首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of caffeine and 3-aminobenzamide (3-AB) on Syrian baby hamster kidney cells treated with DNA-alkylating agents and ultraviolet-light suggest that two different DNA-repair mechanisms are involved. Both these agents enhanced the cell kill after methyl methanesulfonate (MMS) treatment. However, enhanced lethality was observed only with caffeine post-treatment when cells were exposed to nitrogen mustard (HN2) or ultraviolet light (UV); 3-AB did not appreciably change cell killing by these agents. With MMS-treated cultures, the effect of caffeine was maximal about 16 h later. The effect of 3-AB on the other hand, was exerted during the first 4 h after exposure to MMS. Caffeine's effect on cell survival could be abolished by low concentrations of cycloheximide, whereas 3-AB's effect could not. Furthermore, the G2 block in cell cycle progression, after MMS treatment, was not observed if the cells were post-treated with caffeine. In the presence of 3-AB, MMS-treated cells were arrested in G2 phase at a much earlier time compared to cells not treated with 3-AB. Finally caffeine post-treatment produced a 10-fold increase in nuclear fragmentation in MMS-treated cells. 3-AB did not cause nuclear fragmentation by itself but further enhanced the nuclear fragmenting effect of caffeine when both agents were present during the posttreatment. Therefore, we propose that 3-AB and caffeine each prevent a different repair mechanism from being effective.  相似文献   

2.
3-Aminobenzamide (3-AB) interferes with DNA repair and enhances lethality in growing MMS (methyl methane sulfonate)-treated human fibroblasts. This sensitivity to 3-AB disappears slowly; MMS-treated cells are sensitive to 3-AB for up to 36 hours (Boorstein and Pardee, 1984). Evidence is now presented that 3-AB potentiates the effects of MMS primarily during S phase. When cells were synchronized at the G1/S boundary, released, and then treated with MMS, 3-AB caused very substantial lethality in only 4 hours, and a 12-hour treatment gave maximum lethality. These cells also lost sensitivity to 3-AB within 12 hours of growth minus 3-AB. In contrast, MMS-treated quiescent (G0) cells did not lose sensitivity to 3-AB nor did 3-AB cause lethality during G0. Enhanced lethality occurred when damaged G0-arrested cells were subsequently allowed to proceed through S phase in the presence of 3-AB; this 3-AB sensitivity was removed only during growth in the absence of 3-AB. The lethality of 3-AB to a population of asynchronously cycling cells treated with MMS is thus the summation of effects on the cells as they traverse S phase. Aphidicolin prevented lethality of 3-AB to cells released from G1/S and treated with MMS. It also inhibited the loss of sensitivity to added 3-AB later. Correlation with the inhibition of DNA synthesis by this drug suggests that DNA synthesis is essential for the lethality enhancement by 3-AB. Cells treated first with MMS and then with 3-AB accumulated in G2. This G2 arrest depended on S-phase events and correlated with cell lethality. Cells treated with a nonlethal dose of MMS at the G1/S boundary were delayed briefly (3 hours) in their passage through S and G2. These cells, when also exposed to 3-AB, were delayed 6-9 hours in S and they became arrested in G2. There was no G2 arrest when 3-AB was added only after these cells had reached G2. Treatment with 3-AB during S phase thus resulted in both enhanced lethality and G2 arrest. 3-AB inhibited repair of DNA single-strand damage, shown by alkaline elution analysis, in both S-phase and quiescent cells. Aphidicolin inhibited disappearance of breaks and eliminated the difference between 3-AB-treated and untreated cells. Lethality did not correlate well with the measured single-strand damage.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
3-Aminobenzamide (3-AB), an inhibitor of poly(ADP-ribosylation), is lethal to human fibroblasts with damaged DNA. Its cytotoxicity was determined relative to a number of factors including the types of lesions, the kinetics of repair, and the availability of alternative repair systems. A variety of alkylating agents, UV or gamma irradiation, or antimetabolites were used to create DNA lesions. 3-AB enhanced lethality with monofunctional alkylating agents only. Within this class of compounds, methylmethanesulfonate (MMS) treatments made cells more sensitive to 3-AB than did treatment with methylnitrosourea (MNU) or methylnitronitrosoguanidine (MNNG). 3-AB interfered with a dynamic repair process lasting several days, since human fibroblasts remained sensitive to 3-AB for 36-48 hours following MMS treatment. During this same interval, 3-AB caused these cells to arrest in G2 phase. Alkaline elution analysis also revealed that this slow repair was delayed further by 3-AB. Human mutant cells defective in DNA repair differed in their responses to 3-AB. Among mutants sensitive to monofunctional alkylating agents, ataxia telangiectasia cells were slightly more sensitive to 3-AB than control cells, while Huntington's disease cells had a near-normal response. Among UV-sensitive strains, xeroderma pigmentosum variant (XPV) cells were more sensitive to 3-AB after MMS than were XP complementation group A (A) cells, which responded normally. Greater lethality with 3-AB could be dependent on inability of the mutant cells to repair damage by other processes.  相似文献   

