首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
KARRIKIN INSENSITIVE2 (KAI2) was first identified as a receptor of karrikins, smoke-derived germination stimulants. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2 ligand. Upon KAI2 activation, signals are transmitted through the degradation of D53/SMXL proteins via MAX2-dependent ubiquitination. Although components in the KAI2-dependent signaling pathway, namely MpKAI2A and MpKAI2B, MpMAX2, and MpSMXL, exist in the genome of the liverwort Marchantia polymorpha, their functions remain unknown. Here, we show that early thallus growth is retarded and gemma dormancy in the dark is suppressed in Mpkai2a and Mpmax2 loss-of-function mutants. These defects are counteracted in Mpkai2a Mpsmxl and Mpmax2 Mpsmxl double mutants indicating that MpKAI2A, MpMAX2, and MpSMXL act in the same genetic pathway. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants mimicks Mpkai2a and Mpmax2 plants. In addition, the detection of citrine fluorescence in Nicotiana benthamiana cells transiently expressing a SMXL-Citrine fusion protein requires treatment with MG132, a proteasome inhibitor. These findings imply that MpSMXL is subjected to degradation, and that the degradation of MpSMXL is crucial for MpKAI2A-dependent signaling in M. polymorpha. Therefore, we claim that the basic mechanisms in the KAI2-dependent signaling pathway are conserved in M. polymorpha.

Functions of genes in the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort Marchantia polymorpha and control early development of the thallus.  相似文献   

3.
Allene oxide synthase (AOS) is a key enzyme involved in the biosynthesis of 12-oxo-phytodienoic acid (OPDA) and jasmonic acid and plays an important role in plant defense against herbivore attacks. In the liverwort, Marchantia polymorpha, we previously identified cytosol-type MpAOS1 and chloroplast-type MpAOS2 that show AOS activities. However, there is no direct evidence to show the subcellular localization of MpAOSs and their contribution to plant defense via OPDA production in M. polymorpha. In this study, we generated M. polymorpha mutants, with the MpAOS1 and MpAOS2 genes disrupted via CRISPR/Cas9-mediated genome editing; the loss of OPDA production was analyzed in double-knockout mutants. On AOS mutants, the survival rate and oviposition of spider mites (Tetranychus urticae) increased relative to those on wild-type plants. Overall, these findings suggest that defense systems via OPDA-signaling pathways in response to spider mites have been established in M. polymorpha.  相似文献   

4.
5.
6.
7.
8.
Plants precisely coordinate the balance between cell proliferation and differentiation to ensure the continuous development. In Arabidopsis thaliana, members of glycogen synthase kinase 3 (GSK3) family, which are highly conserved serine/threonine protein kinases among eukaryotes, play important roles in regulating cell proliferation and differentiation during various developmental processes. However, functional roles of GSK3s in the plant lineages except angiosperms remain to be elucidated. Here, we utilized a model liverwort, Marchantia polymorpha, for studies of GSK3, because it has a single GSK3-like kinase, MpGSK. When M. polymorpha was treated with a chemical compound, bikinin, which is known as a specific inhibitor for GSK3-like kinases, growth and morphologies were altered with an expansion of the meristematic region. Similarly, Mpgsk loss-of-function mutants accumulated undifferentiated cell mass with no differentiated tissues. By contrast, overexpression of MpGSK reduced the size of the meristem region. These results suggest that MpGSK plays important roles as a regulator for the balance between cell differentiation and proliferation in M. polymorpha.  相似文献   

9.
10.
11.
The invasion of the land by plants, or terrestrialization, was one of the most critical events in the history of the Earth. The evolution of land plants included significant transformations in body plans: the emergence of a multicellular diploid sporophyte, transition from gametophyte-dominant to sporophyte-dominant life histories, and development of many specialized tissues and organs, such as stomata, vascular tissues, roots, leaves, seeds, and flowers. Recent advances in molecular genetics in two model basal plants, bryophytes Physcomitrella patens and Marchantia polymorpha, have begun to provide answers to several key questions regarding land plant evolution. This paper discusses the evolution of the genes and regulatory mechanisms that helped drive such significant morphological innovations among land-based plants.  相似文献   

12.
Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.

A review of the cell biological and developmental mechanisms of bryophytes, including Physcomitrium patens and Marchantia polymorpha.  相似文献   

13.
14.
《The Plant cell》2022,34(10):3512
The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.

The model liverwort Marchantia polymorpha is now experiencing a Renaissance due to its facile forward and reverse genetics and its simple genome that includes sex chromosomes.  相似文献   

15.
16.
17.
The aim of the present study was to characterise bioelectrical changes in the membrane potential of Marchantia polymorpha gametophyte cells after light/dark transitions and to determine the role of the proton pump and energy status of the M. polymorpha cells in generation of these changes. Darkening caused persistent depolarisation of the resting potential (RP) and generation of short-lasting potential changes that were not uniform among different thalli. In some plants (18%), the changes evoked by darkening were typical action potentials (APsdark), whereas in 69% of the plants, the changes had a form of action potential-like responses (APsdark-like) consisting of a transient depolarisation followed by a plateau phase, whose magnitude and duration were inconstant. The illumination of the M. polymorpha always evoked action potentials (APslight) if the thallus was illuminated with light intensity of at least 120 µmol photons m?2 s?1 after 30-min darkening. To analyse the involvement of H+-ATPase in formation of the illumination/darkening-induced electrical responses in M. polymorpha, the proton pump regulators were used. The proton pump inhibitor (20 µM FCCP) significantly diminished the RP and inhibited dark-induced APdark and/or APdark-like responses and illumination-induced APslight. After application of DCMU (20 µM), the RP was strongly depolarised and no response to light/dark was observed. Fusicoccin (20 µM), i.e., an activator of the proton pump, strongly hyperpolarised the membrane potential and blocked dark-induced APdark/APdark-like responses and illumination-induced APslight.  相似文献   

18.
The liverwort Marchantia polymorpha has become one of the model organisms, since it has less genetic redundancy, sexual and asexual modes of reproduction and a range of genomic and molecular genetic resources. Cryopreservation of fertile spermatozoa eliminates time, space and labor for growing and maintaining male plants in reproductive phase, and also provides an optional way to backup lines. Here we report a protocol to cryopreserve spermatozoa of M. polymorpha in liquid nitrogen. A cryoprotective solution containing sucrose, glycerol and egg yolk and controlled cooling and warming processes led to successful recovery of motile M. polymorpha spermatozoa after the cryogenic process. The survival rate and average motility of spermatozoa after cryopreservation were maintained at 71 and 54% of those before cryopreservation, respectively. Cryopreserved spermatozoa were capable of fertilization to form normal spores. The technique presented here confers more versatility to experiments using M. polymorpha and could be applied to preservation of plant spermatozoa in general.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号