首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional, vertex-ipsilateral ear records (‘A’), as well as 3-channel Lissajous' trajectories (3-CLTs) of auditory brain-stem evoked potentials (ABEPs) were recorded from the scalp simultaneously with tympanic membrane electrocochleograms (‘TME’) and auditory nerve compound action potentials (‘8-AP’) recorded intracranially using a wick electrode on the auditory nerve between the internal auditory meatus and the brain-stem. The recordings were made during surgical procedures exposing the auditory nerve.The peak latency recorded from ‘TME’ corresponded to trajectory amplitude peak ‘a’ of 3-LLT and to peak ‘I’ of the ‘A’ channel ABEP. Peak latency of ‘8-AP’ was slightly longer than the latency of peak ‘II’ of ‘A’ when ‘8-AP’ was recorded from the root entry zone and the same or shorter when recorded from the nerve trunk. ‘8-AP’ peak latency was shorter than trajectory amplitude peak ‘b’ of 3-CLT regardless of where the wick electrode was along the nerve. Peak latencies from all recordings sites clustered into two distinct groups—those that included N1 from ‘TME’, peak ‘I’ of the ‘A’ record and trajectory amplitude peak ‘a’ of 3-CLT, and those that included the negative peak of ‘8-AP’ and trajectory amplitude peak ‘b’ of 3-CLT, as well as peak ‘II’ of the ‘A’ record, when present. In one case, the latency of peak ‘II’ and trajectory amplitude peak ‘b’ was manipulated by changing the conductive properties of the medium surrounding the auditory nerve.These results are consistent with other evidence proposing: (1) the most distal (cochlear) portion of the auditory nerve is the generator of the first ABEP component (‘I’, ‘a’); (2) the proximal auditory nerve is the major contributor to the ‘A’ channel ABEP component ‘II’; (3) in addition to the auditory nerve, more central structures participate in the generation of the 3-CLT ‘b’ component.  相似文献   

2.
When auditory nerve function is lost due to surgical removal of bilateral acoustic tumors, a sense of hearing may be restored by means of an auditory brain-stem implant (ABI), which electrically stimulates the auditory pathway at the level of the cochlear nucleus. Placement of the stimulating electrodes during surgical implantation may be aided by electrically evoked auditory brain-stem responses (EABRs) recorded intra-operatively. To establish preliminary standards for human EABRs evoked by electrical stimulation of the cochlear nucleus, short-latency evoked potentials were recorded from 6 ABI patients who were either already implanted or undergoing implantation surgery. Neural responses were distinguished from stimulus artifact and equipment artifact by their properties during stimulus polarity reversal and amplitude variation. Other properties contributed to further identification of the evoked potentials as auditory responses (EABRs). The response waveforms generally had 2 or 3 waves. The peak latencies of these waves (approximately 0.3, 1.3, and 2.2 msec) and the brain-stem localization of the region from which they could be elicited are consistent with auditory brain-stem origin.  相似文献   

3.
Auditory brain-stem responses (ABRs) were recorded from human subjects undergoing neurosurgical procedures which exposed the auditory nerve. Scalp recordings indicated that the latency of the negativity between waves (In) and II (In) and the latency of positive peak II (IIp) were shorter when the nerve was suspended in air than when the nerve was submerged in cerebrospinal fluid or saline, while earlier and later waves remained unaffected. These results could not be attributed to changes in stimulus or recording parameters or conduction velocity. Computational and somatosensory experimental evidence of stationary potentials generated by physical properties of the volume conductor, including changes in conductivity or geometry, are presented to develop a model of wave IIp generation. The results of this study suggest that wave IIp (and probably In) are manifestations of current flux asymmetries across conductivity boundaries created by the temporal bone-cerebrospinal fluid intradural space-brain-stem interfaces. The current flux asymmetries are generated as the propagating auditory nerve action potential crosses the conductivity boundaries. These results also indicate that the physical characteristics of the volume conductor and neural pathways must be considered when interpreting surface recorded evoked potentials.  相似文献   