4.
To analyze in more detail the relation between the sensitivity of spermatogonial stem cells to killing and the induction of genetic damage, mature male mice received combined treatments with hydroxyurea (HU), 3-aminobenzamide (3-AB) and X-rays. Stem cell killing was determined using the repopulation index method and translocations were studied via spermatocyte analysis. HU was administered at 16 or at 48 h before further treatment in order to create stem cell populations with different sensitivities in whic the translocation induction and stem cell killing could be studied and compared. The sensitivities for cell death and genetic damage appeared to be strongly correlated: at 16 h after HU significantly higher values were found than at 48 h or in controls without HU pretreatment.By using 3-AB in the treatment schedules we were able to investigate whether the sensitization of stem cells towards cell death and genetic damage is the outcome of a radiation- or drug-induced G1 delay. The effect of 3-AB was most pronounced at 16 h after HU. This confirms that at this interval a large fraction of stem cells is in G1. Our data therefore indicate that all treatments that induce an enrichment of G1 cells also result in a sensitization of stem cells to cell killing or the induction of mutagenic damage.  相似文献   

5.
The influence of caffeine post-treatment on sister-chromatid exchanges (SCE) and chromosomal aberration frequencies on Chinese hamster cells exposed to a variety of chemical and physical agents followed by bromodeoxyuridine (BrdUrd) was determined. After 2 h treatment, N-methyl-N′-nitrosoguanidine (MNNG) and cis-platinum(II)diamine dichloride (cis-Pt(II)) induced a 7- and 6-fold increase in SCE, respectively, while 4-nitroquinoline-1-oxide (4NQO), methyl methanesulfonate (MMS), proflavine, and N-hydroxyfluorenylacetamide (OH-AAF) caused a 2–3-fold increase in SCE compared to controls treated with BrdUrd alone. Ultraviolet light doubled the number of SCE. The lowest increase of SCE was obtained with bleomycin and X-irradiation. Caffeine post-treatment caused a statistically significant increase in the frequency of SCE induced by UV- and X-irradiation as well as by 4NQO and MMS but did not alter the number of SCE induced by MNNG, cis-Pt(II), proflavine, OH-AAF, and bleomycin.

Caffeine post-treatment increased the number of cells with chromosomal aberrations induced by MNNG, cis-Pt(II), UV, 4NQO, MMS, and proflavine. With the exception of proflavine, these agents are dependent on DNA and chromosome replication for the expression of the chromosomal aberrations. Caffeine enhancement of cis-Pt(II) chromosomal aberrations occurred independently of the time interval between treatment and chromosome preparations. Chromosomal damage produced by bleomycin and X-irradiation, agents known to induce chromosomal aberrations independent of “S” phase of the cell cycle, as well as the damage induced with OH-AAF was not influenced by caffeine post-treatment.

