首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus-host biological interaction is a continuous coevolutionary process involving both host immune system and viral escape mechanisms. Flaviviridae family is composed of fast evolving RNA viruses that infects vertebrate (mammals and birds) and/or invertebrate (ticks and mosquitoes) organisms. These host groups are very distinct life forms separated by a long evolutionary time, so lineage-specific anti-viral mechanisms are likely to have evolved. Flaviviridae viruses which infect a single host lineage would be subjected to specific host-induced pressures and, therefore, selected by them. In this work we compare the genomic evolutionary patterns of Flaviviridae viruses and their hosts in an attempt to uncover coevolutionary processes inducing common features in such disparate groups. Especially, we have analyzed dinucleotide and codon usage patterns in the coding regions of vertebrate and invertebrate organisms as well as in Flaviviridae viruses which specifically infect one or both host types. The two host groups possess very distinctive dinucleotide and codon usage patterns. A pronounced CpG under-representation was found in the vertebrate group, possibly induced by the methylation-deamination process, as well as a prominent TpA decrease. The invertebrate group displayed only a TpA frequency reduction bias. Flaviviridae viruses mimicked host nucleotide motif usage in a host-specific manner. Vertebrate-infecting viruses possessed under-representation of CpG and TpA, and insect-only viruses displayed only a TpA under-representation bias. Single-host Flaviviridae members which persistently infect mammals or insect hosts (Hepacivirus and insect-only Flavivirus, respectively) were found to posses a codon usage profile more similar to that of their hosts than to related Flaviviridae. We demonstrated that vertebrates and mosquitoes genomes are under very distinct lineage-specific constraints, and Flaviviridae viruses which specifically infect these lineages appear to be subject to the same evolutionary pressures that shaped their host coding regions, evidencing the lineage-specific coevolutionary processes between the viral and host groups.  相似文献   

2.
Insects are known to host a wide variety of beneficial microbes that are fundamental to many aspects of their biology and have substantially shaped their evolution. Notably, parasitoid wasps have repeatedly evolved beneficial associations with viruses that enable developing wasps to survive as parasites that feed from other insects. Ongoing genomic sequencing efforts have revealed that most of these virus-derived entities are fully integrated into the genomes of parasitoid wasp lineages, representing endogenous viral elements (EVEs) that retain the ability to produce virus or virus-like particles within wasp reproductive tissues. All documented parasitoid EVEs have undergone similar genomic rearrangements compared to their viral ancestors characterized by viral genes scattered across wasp genomes and specific viral gene losses. The recurrent presence of viral endogenization and genomic reorganization in beneficial virus systems identified to date suggest that these features are crucial to forming heritable alliances between parasitoid wasps and viruses. Here, our genomic characterization of a mutualistic poxvirus associated with the wasp Diachasmimorpha longicaudata, known as Diachasmimorpha longicaudata entomopoxvirus (DlEPV), has uncovered the first instance of beneficial virus evolution that does not conform to the genomic architecture shared by parasitoid EVEs with which it displays evolutionary convergence. Rather, DlEPV retains the exogenous viral genome of its poxvirus ancestor and the majority of conserved poxvirus core genes. Additional comparative analyses indicate that DlEPV is related to a fly pathogen and contains a novel gene expansion that may be adaptive to its symbiotic role. Finally, differential expression analysis during virus replication in wasps and fly hosts demonstrates a unique mechanism of functional partitioning that allows DlEPV to persist within and provide benefit to its parasitoid wasp host.  相似文献   

3.
The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus genera, originated from the integration of unrelated viruses in the genomes of two parasitoid wasp lineages, in a remarkable example of convergent evolution. Functionally active PDVs represent the most compelling evolutionary success among endogenous viral elements (EVEs). BV evolved from the domestication by braconid wasps of a nudivirus 100 Ma. The nudivirus genome has become an EVE involved in BV particle production but is not encapsidated. Instead, BV genomes have co-opted virulence genes, used by the wasps to control the immunity and development of their hosts. Gene transfers and duplications have shaped BV genomes, now encoding hundreds of genes. Phylogenomic studies suggest that BVs contribute largely to wasp diversification and adaptation to their hosts. A genome evolution model explains how multidirectional wasp adaptation to different host species could have fostered PDV genome extension. Integrative studies linking ecological data on the wasp to genomic analyses should provide new insights into the adaptive role of particular BV genes. Forthcoming genomic advances should also indicate if the associations between endoparasitoid wasps and symbiotic viruses evolved because of their particularly intimate interactions with their hosts, or if similar domesticated EVEs could be uncovered in other parasites.  相似文献   

4.
Endogenous viral elements in animal genomes   总被引:2,自引:0,他引:2  
Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles. For other viruses, germ line integration has only rarely been documented. Nonetheless, we identified endogenous viral elements (EVEs) derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes. Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups. Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA. For one element in the primate lineage, we provide statistically robust evidence for exaptation. Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized.  相似文献   

