vesicles and plasma membranes in pollen tubes, thereby affecting the length and the width of pollen tubes.  相似文献   

13.
Palanivelu R  Brass L  Edlund AF  Preuss D 《Cell》2003,114(1):47-59
During angiosperm reproduction, pollen grains form a tube that navigates through female tissues to the micropyle, delivering sperm to the egg; the signals that mediate this process are poorly understood. Here, we describe a role for gamma-amino butyric acid (GABA) in pollen tube growth and guidance. In vitro, GABA stimulates pollen tube growth, although vast excesses are inhibitory. The Arabidopsis POP2 gene encodes a transaminase that degrades GABA and contributes to the formation of a gradient leading up to the micropyle. pop2 flowers accumulate GABA, and the growth of many pop2 pollen tubes is arrested, consistent with their in vitro GABA hypersensitivity. Some pop2 tubes continue to grow toward ovules, yet they are misguided, presumably because they target ectopic GABA on the ovule surface. Interestingly, wild-type tubes exhibit normal growth and guidance in pop2 pistils, perhaps by degrading excess GABA and sharpening the gradient leading to the micropyle.  相似文献   

14.
Non-specific phospholipase Cs (NPCs) are responsible for membrane lipid remodeling that involves hydrolysis of the polar head group of membrane phospholipids. Arabidopsis NPC2 and NPC6 are essential in gametogenesis, but their underlying role in the lipid remodeling remains elusive. Here, we show that these NPCs are required for triacylglycerol (TAG) production in pollen tube growth. NPC2 and NPC6 are highly expressed in developing pollen tubes and are localized at the endoplasmic reticulum. Mutants of NPC2 and NPC6 showed reduced rate of pollen germination, length of pollen tube and amount of lipid droplets (LDs). Overexpression of NPC2 or NPC6 induced LD accumulation, which suggests that these NPCs are involved in LD production. Furthermore, mutants defective in the biosynthesis of TAG, a major component of LDs, showed defective pollen tube growth. These results suggest that NPC2 and NPC6 are essential in gametogenesis for a role in hydrolyzing phospholipids and producing TAG required for pollen tube growth. Thus, lipid remodeling from phospholipids to TAG during pollen tube growth represents an emerging role for the NPC family in plant developmental control.  相似文献   

15.
In flowering plants, the interaction of pollen tubes with female tissues is important for the accomplishment of double fertilization. Little information is known about the mechanisms that underlie signalling between pollen tubes and female tissues. In this study, two Arabidopsis pollen tube‐expressed CrRLK1L protein kinases, Buddha's Paper Seal 1 (BUPS1) and BUPS2, were identified as being required for normal tip growth of pollen tubes in the pistil. They are expressed prolifically in pollen and pollen tubes and are localized on the plasma membrane of the pollen tube tip region. Mutations in BUPS1 drastically reduced seed set. Most of the bups1 mutant pollen tubes growing in the pistil exhibited a swollen pollen tube tip, leading to failure of fertilization. The bups2 pollen tubes had a slightly abnormal morphology but could still accomplish double fertilization. The bups1 bups2 double mutant exhibited a slightly enhanced phenotype compared to the single bups1 mutants. The BUPS1 proteins could form homomers and heteromers with BUPS2, whereas BUPS2 could only form heteromers with BUPS1. The BUPS proteins could interact with the Arabidopsis pollen‐expressed RopGEFs in the yeast two‐hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. The results indicated that the BUPSs may mediate normal polar growth of pollen tubes in the pistil.  相似文献   

16.
The signal-mediated and spatially controlled assembly and dynamics of actin are crucial for maintaining shape, motility, and tip growth of eukaryotic cells. We report that a novel Armadillo repeat protein in Arabidopsis thaliana, ARMADILLO REPEAT ONLY1 (ARO1), is of fundamental importance for polar growth and F-actin organization in tip-growing pollen tubes. ARO1 is specifically expressed in the vegetative cell of pollen as well as in the egg cell. ARO1-GFP (for green fluorescent protein) fusion proteins accumulate most notably in pollen tube tips and partially colocalize with F-actin in the shank of pollen tubes. ARO1 knockout results in a highly disorganized actin cytoskeleton, growth depolarization, and ultimately tube growth arrest. Tip-localized ARO1-GFP is spatially shifted toward the future site of tip growth, indicating a role of ARO1 in the signaling network controlling tip growth and regulating actin organization. After the pollen tube discharges its contents into the receptive synergid, ARO1-GFP colocalizes with emerging F-actin structures near the site of sperm cell fusion, suggesting additional participation in the mechanism of sperm cell tracking toward the female gametes. The variable localization of ARO1 in the cytoplasm, the nucleus, and at the plasma membrane, however, indicates a multifunctional role like that of beta-catenin/Armadillo and the p120 catenins.  相似文献   