The enhancement by caffeine, an inhibitor of the gap-filling process in post-replication repair, of chromosomal aberrations induced by “S” dependent agents, is consistent with the involvement of this type of repair in chromosomal aberration formation. The lack of inhibition of SCE frequency by caffeine indicates that post-replication repair is probably not important in SCE formation.  相似文献   


6.
L5178Y/TK +/- cells treated with methyl methanesulfonate (MMS) were allowed to recover for 0,48,96,144, or 240 hours, and were then plated in soft-agar medium containing trifluorothymidine (TFT). Dose-dependent and consistent increases in the frequency of TFTR cells were observed after each of the 48-240-hour expression periods through the counting of predominantly large, mutant colonies. Size distributions of soft-agar colonies from either MMS-treated or control cells were bimodal in the presence, and unimodal in the absence, of TFT. An increase of small, presumptive TFTR colonies with either increasing MMS concentration or decreasing recovery time was probably a manifestation of chemical toxicity, for a similar increase in small-colony number was observed in the absence of TFT when cells were cloned immediately after MMS treatment, when no induced mutants were yet detectable. Recloning experiments with 22 small-colony-derived cell lines revealed that, with one exception, small-colony morphology was not a heritable trait. While all large- and some small-colony-derived stocks from MMS-treated cells were of the phenotypically stable TK-/- type; spontaneous small TFTR colonies generally were not, their occurrence being directly correlated with serum concentration. No aneuploidy was evident in MMS-treated cell lines several generations after isolation as small TFTR colonies. These results suggest that delayed MMS cytotoxicity in TK +/- cells can temporarily produce increased physiological resistance to TFT in some cells, giving rise to secondary populations of small-colony TFTR variants.  相似文献   

7.
The activity of DNA topoisomerase I present in the nuclear extract of yeast, Saccharomyces cerevisiae, was inhibited by additions of NAD, the substrate of poly (ADP-ribose) polymerase. This NAD-inhibited topoisomerase activity was restored to the normal level in a dose-dependent manner by adding 3-aminobenzamide (3-AB), an inhibitor of the polymerase. The 3-AB sensitive polymerase enzyme activity, as determined by the rate of incorporation of the radiolabelled NAD in permeabilized cells, increased by treatment of cells with methyl methanesulfonate (MMS) in a dose-dependent manner. While the additions of MMS increased the polymerase activity, it has caused a decrease in cell survival. However, this cell killing activity of MMS was markedly potentiated by adding benzamide, another inhibitor of polymerase. Thus, these results suggest that the mode of modification of nuclear proteins by altering the poly(ADP-ribosylation) in S. cerevisiae resembles with those observed in mammalian cells.  相似文献   

8.
A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS) initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01) with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001) dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.  相似文献   

9.
TZT-1027, a newly synthesized dolastatin 10 derivative, is a potent antitumor agent which inhibits microtubule polymerization and perturbs microtubule dynamics. In this report, we investigated whether TZT-1027 inhibited the growth of various human cancer cells, and the cell death caused by TZT-1027 was due to apoptosis. In addition, we elucidated the apoptosis machinery induced by treatment with TZT-1027. The 50% growth-inhibitory concentrations (IC50 values) of TZT-1027 on cancer cells derived from various sources were not more than 5.9 ng/ml. TZT-1027 showed superior cytotoxicity than any other antitumor agents. Next, we evaluated morphological nuclear change, namely, chromatin condensation and DNA fragmentation. We used three cancer cell lines derived from different types in view of having apoptosis related protein, human leukemia HL-60 (in the presence of both Caspase-3 and Bcl-2), human breast cancer MCF-7 (in the absence of Caspase-3), and human prostate cancer DU145 (in the absence of Bcl-2). TZT-1027 induced DNA fragmentation in the presence but not absence of Caspase-3. Nevertheless, apoptic chromatin condensation was observed in all cancer cells even if there was no Caspase-3. Furthermore, we examined whether TZT-1027, microtubule-disrupting agent, influenced cell cycle progression. Flow cytometric analysis revealed the cells treated with TZT-1027, and with the other antimicrotubule agents, to be arrested at the G2/M phase and subsequently to show fragmented DNA smaller than that of G1 phase cells. Moreover, we tested TZT-1027 for its ability to induce Bcl-2 phosphorylation in human cancer cell lines. TZT-1027 and other agents which interacted with microtubules induced Bcl-2 phosphorylation, whereas DNA-damaging agents did not. The present results suggested an association of the growth-inhibitory effect of TZT-1027 with the induction of apoptosis and indicated that the apoptosis induced by TZT-1027 was followed by G2/M arrest even if there was no Caspase-3 or Bcl-2.  相似文献   