5.
Herpesviridae is a diverse family of large and complex pathogens whose genomes are extremely difficult to sequence. This is particularly true for clinical samples, and if the virus, host, or both genomes are being sequenced for the first time. Although herpesviruses are known to occasionally integrate in host genomes, and can also be inherited in a Mendelian fashion, they are notably absent from the genomic fossil record comprised of endogenous viral elements (EVEs). Here, we combine paleovirological and metagenomic approaches to both explore the constituent viral diversity of mammalian genomes and search for endogenous herpesviruses. We describe the first endogenous herpesvirus from the genome of the Philippine tarsier, belonging to the Roseolovirus genus, and characterize its highly defective genome that is integrated and flanked by unambiguous host DNA. From a draft assembly of the aye-aye genome, we use bioinformatic tools to reveal over 100,000 bp of a novel rhadinovirus that is the first lemur gammaherpesvirus, closely related to Kaposi''s sarcoma-associated virus. We also identify 58 genes of Pan paniscus lymphocryptovirus 1, the bonobo equivalent of human Epstein-Barr virus. For each of the viruses, we postulate gene function via comparative analysis to known viral relatives. Most notably, the evidence from gene content and phylogenetics suggests that the aye-aye sequences represent the most basal known rhadinovirus, and indicates that tumorigenic herpesviruses have been infecting primates since their emergence in the late Cretaceous. Overall, these data show that a genomic fossil record of herpesviruses exists despite their extremely large genomes, and expands the known diversity of Herpesviridae, which will aid the characterization of pathogenesis. Our analytical approach illustrates the benefit of intersecting evolutionary approaches with metagenomics, genetics and paleovirology.  相似文献   

6.
We describe endogenous viral elements (EVEs) derived from parvoviruses (family Parvoviridae) in the genomes of the long-tailed chinchilla (Chinchilla lanigera) and the degu (Octodon degus). The novel EVEs include dependovirus-related elements and representatives of a clearly distinct parvovirus lineage that also has endogenous representatives in marsupial genomes. In the degu, one dependovirus-derived EVE was found to carry an intact reading frame and was differentially expressed in vivo, with increased expression in the liver.  相似文献   

7.
Endogenous retroviruses are a common component of the eukaryotic genome, and their evolution and potential function have attracted considerable interest. More surprising was the recent discovery that eukaryotic genomes contain sequences from RNA viruses that have no DNA stage in their life cycle. Similarly, several single-stranded DNA viruses have left integrated copies in their host genomes. This review explores some major evolutionary aspects arising from the discovery of these endogenous viral elements (EVEs). In particular, the reasons for the bias toward EVEs derived from negative-sense RNA viruses are considered, as well as what they tell us about the long-term "arms races" between hosts and viruses, characterized by episodes of selection and counter-selection. Most dramatically, the presence of orthologous EVEs in divergent hosts demonstrates that some viral families have ancestries dating back almost 100 million years, and hence are far older than expected from the phylogenetic analysis of their exogenous relatives.  相似文献   

8.
GB virus B (GBV-B; family Flaviviridae, genus Hepacivirus) has been studied in New World primates as a model for human hepatitis C virus infection, but the distribution of GBV-B and its relatives in nature has remained obscure. Here, we report the discovery of a novel and highly divergent GBV-B-like virus in an Old World monkey, the black-and-white colobus (Colobus guereza), in Uganda. The new virus, guereza hepacivirus (GHV), clusters phylogenetically with GBV-B and recently described hepaciviruses infecting African bats and North American rodents, and it shows evidence of ancient recombination with these other hepaciviruses. Direct sequencing of reverse-transcribed RNA from blood plasma from three of nine colobus monkeys yielded near-complete GHV genomes, comprising two distinct viral variants. The viruses contain an exceptionally long nonstructural 5A (NS5A) gene, approximately half of which codes for a protein with no discernible homology to known proteins. Computational structure-based analyses indicate that the amino terminus of the GHV NS5A protein may serve a zinc-binding function, similar to the NS5A of other viruses within the family Flaviviridae. However, the 521-amino-acid carboxy terminus is intrinsically disordered, reflecting an unusual degree of structural plasticity and polyfunctionality. These findings shed new light on the natural history and evolution of the hepaciviruses and on the extent of structural variation within the Flaviviridae.  相似文献   