4.
The topography of the brain-stem (ABR), middle latency (MLR) and cortical (ACR) evoked responses was investigated in chilfren with nornal speech and language development and those with either a language or motor speech disorder. The aim was to determine whether it is possible to discriminate between the groups of children in terms of the evoked potential characteristics.There were significant inter-group differences, particularly relating to the amplitude of the different responses. The ABR in both the language and motor speech groups exhibited smaller amplitudes for waves I, III and V than the control group, with no change in latency. Two explanations were suggested; firstly abnormal functioning of the peripheral hearing mechanism even though the hearing thresholds were normal which could be a secondary effect due to deprivation normal speech recording effects due to differences in the electrical conductivity of tissue and the distance separating the generator site and recording electrodes. The MLR in the motor speech group was significantly larger at the mastoid and temporal electrode sites than either the control or language groups. This was considered to be an enhanced myogenic response like the other exaggerated brain-stem reflexes seen in congenital suprabulbar paresis. Significantly larger amplitudes of the ACR were also recorded from the motor speech group at the Cz electrode site. This was thought to be due to underactivity of some normal cortical inhibitory system and not a direct result of increased MLR amplitude.The ACR in the language disordered children exhibited an abnormal left temporal hemispheric dominance and a more inverted or ‘dissimilar’ wave from at the T3 electrode site on the correlation analysis. These findings suggest impaired functioning of the left temporal cortex in our children who have failed to develop language normally. We feel that this has more significance for the language abnormality than the low amplitude ABRs which were observed in both the language and motor speech disordered children.  相似文献   

5.
Recordings were performed in the thalamus of 13 patients suffering from either abnormal movements or intractable pain, with the aim of delimiting the region to be destroyed or stimulated in order to diminish the syndrome. In 11 of these patients averaged evoked potentials were recorded simultaneously from the scalp and specific thalamus (VP) hand area levels following median nerve stimulation. These recordings were done during the operation or afterwards when an electrode was left in place for a program of stimulation.The latencies of onsets and peaks on the scalp ‘P15’ were compared with those of the VP wave; a clear correspondence was found. Moreover, when increased stimulation was used, both waves began to develop in parallel. Thus in the contralateral ‘P15’ a component exists due to the field produced by the thalamic response. To explain the presence of an ipsilateral scalp ‘P15’ wave, we propose that a second wave having the same latency and a slightly shorter peak exists on the scalp due to a field produced by a brain-stem response. This double origin of ‘P15’ is also shown by the different changes which the ipsilateral and contralateral waves present during changes in alertness.The scalp ‘N18–N20’ is also composed of at least 2 components. The first peak appears on the scalp with a latency shorter than that of the negativity which develops in the thalamus. The N wave, moreover, increases in latency with rapid stimulus repetition. We propose with others that ‘N18’ is a cortical event reflecting the arrival of the thalamo-cortical volley. The second component, ‘N20,’ has a peak latency closely correlated to that of the thalamic negativity. This component was present alone in ‘N’ when rapid stimulation (> 4/sec) was used, which did not change the thalamic response. It must be a field produced by the thalamic negativity.  相似文献   

6.
Latencies of the brain-stem auditory evoked potentials were observed to increase in subjects whose plasma glucose levels were reduced. These changes appeared to be attributable to reduced body temperature, rather than direct effects of hypoglycemia on the auditory nerve or the brain-stem. The results suggest the need for caution in interpreting evoked potential measurements under hypoglycemia.  相似文献   

7.

Background

Marcus Gunn jaw-winking synkinesis (MGJWS) is characterized by eyelid ptosis, which disappears during jaw movement. Familial MGJWS is an extremely rare condition. Some authors suggested that MGJWS is due to neural misdirection in the brainstem whereas others suggested that aberrant reinnervation or ephapse may be responsible for synkinetic activity. Pathogenesis of this condition is therefore still unclear.