10.
It has been found that the level of methyl methanesulfonate (MMS)-induced mutation in Escherichia coli is dependent on the level of UmuD(D′)C proteins. The frequency of argE(ochre)→Arg+ mutations (which occur predominantly by AT→TA transversions) and RifS→RifR mutations is much higher when UmuDC or UmuD'C are overproduced in the cell. When MMS-treated bacteria were starved for progressively longer times and hence the expression of mutations delayed, the level of mutations observed progressively declined. This same treatment had no effect on the degree of SOS induction. Examination of plasmid DNAs, isolated from MMS-treated cells, for their sensitivity to the specific endonucleases Fpg and Nth revealed that MMS causes formation of abasic sites, which are repaired during cell starvation. It is assumed that, in non-dividing cells, apurinic sites are mostly repaired by RecA-mediated recombinational repair. This pathway, which is error-free, is compared with the processing pathway in metabolically active cells, where translesion synthesis by the UmuD′2C-RecA-DNA polymerase III holoenzyme complex occurs; this latter pathway is error-prone.  相似文献   

11.
Folic acid deficiency (FA-) augments DNA damage caused by alkylating agents. The role of DNA repair in modulating this damage was investigated in mice. Weanling wild-type or 3-methyladenine glycosylase (Aag) null mice were maintained on a FA- diet or the same diet supplemented with folic acid (FA+) for 4 weeks. They were then treated with methyl methanesulfonate (MMS), 100mg/kg i.p. Six weeks later, spleen cells were collected for assays of non-selected and 6-thioguanine (TG) selected cloning efficiency to measure the mutant frequency at the Hprt locus. In wild-type mice, there was no significant effect of either MMS treatment or folate dietary content on splenocyte non-selected cloning efficiency. In contrast, non-selected cloning efficiency was significantly higher in MMS-treated Aag null mice than in saline treated controls (diet-gene interaction variable, p=0.04). The non-selected cloning efficiency was significantly higher in the FA+ diet than in the FA- diet group after MMS treatment of Aag null mice. Mutant frequency after MMS treatment was significantly higher in FA- wild-type and Aag null mice and in FA+ Aag null mice, but not in FA+ wild-type mice. For the Aag null mice, mutant frequency was higher in the FA+ mice than in the FA- mice after either saline or MMS treatment. These studies indicate that in wild-type mice treated with MMS, dietary folate content (FA+ or FA-) had no effect on cytotoxicity, but FA- diet increased DNA mutation frequency compared to FA+ diet. In Aag null mice, FA- diet increased the cytotoxic effects of alkylating agents but decreased the risk of DNA mutation.  相似文献   

12.
Chromosomal replication is sensitive to the presence of DNA-damaging alkylating agents, such as methyl methanesulfonate (MMS). MMS is known to inhibit replication though activation of the DNA damage checkpoint and through checkpoint-independent slowing of replication fork progression. Using Xenopus egg extracts, we now report an additional pathway that is stimulated by MMS-induced damage. We show that, upon incubation in egg extracts, MMS-treated DNA activates a diffusible inhibitor that blocks, in trans, chromosomal replication. The downstream effect of the inhibitor is a failure to recruit proliferating cell nuclear antigen, but not DNA polymerase alpha, to the nascent replication fork. Thus, alkylation damage activates an inhibitor that intercepts the replication pathway at a point between the polymerase alpha and proliferating cell nuclear antigen execution steps. We also show that activation of the inhibitor does not require the DNA damage checkpoint; rather, stimulation of the pathway described here results in checkpoint activation. These data describe a novel replication arrest pathway, and they also provide an example of how subpathways within the DNA damage response network are integrated to promote efficient cell cycle arrest in response to damaged DNA.  相似文献   