9.
Flaviviruses, which are globally distributed and cause a spectrum of potentially severe illnesses, pose a major threat to public health. Although Flaviviridae viruses, including flaviviruses, possess similar genome structures, only the flaviviruses encode the non-structural protein NS1, which resides in the endoplasmic reticulum (ER) and is secreted from cells after oligomerization. The ER-resident NS1 is known to be involved in viral genome replication, but the essential roles of secretory NS1 in the virus life cycle are not fully understood. Here we characterized the roles of secretory NS1 in the particle formation of flaviviruses. We first identified an amino acid residue essential for the NS1 secretion but not for viral genome replication by using protein-protein interaction network analyses and mutagenesis scanning. By using the recombinant flaviviruses carrying the identified NS1 mutation, we clarified that the mutant flaviviruses employed viral genome replication. We then constructed a recombinant NS1 with the identified mutation and demonstrated by physicochemical assays that the mutant NS1 was unable to form a proper oligomer or associate with liposomes. Finally, we showed that the functions of NS1 that were lost by the identified mutation could be compensated for by the in trans-expression of Erns of pestiviruses and host exchangeable apolipoproteins, which participate in the infectious particle formation of pestiviruses and hepaciviruses in the family Flaviviridae, respectively. Collectively, our study suggests that secretory NS1 plays a role in the particle formation of flaviviruses through its interaction with the lipid membrane.  相似文献   

10.
We report the discovery of endogenous viral elements (EVEs) from Hepadnaviridae, Bornaviridae and Circoviridae in the speckled rattlesnake, Crotalus mitchellii, the first viperid snake for which a draft whole genome sequence assembly is available. Analysis of the draft assembly reveals genome fragments from the three virus families were inserted into the genome of this snake over the past 50 Myr. Cross-species PCR screening of orthologous loci and computational scanning of the python and king cobra genomes reveals that circoviruses integrated most recently (within the last approx. 10 Myr), whereas bornaviruses and hepadnaviruses integrated at least approximately 13 and approximately 50 Ma, respectively. This is, to our knowledge, the first report of circo-, borna- and hepadnaviruses in snakes and the first characterization of non-retroviral EVEs in non-avian reptiles. Our study provides a window into the historical dynamics of viruses in these host lineages and shows that their evolution involved multiple host-switches between mammals and reptiles.  相似文献   

11.

Background

Estimating evolutionary rates for slowly evolving viruses such as papillomaviruses (PVs) is not possible using fossil calibrations directly or sequences sampled over a time-scale of decades. An ability to correlate their divergence with a host species, however, can provide a means to estimate evolutionary rates for these viruses accurately. To determine whether such an approach is feasible, we sequenced complete feline PV genomes, previously available only for the domestic cat (Felis domesticus, FdPV1), from four additional, globally distributed feline species: Lynx rufus PV type 1, Puma concolor PV type 1, Panthera leo persica PV type 1, and Uncia uncia PV type 1.

Results

The feline PVs all belong to the Lambdapapillomavirus genus, and contain an unusual second noncoding region between the early and late protein region, which is only present in members of this genus. Our maximum likelihood and Bayesian phylogenetic analyses demonstrate that the evolutionary relationships between feline PVs perfectly mirror those of their feline hosts, despite a complex and dynamic phylogeographic history. By applying host species divergence times, we provide the first precise estimates for the rate of evolution for each PV gene, with an overall evolutionary rate of 1.95 × 10-8 (95% confidence interval 1.32 × 10-8 to 2.47 × 10-8) nucleotide substitutions per site per year for the viral coding genome.

Conclusion

Our work provides evidence for long-term virus-host co-speciation of feline PVs, indicating that viral diversity in slowly evolving viruses can be used to investigate host species evolution. These findings, however, should not be extrapolated to other viral lineages without prior confirmation of virus-host co-divergence.  相似文献   

12.
Dengue virus (DENV) and hepatitis C virus (HCV), members of the family Flaviviridae, are global human health concerns. As positive-strand RNA viruses, they each replicate in the cytoplasm of infected cells and induce distinct membranous replication compartments where most, if not all, steps of the viral life cycle occur. This Gem briefly reviews the most recent insights into the architecture and functional properties of membranous replication and assembly sites induced by DENV and HCV.  相似文献   

13.
Viruses are obligatory parasites that can replicate only inside host cells. Therefore, the evolutionary drive to enter cells is immense, leading to diversification in the cell-entry strategies of viruses. One of the most critical steps for cell entry is the recognition of the target cell, a process driven by the formation of viral/host macromolecular complexes. The accumulation of recent structural data for viruses within the arenaviridae family allows us to examine how different viral species from the same viral family utilize evolutionarily-related viral glycoproteins to engage with a variety of different cellular receptors. These structural data, compared to other viruses from the coronaviridae family, hint about possible routes that such viruses use for evolving new receptor-binding capabilities, allowing them to switch from one receptor to another.  相似文献   