Methodology/Principal Findings

To investigate pathogenetic mechanism in familial MGJWS we performed neurophysiological (EMG, Blink Reflex, Recovery cycle of the R2 component of the blink reflex, Masseter inhibitory reflex, BAEPS and kinematic analysis) and neuroradiological (MRI, Diffusion Tensor Imaging) investigations in a member of a multigenerational family with autosomal dominant Marcus Gunn jaw-winking synkinesis (MGJWS). Kinematic analysis of eyelid and jaw movements disclosed a similar onset and offset of the eyelid and jaw in both the opening and closing phases. The excitability of brainstem circuits, as assessed by the blink reflex recovery cycle and recovery index, was normal. Diffusion Tensor Imaging revealed reduced fractional anisotropy within the midbrain tegmentum.

Conclusions/Significance

Kinematic and MRI findings point to a brainstem structural abnormality in our familial MGJWS patient thus supporting the hypothesis of a neural misdirection of trigeminal motor axons to the elevator palpebralis muscle.  相似文献   

8.
本文研究了正常受试者和有听力障碍病人的听觉脑干诱发电位反应(ABR)的频谱分析及相关分析。正常受试者的ABR频谱中有三个主要峰,其中心频率位置大约在200Hz,500Hz及800~1000Hz左右,而在1200Hz以上则很少成分。 有听力障碍病人的ABR,其频谱幅值比正常受试者的要小得多,整个频谱向低端偏移,频谱频率成分主要在600Hz以下。 正常受试者和某个基准ABR之间的互相关函数,在最早的0.5ms内达到最大值,然后逐渐减小。异常ABR和基准ABR之间的互相关函数则没有明显的最大值,整个曲线比较平坦。  相似文献   

9.
The effects of phenytoin (PHT) on brain-stem auditory evoked potentials (BAEPs) were studied in 65 epileptic patients who received long-term PHT monotherapy at therapeutic and supra-therapeutic levels with no clinical evidence of brain-stem toxicity. Abnormal BAEPs were found in 7.5% and 33.3% of patients with therapeutic and supra-therapeutic PHT levels respectively. Serum PHT levels had a trend towards a positive relationship with the I–V interpeak latency (IPL), and a significant negative relationship with the amplitudes of waves I and V. at supra-therapeutic levels, both I–V and I–III IPLs were significantly prolonged while at therapeutic evels onl I–III IPLs were prolonged. The absolute latency of wave I was prolonged in both the therapeutic and the supra-therapeutic groups. These results suggest that PHT acts both peripherally on either the auditory nerve or the cochlea, and centrally on brain-stem conduction.  相似文献   

10.
The assessment of speech in patients with craniofacial anomalies is important to develop appropriate treatment strategies to optimize this aspect of oropharyngeal function. The Dynamic Dento-palatography System which uses multi-electrode array sensors to detect tongue position during articulation is described. Three levels of the speech chain, articulatory, auditory and acoustic, may be analysed in an integrated fashion using this instrument; preliminary results are described. These studies suggest that the quality of speech sounds such as ‘s’ and ‘t’ improve post-operatively.  相似文献   

11.
We developed a high-rate sequential recording technique that allowed simultaneous measurements of both auditory brain-stem response (ABR) and somatosensory evoked potential (SEP) every 10 sec. Using this method, a transient increase in amplitude of all the ABR and SEP components in response to hypoxia in dogs could be detected. The increase in amplitude preceded the prolongation of latency. Our study showed that there were succesive changes of evoked potentials in response to hypoxia. A transient increase in amplitude is the first to occur, followed by a latency prolongation and an amplitude decrease for both ABRs and SEPs.  相似文献   

12.
We measured the conduction velocity of the intracranial portion of the auditory nerve in 3 patients undergoing vestibular nerve section to treat Ménière's disease. The conduction velocity varied from patient to patient, with an average value of 15.1 m/sec. The latency of peak III of the brain-stem auditory evoked potentials (BAEPs) increased by an average of 0.5 msec as a result of exposure of the eighth nerve, and if that increase is assumed to affect the entire length of the auditory nerve (2.6 cm) evenly, then the corrected estimate of conduction velocity would be 22.0 m/sec. Estimates of conduction velocity based on the interpeak latencies of peaks I and II of the BAEP, assuming that peak II is generated by the mid-portion of the intracranial segment of the auditory nerve, yielded similar values of conduction velocities (about 20 m/sec).  相似文献   