13.
Reverse gyrase is a peculiar DNA topoisomerase, specific of hyperthermophilic Archaea and Bacteria, which has the unique ability of introducing positive supercoiling into DNA molecules. Although the function of the enzyme has not been established directly, it has been suggested to be involved in DNA protection and repair. We show here that the enzyme is degraded after treatment of Sulfolobus solfataricus cells with the alkylating agent MMS. MMS-induced reverse gyrase degradation is highly specific, since (i) neither hydroxyurea (HU) nor puromycin have a similar effect, and (ii) topoisomerase VI and two chromatin components are not degraded. Reverse gyrase degradation does not depend on protein synthesis. Experiments in vitro show that direct exposure of cell extracts to MMS does not induce reverse gyrase degradation; instead, extracts from MMS-treated cells contain some factor(s) able to degrade the enzyme in extracts from control cells. In vitro, degradation is blocked by incubation with divalent metal chelators, suggesting that reverse gyrase is selectively degraded by a metal-dependent protease in MMS-treated cells. In addition, we find a striking concurrence of extensive genomic DNA degradation and reverse gyrase loss in MMS-treated cells. These results support the hypothesis that reverse gyrase plays an essential role in DNA thermoprotection and repair in hyperthermophilic organisms.  相似文献   

14.
The Fanconi anemia (FA) proteins overlap with those of homologous recombination through FANCD1/BRCA2, but the biochemical functions of other FA proteins are largely unknown. By constructing and characterizing a null fancg mutant (KO40) of hamster CHO cells, we show that FancG protects cells against a broad spectrum of genotoxic agents. KO40 is consistently hypersensitive to both alkylating agents that produce monoadducts and those that produce interstrand crosslinks. KO40 cells were no more sensitive to mitomycin C (3x) and diepoxybutane (2x) than to 6-thioguanine (5x), ethylnitrosourea (3x), or methyl methanesulfonate (MMS) (3x). These results contrast with the pattern of selective sensitivity to DNA crosslinking agents seen historically with cell lines from FA patients. The hypersensitivity of KO40 to MMS was not associated with a higher level of initial DNA single-strand breaks; nor was there a defect in removing MNU-induced methyl groups from DNA. Both control and MMS-treated synchronized G1-phase KO40 cells progressed through S phase at a normal rate but showed a lengthening of G2 phase compared with wild type. MMS-treated and untreated early S-phase KO40 cells had increased levels of Rad51 foci compared with wild type. Asynchronous KO40 treated with ionizing radiation (IR) exhibited a normal Rad51 focus response, consistent with KO40 having only slight sensitivity to killing by IR. The plating efficiency and doubling time of KO40 cells were nearly normal, and they showed no increase in spontaneous chromosomal aberrations or sister chromatid exchanges. Collectively, our results do not support a role for FancG during DNA replication that deals specifically with processing DNA crosslinks. Nor do they suggest that the main function of the FA protein "pathway" is to promote efficient homologous recombination. We propose that the primary function of FA proteins is to maintain chromosomal continuity by stabilizing replication forks that encounter nicks, gaps, or replication-blocking lesions.  相似文献   