14.
In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.  相似文献   

15.
Hepadnaviridae are double-stranded DNA viruses that infect some species of birds and mammals. This includes humans, where hepatitis B viruses (HBVs) are prevalent pathogens in considerable parts of the global population. Recently, endogenized sequences of HBVs (eHBVs) have been discovered in bird genomes where they constitute direct evidence for the coexistence of these viruses and their hosts from the late Mesozoic until present. Nevertheless, virtually nothing is known about the ancient host range of this virus family in other animals. Here we report the first eHBVs from crocodilian, snake, and turtle genomes, including a turtle eHBV that endogenized >207 million years ago. This genomic “fossil” is >125 million years older than the oldest avian eHBV and provides the first direct evidence that Hepadnaviridae already existed during the Early Mesozoic. This implies that the Mesozoic fossil record of HBV infection spans three of the five major groups of land vertebrates, namely birds, crocodilians, and turtles. We show that the deep phylogenetic relationships of HBVs are largely congruent with the deep phylogeny of their amniote hosts, which suggests an ancient amniote–HBV coexistence and codivergence, at least since the Early Mesozoic. Notably, the organization of overlapping genes as well as the structure of elements involved in viral replication has remained highly conserved among HBVs along that time span, except for the presence of the X gene. We provide multiple lines of evidence that the tumor-promoting X protein of mammalian HBVs lacks a homolog in all other hepadnaviruses and propose a novel scenario for the emergence of X via segmental duplication and overprinting of pre-existing reading frames in the ancestor of mammalian HBVs. Our study reveals an unforeseen host range of prehistoric HBVs and provides novel insights into the genome evolution of hepadnaviruses throughout their long-lasting association with amniote hosts.  相似文献   

16.
17.
Bracoviruses represent the most complex endogenous viral elements (EVEs) described to date. Nudiviral genes have been hosted within parasitoid wasp genomes since approximately 100 Ma. They play a crucial role in the wasp life cycle as they produce bracovirus particles, which are injected into parasitized lepidopteran hosts during wasp oviposition. Bracovirus particles encapsidate multiple dsDNA circles encoding virulence genes. Their expression in parasitized caterpillars is essential for wasp parasitism success. Here, we report on the genomic organization of the proviral segments (i.e. master sequences used to produce the encapsidated dsDNA circles) present in the Cotesia congregata parasitoid wasp genome. The provirus is composed of a macrolocus, comprising two-thirds of the proviral segments and of seven dispersed loci, each containing one to three segments. Comparative genomic analyses with closely related species gave insights into the evolutionary dynamics of bracovirus genomes. Conserved synteny in the different wasp genomes showed the orthology of the proviral macrolocus across different species. The nudiviral gene odv-e66-like1 is conserved within the macrolocus, suggesting an ancient co-localization of the nudiviral genome and bracovirus proviral segments. By contrast, the evolution of proviral segments within the macrolocus has involved a series of lineage-specific duplications.  相似文献   

18.
Microbial pathogens, and viruses in particular, can serve as important complements to traditional genetic markers when investigating the population histories of their human host. The range of mutation rates for DNA viruses suggests that DNA viruses can be useful markers of both recent and ancient events in their host histories. Here, we assess the utility of a well known DNA virus, JC virus (JCV), for investigating human history and demography. Using complete coding viral genomes, we confirm the phylogeographic structure of JCV in populations worldwide and provide coalescent estimates of its evolutionary rate under two alternative models of its history. Using these rate estimates, we compare Bayesian skyline plots of population size changes for JCV to those of its human host as estimated with coding mitochondrial genomes of the latter. These comparisons, when combined with other evidence including a log Bayes Factor model test, show that JCV is evolving rapidly and is therefore tracking the recent history of its human host. These results support the hypothesis that post-World War II societal changes are most likely responsible for the recent demographic patterns observed among different regional JCV populations. In sum, fast evolving DNA viruses, such as JCV, can complement RNA viruses to provide novel insights about the recent history and demography of their human host.  相似文献   

19.
Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.  相似文献   

20.
Mavericks are virus-like mobile genetic elements found in the genomes of eukaryotes. Although Mavericks encode capsid morphogenesis homologs, their viral particles have not been observed. Here, we provide new evidence supporting the viral nature of Mavericks and the potential existence of virions. To this end, we conducted a phylogenomic analysis of Mavericks in hundreds of vertebrate genomes, discovering 134 elements with an intact coding capacity in 17 host species. We reveal an extensive genomic fossil record in 143 species and date three groups of elements to the Late Cretaceous. Bayesian phylogenetic analysis using genomic fossil orthologs suggests that Mavericks have infected osteichthyans for ∼419 My. They have undergone frequent cross-species transmissions in cyprinid fish and all core genes are subject to strong purifying selection. We conclude that vertebrate Mavericks form an ancient lineage of aquatic dsDNA viruses which are probably still functional in some vertebrate lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号