13.
We compare the click-evoked compound action potentials from the exposed intracranial portion of the eight nerve using bipolar and monopolar recording electrodes in patients undergoing vestibular nerve section. It is assumed that a bipolar recording electrode will only record propagated neural activity in the auditory nerve, whereas a monopolar recording electrode may in addition record electrical activity that is conducted passively to the recording site. The results of the present study confirm that the earliest detectable propagated neural activity in the intracranial portion of the auditory nerve occurs with a latency that is close to that of peak II of the brain-stem auditory evoked potentials, and the results also confirm that the late components in the click-evoked compound action potentials that have been demonstrated previously using the monopolar recording technique represent propagated neural activity in the auditory nerve. The results also indicate that the responses that are recorded by a bipolar recording electrode, when the small tips of which are placed on the eight nerve when it is relatively dry, represent only small populations of nerve fibers. Even when an attempt is made to align the two tips of a bipolar electrode with the course of the auditory nerve, this type of electrode may record from different populations of nerve fibers.  相似文献   

14.
Thirty-six patients with multiple sclerosis were evaluated by means of brain-stem trigeminal and auditory evoked potentials. The brain-stem auditory evoked potentials (BAEPs) were abnormal in 26 patients (72.2%). Brain-stem trigeminal evoked potentials (BTEPs) yielded similar results, showing distorted waveforms and/or prolonged latencies in 25 patients (69.4%). As expected, the MRI proved to be the most efficient single test, revealing plaques in 86.4% of the patients evaluated. However, the diagnostic accuracy of MRI was lower than that provided by the combination of the BTEP and the BAEP (88.9%). Moreover, in patients having signs of brain-stem involvement, the BTEP, alone and in combination with the BAEP, proved to be more sensitive than the MRI in revealing brain-stem lesions.Correlation between clinical and BTEP findings could be found only in those patients who presented with signs of trigeminal involvement such as trigeminal neuralgia or dysesthesiae. The analysis of the BTEP waveforms showed two distinct types of abnormality — a peripheral type and a central type — suggesting plaques in distinct locations.Both the BTEP and the BAEP demonstrated a correlation with the clinical course of the disease and the condition of the patient at the time of the evaluation. Relapse of the disease was associated with a marked prolongation of the central conduction time in the BTEP and in the BAEP, suggesting the application of such studies to the monitoring of unstable patients or the evaluation of new therapeutic protocols.  相似文献   

15.
Evoked potential audiometry and brain-stem auditory evoked potentials were evaluated in 15 patients with systemic brucellosis in whom brucella meningitis was suspected clinically. In 8 patients cerebrospinal fluid (CSF) was abnormal with high brucella titre, and evoked potentials were abnormal in all of them. In 7 patients the CSF was normal and evoked potentials were also normal. Brain-stem auditory evoked potential abnormalities were categorised into 4 types: (1) abnormal wave I, (2) abnormal wave V, both irreversible, (3) prolonged I–III interpeak latencies, and (4) prolonged I–V interpeak latencies, both reversible. These findings are of important diagnostic value and correlate well with the clinical features, aetiopathogenesis and final outcome.  相似文献   

16.
Neurological function in 159 subjects infected by the human immunodeficiency virus (HIV) who had no neurological symptoms or signs (129 asymptomatic, 30 with ARC/AIDS) was compared to that of 62 controls by means of pattern-reversal evoked potentials (PREPs), brain-stem auditory evoked potentials (BAEPs), median nerve somatosensory evoked potentials (MSEPs), tibial nerve somatosensory evoked potentials (TSEPs) and nerve conduction studies (NCSs). Central nervous system somatosensory conduction from lumbar cord to cortex was prolonged in both asymptomatic seropositive and ARC/AIDS groups, while peripheral somatosensory conduction, NCSs and PREP delays occurred only in the ARC/AIDS group. BAEPs did not show significant differences among groups. TSEPs were abnormal in 8% of asymptomatic carriers and 43% of patients with ARC/AIDS, MSEPs in 7% and 20%, PREPs in 4% and 0%, and BAEPs in 1% and 0% respectively. One or more evoked potentials were abnormal in 18 of 129 (14%) asymptomatic carriers and 13 of 30 (43%) subjects with ARC/AIDS as compared with 1 of 62 (2%) seronegative controls. We conclude that asymptomatic HIV carriers have subclinical neurological impairment of central somatosensory function and that the neurological impairment increases with disease progression to involve peripheral nerves and visual system.  相似文献   