15.
Mouse fibroblasts, deficient in DNA polymerase beta, are hypersensitive to monofunctional DNA methylating agents such as methyl methanesulfonate (MMS). Both wild-type and, in particular, repair-deficient DNA polymerase beta null cells are highly sensitized to the cytotoxic effects of MMS by 4-amino-1,8-naphthalimide (4-AN), an inhibitor of poly(ADP-ribose) polymerase (PARP) activity. Experiments with synchronized cells suggest that exposure during S-phase of the cell cycle is required for the 4-AN effect. 4-AN elicits a similar extreme sensitization to the thymidine analog, 5-hydroxymethyl-2'-deoxyuridine, implicating the requirement for an intermediate of DNA repair. In PARP-1-expressing fibroblasts treated with a combination of MMS and 4-AN, a complete inhibition of DNA synthesis is apparent after 4 h, and by 24 h, all cells are arrested in S-phase of the cell cycle. Continuous incubation with 4-AN is required to maintain the cell cycle arrest. Caffeine, an inhibitor of the upstream checkpoint kinases ATM (ataxia telangiectasia-mutated) and ATR (ATM and Rad3-related), has no effect on the early inhibition of DNA synthesis, but cells are no longer able to maintain the block after 8 h. Instead, the addition of caffeine leads to arrest of cells in G(2)/M rather than S-phase after 24 h. Analysis of signaling pathways in cell extracts reveals an activation of Chk1 after treatment with MMS and 4-AN, which can be suppressed by caffeine. Our results suggest that inhibition of PARP activity results in sensitization to MMS through maintenance of an ATR and Chk1-dependent S-phase checkpoint.  相似文献   

16.
Two agents, 3-aminobenzamide (3-AB) and beta lapachone, that inhibit repair of mammalian cell DNA damaged by methyl methane sulfonate (MMS), also coordinately blocked both DNA replication (incorporation of 3H-thymidine) and thymidylate synthase (TS) activity. Aphidicolin also inhibited both 3H-TDR incorporation and TS in damaged cells, the former more strongly than the latter, in a manner not coordinated with lethality. It is proposed that the DNA lesions created by MMS and modified by repair inhibit semiconservative DNA synthesis by allosterically interacting with the DNA replication replitase complex, so as to block its overall function and also the activity of TS, one of its enzymes.  相似文献   

17.
When Syrian hamster embryo cells were pretreated with a weak chemical carcinogen, methyl methanesulfonate (MMS) or ethyl methanesulfonate (EMS), or with a physical agent such as X-irradiation prior to being exposed to a potent cancer-producing chemical, transformation (crisscrossing of cells not seen in control) occurred up to nine times more often than when the cells were not pretreated. The degree of enhancement appears independent of carcinogen dose. The transformation frequency associated with the carcinogens benzo(a)pyrene (BP), dimethylbenz(a)anthracene (DMBA), 3-methylcholanthrene (MCA), N-acetoxy-2-acetylaminofluorene (AcAAF), and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was increased. There are similarities in the enhancement produced by pretreatment of hamster cells with X-irradiation and with alkylating agents: with both, maximum enhancement occurred approx. 48 h after treatment and lethality attributable to the pretreatment was 10–20% relative to control. However, enhancement produced by X-irradiation pretreatment was slightly greater than that obtained with MMS. The exact cause of the enhancement in transformation resulting from the interaction of these agents is not yet known, but the enhancement associated with MMS pretreatment cannot be related to partial cell synchronization or disruption in the cell cycle. Hamster cells pretreated with 250 μM of MMS demonstrated no alteration in normal cel DNA synthesis through 48-h post-treatment. Analysis of unscheduled DNA synthesis by autoradiography or by alkaline sucrose gradients indicated that the damaged DNA was rapidly repaired after treatment. Therefore, repair of DNA damage as it is now understood is probably not involved.  相似文献   