17.
During compatible pollination of the angiosperms, pollen tubes grow in the pistil transmitting tract (TT) and are guided to the ovule for fertilization. Lily (Lilium longiflorum) stigma/style Cys-rich adhesin (SCA), a plant lipid transfer protein (LTP), is a small, secreted peptide involved in pollen tube adhesion-mediated guidance. Here, we used a reverse genetic approach to study biological roles of Arabidopsis thaliana LTP5, a SCA-like LTP. The T-DNA insertional gain-of-function mutant plant for LTP5 (ltp5-1) exhibited ballooned pollen tubes, delayed pollen tube growth, and decreased numbers of fertilized eggs. Our reciprocal cross-pollination study revealed that ltp5-1 results in both male and female partial sterility. RT-PCR and β-glucuronidase analyses showed that LTP5 is present in pollen and the pistil TT in low levels. Pollen-targeted overexpression of either ltp5-1 or wild-type LTP5 resulted in defects in polar tip growth of pollen tubes and thereby decreased seed set, suggesting that mutant ltp5-1 acts as a dominant-active form of wild-type LTP5 in pollen tube growth. The ltp5-1 protein has additional hydrophobic C-terminal sequences, compared with LTP5. In our structural homology/molecular dynamics modeling, Tyr-91 in ltp5-1, replacing Val-91 in LTP5, was predicted to interact with Arg-45 and Tyr-81, which are known to interact with a lipid ligand in maize (Zea mays) LTP. Thus, Arabidopsis LTP5 plays a significant role in reproduction.  相似文献   

18.
The pollen-specific receptor kinases LePRK1 and LePRK2 have localization and expression profiles that strongly suggest they play roles in pollen germination and tube growth. To identify downstream components of LePRK signaling, we used their cytoplasmic domains (CDs) as baits in yeast two-hybrid screens of a tomato pollen cDNA library. A pollen-specific protein we named kinase partner protein (KPP) interacted with the CDs of both LePRK1 and LePRK2 in yeast and in an in vitro pull-down assay, and with LePRK2 in a co-immunoprecipitation assay. KPP is a peripheral membrane protein and is phosphorylated in pollen. Pollen tubes over-expressing KPP developed balloon-like tips with abnormal cytoplasmic streaming and F-actin arrangements and plants over-expressing KPP exhibited impaired transmission of the transgene through the male. KPP-like genes are found only in plants; the 14 family members in Arabidopsis thaliana exhibit diverse expression patterns and potentially play roles in signaling pathways in other tissues.  相似文献   

19.
Plant sexual reproduction involves the growth of tip-polarized pollen tubes through the female tissues in order to deliver the sperm nuclei to the egg cells. Despite the importance of this crucial step, little is known about the molecular mechanisms involved in this spatial and temporal control of the tube growth. In order to study this process and to characterize the structural composition of the extracellular matrix of the male gametophyte, immunocytochemical and biochemical analyses of Arabidopsis pollen tube wall have been carried out. Results showed a well-defined localization of cell wall epitopes with highly esterified homogalacturonan and arabinogalactan-protein mainly in the tip region, weakly methylesterified homogalacturonan back from the tip and xyloglucan and (1→5)-α-L-arabinan all along the tube. Here, we present complementary data regarding (1) the ultrastructure of the pollen tube cell wall and (2) the immunolocalization of homogalacturonan and arabinan epitopes in 16-h-old pollen tubes and in the stigma and the transmitting tract of the female organ. Discussion regarding the pattern of the distribution of the cell wall epitopes and the possible mechanisms of cell adhesion between the pollen tubes and the female tissues is provided.Key words: arabinan, cell adhesion, cell wall, homogalacturonan, pistil, pollen tube growth, transmitting tractFertilization of flowering plants requires the delivery of the two sperm cells, carried by the fast growing tip-polarized pollen tube, to the egg cell. At every stage of the pollen tube development within the stigma, style and ovary, pollen tubes are guided to the ovules via multiple signals that need to pass through the cell wall of the pollen tube to reach their targets.16The analysis of Arabidopsis pollen tube cell wall has recently been reported.7 Results showed a well-defined localization of cell wall epitopes with highly methylesterified homogalacturonan (HG) and arabinogalactan-protein (AGP) mainly in the tip region, weakly methylesterified HG back from the tip and xyloglucan and arabinan all along the tube. In addition, according to the one letter nomenclature of xyloglucan,8 the main motif of Arabidopsis pollen tube xyloglucan was XXFG harboring one O-acetyl group. In order to bring new information regarding the possible interaction between the pollen tubes and the female tissues, the ultrastructural organization of the pollen tube cell wall, the cytological staining and immunolocalization of the cell wall epitopes of the pistil and especially the transmitting tract (TT), a specialized tissue where pollen tubes grow, were carried out.  相似文献   

20.
Reproduction of flowering plants requires the growth of pollen tubes to deliver immotile sperm for fertilization. Pollen tube growth resembles that of polarized metazoan cells, in that some molecular mechanisms underlying cell polarization and growth are evolutionarily conserved, including the functions of Rho GTPases and the dynamics of the actin cytoskeleton. However, a role for AGC kinases, crucial signaling mediators in polarized metazoan cells, has yet to be shown in pollen tubes. Here we demonstrate that two Arabidopsis AGC kinases are critical for polarized growth of pollen tubes. AGC1.5 and AGC1.7 are pollen-specific genes expressed during late developmental stages. Pollen tubes of single mutants had no detectable phenotypes during in vitro or in vivo germination, whereas those of double mutants were wider and twisted, due to frequent changes of growth trajectory in vitro . Pollen tubes of the double mutant also had reduced growth and were probably compromised in response to guidance cues in vivo . In the agc1.5 background, downregulation of AGC1.7 using an antisense construct phenocopied the growth defect of double mutant pollen tubes, providing additional support for a redundant function of AGC1.5/1.7 in pollen tube growth. Using the actin marker mouse Talin, we show that pollen tubes of double mutants had relatively unaffected longitudinal actin cables but had ectopic filamentous actin, indicating disturbed control of polarity. Our results demonstrate that AGC1.5 and AGC1.7 are critical components of the internal machinery of the pollen tube leading to polarized growth of pollen tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号