17.
We studied 54 patients with Behçet's disease, 41 males and 13 females, mean age 28 years. Forty-four patients had auditory brain-stem evoked potential (BAEP) recordings, 39 had pattern reversal visual evoked potentials (VEP), 27 had median nerve somatosensory evoked potential (SEP) recordings, and 25 tibial nerve SEPs. BAEPs were abnormal in 16 patients (52%) with neurological manifestations and in 4 (31%) without, because of decreased amplitude of wave V, prolonged I–III or III–V interpeak latencies, or uncertain/absent waves III and/or V. Eleven patients (40%) with neurological symptoms and 3 patients (25%) without, had abnormal VEPs. Absent potentials, decreased amplitude, with or without prolonged P100 latency, were found in 75% of the cases, the rest had prolonged P100 latency only. Median SEPs were abnormal in 8 patients (38%) with neurological manifestations. Four patients (21%) had abnormal tibial SEPs. Decreased amplitude with or without mild slowing in central conduction was the predominant SEP abnormality. SEPs were normal in all patients without neurological symptoms. In total, 84% of patients with, and 38% of patients without, neurological symptoms had abnormalities of one or more EP modality.When used cautiously, EP studies in Behçet's disease might be helpful to separate neuro-Behçet from other disorders with similar symptomatology, to disclose subclinical CNS involvement, to evaluate and monitor CNS disease activity, and to provide objective measures of treatment response.  相似文献   

18.
Dynamic time warping is a procedure whereby portions of a temporal sequence of values are stretched or shrunk to make it similar to another sequence. This procedure can be used to align the brain-stem auditory evoked potentials recorded from different subjects prior to averaging. The resultant warp-average more closely resembles the wave form of a typical subject than the conventional average. Dynamic time warping can also be used to compare one brain-stem auditory evoked potential to another. This comparison can show the differences that result from changes in a stimulus parameter such as intensity or repetition rate. When a patient's wave form is compared to a normal template, warping can identify the peaks in the patient's wave form that correspond most closely to the peaks in the normal template. Compared to an experienced human interpreter, warping is very accurate in identifying the waves of normal brain-stem auditory evoked potentials (error rate between 0 and 4%) and reasonably accurate in identifying the peaks in abnormal wave forms (error rate between 3 and 18%).  相似文献   

19.
The case of a 37-year-old woman with facial myokymia is reported. Magnetic resonance imaging (MRI), electromyography (EMG) and brain-stem auditory evoked potentials (BAEPs) supported the clinical diagnosis of suspected multiple sclerosis (MS). MRI showed a single area of abnormal signal in the pontine region. The authors discuss the possible relationship between the brain-stem lesion and the electrophysiological abnormalities demonstrated by BAEPs and the EMG of facial muscles.  相似文献   

20.
The relative prognostic value of short-latency somatosensory evoked potentials (SEPs) and brain-stem auditory evoked potentials (BAEPs) was assessed in 35 patients with post-traumatic coma. Analysis of the evoked potentials was restricted to those recorded within the first 4 days following head injury. Abnormal SEPs were defined as an increase in central somatosensory conduction time or an absence of the initial cortical potential following stimulation of either median nerve. Abnormal BAEPs were classified as an increase in the wave I–V interval or the loss of any or all of its 3 most stable components (waves I, III and V) following stimulation of either ear. SEPs reliably both good and bad outcomes. All 17 patients in whom SEPs were graded as normal had a favourable outcome and 15 of 18 patients in whom SEPs were abnormal had an unfavourable outcome. Although abnormal BAEPs were associated with an unfavourable outcome in almost all patients (6 of 7), only 19 of 28 patients with normal BAEPs had a favourable outcome. The finding of normal BAEPs was therefore of little prognostic significance. These results confirm the superiority and greater sensitivity of the SEP in detecting abnormalities of brain function shortly after severe head trauma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号