18.
N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and methyl methanesulfonate (MMS) are directly active alkylating agents that methylate cellular macromolecules by SN1 and SN2 mechanisms, respectively. These two chemicals produce similar types of alkylation products in DNA and a similar level of total alkylations on a molar basis, but strikingly different proportions of alkylations of ring oxygen atoms of purines and pyrimidines. Because of this attribute, they have been used in combination to attempt to determine which types of alkylation products are responsible for mutation, transformation, and toxicity. Studies have suggested that the mutation rates produced by these and similar chemicals in cells surviving toxicity correlate well with the number of methyl adducts at the O6 position of guanine, but that cytotoxicity (reduced colony-forming efficiency) does not correlate with any single adduct or with the total level of alkylation of DNA. In this study we have investigated the cytotoxic mechanisms of MNNG and MMS in synchronized 10T1/2 cells, using colony-forming ability as a measure of toxicity. Both MNNG and MMS cause dose-dependent reduction in the ability of 10T1/2 cells to produce colonies of more than 50 cells after 2 weeks in culture. MNNG is about 100-fold more toxic than MMS on a molar basis. As indicated by the inability of cells to exclude trypan blue, MMS kills a fraction of the population of treated 10T1/2 cells after a 30-min exposure; the fraction of cells that excludes trypan blue is correlated with dose of MMS and with colony-forming efficiency. Neither the fraction of cells that is permeable to trypan blue nor the relative colony-forming efficiency is affected by the phase of the cycle when 10T1/2 cells are treated with MMS. Furthermore, MMS toxicity for 10T1/2 cells is not potentiated by caffeine, MMS treatment does not delay progress of S phase, and cells that survive acute membrane toxicity complete the cell cycle without significant delay. In contrast, MNNG treatment produces toxicity that is maximal when 10T1/2 cells are exposed during the S phase and the effect of potentiated by caffeine. MNNG treatment delays DNA replication and this delay is reversed by caffeine. In sharp contrast to 10T1/2 cells treated with MMS. MNNG-treated cells are not made permeable to trypan blue, but are blocked in their ability to proliferate. These observations indicate that MNNG and MMS kill 10T1/2 cells by drastically different mechanisms, MNNG producing toxicity mainly by preventing chromosome replication and MMS producing toxicity mainly by damaging cell membranes.  相似文献   

19.
The survival of depurinated Form I SV40 DNA was studied in normal human fibroblasts and in D-complementation Xeroderma pigmentosum (XP) fibroblasts. Survival was measured with an infective center assay. Heat-acid and methyl methanesulfonate (MMS) were used as depurinating agents. After 3 hrs of depurination by heat--acid treatment, infectivity in normal cells was less than 15% of the controls compared to more than 50% for the XP D cell strains. Similar results were obtained with MMS-treated DNA. These results are contrary to expectation since apurinic endonuclease activity, which is presumed to be involved in the repair of apurinic sites, is much lower in XP D cell strains than in normal cell strains. Our results indicate that another mechanism for the repair of apurinic sites could exist.  相似文献   

20.
The determination of whether a cell dies by apoptosis as opposed to necrosis is usually best made on the basis of distinct structural changes in the chromatin. These changes include extensive condensation of the chromatin and DNA fragmentation. We have shown that the cytotoxic drug bleomycin (BLM) is able to cleave the DNA between the nucleosomes when it enters into the cell. If sufficient amounts of BLM are internalized, the nuclear morphological changes characteristic of apoptosis are detected. In this work, we describe the nuclear changes that occurred after DNA fragmentation as a function of the number of DNA double-strand breaks generated per cell and of the time after their generation. Our results show that DNA fragmentation and degradation of higher-order DNA structure were directly responsible for the nuclear morphological changes associated with apoptosis. During apoptosis reduced fluorescence with respect to the G0/G1 cell cycle region (the sub-G1 region) is often detected if fixed cells from cultures undergoing apoptosis are analyzed by flow cytometry. We demonstrate here that, depending on the extent of the DNA fragmentation and on ulterior changes in chromatin structure, the content of the fluorescent sub-G1 region can be either soluble pieces of DNA or apoptotic bodies or cells depleted in the DNA content by partial loss of fragmented DNA dissolved in the washing media and/or by the release of apoptotic bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号