首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many mutation tests have been developed in Neurospora crassa during the almost 40 years of its use in mutation research. These tests detect two major classes of mutation: gene mutation and meiotic nondisjunction. Within the first class, forward- and reverse-mutation tests have been used. The forward-mutation tests include those that detect mutations at many loci and at specific loci. Both kinds of forward-mutation tests have been done in homokaryons (n) and heterokaryons (n + n'). From the publications that were not rejected by our pre-established criteria, data were extracted for 166 chemicals that had been tested for mutagenicity. Only 6 of the 166 chemicals have been tested in one or more gene mutation test and the meiotic nondisjunction test; these 6 chemicals were positive in the first and negative in the second. Of the 102 chemicals tested in one or more gene mutation tests, 94 were positive and 8 were negative. Of the 70 chemicals tested in the meiotic nondisjunction test, 7 were positive and 63 were negative. Two tests, the ad-3 forward-mutation test and the meiotic nondisjunction test, have been used most frequently. These two tests are especially important for hazard evaluation, because each detects a class of mutations that is likely to be deleterious or lethal in the F1 - disomics by the meiotic nondisjunction test and multilocus deletions by the ad-3 forward-mutation test in heterokaryons. Generally, direct-acting chemicals are mutagenic in the gene mutation tests, but few chemicals that required metabolic activation have been tested. Only 31 of the 166 chemicals tested in N. crassa have been tested for carcinogenicity. Among these chemicals, there is a good association between mutagenicity in gene mutation tests and carcinogenicity but a poorer association between meiotic nondisjunction and carcinogenicity; however, only a small number of chemicals has been tested in the meiotic nondisjunction test. Further use and development of certain mutation tests in N. crassa are desirable.  相似文献   

2.
The mutagenic effects of formaldehyde (FA) have been compared in DNA repair-proficient (heterokaryon 12) and DNA repair-deficient (heterokaryon 59) two-component heterokaryons of Neurospora crassa. The data from forward-mutation experiments were used to compare the spectra of FA-induced specific-locus mutations at two closely linked loci in the adenine-3 (ad-3) region and on the FA-induced inactivation of heterokaryotic conidia. Previous studies have demonstrated that specific-locus mutations at these two loci result from five major genotypic classes, namely two classes of gene/point mutations (ad-3A(R) and ad-3B(R)), and three classes of multilocus deletion mutations ([ad-3A](IR), [ad-3B](IR), and [ad-3A ad-3B](IR)). Genetic analysis of ad-3 mutants recovered from both heterokaryons after FA treatment demonstrates that predominantly gene/point mutations were found in H-12 (93.2% ad-3(R), 6.8% [ad-3](IR)) and a significantly higher frequency of multilocus deletion mutations in H-59 (62.8% ad-3(R), 37.0% [ad-3](IR)). The data from our experiments with FA on H-12 demonstrate and confirm the data from other assays that FA is a weak mutagen in this DNA repair-proficient strain. However, the data from our experiments with the DNA repair-deficient strain H-59 demonstrate that comparable concentrations of FA cause more pronounced inactivation of heterokaryotic conidia and, at the highest concentration tested, about a 35-fold higher frequency of ad-3 mutations. In addition, FA induced a 5.4-fold higher frequency of ad-3 mutations resulting from multilocus deletion mutation in H-59 than in H-12. Based on our earlier studies with X-ray-induced multilocus deletion mutations, it is this class of FA-induced ad-3 mutations that might be most expected to show deleterious heterozygous effects. The implications of the present data base from our experiments with Neurospora are that the mutagenic (and possibly the carcinogenic) effect of FA exposure might well vary in different human population subgroups.  相似文献   

3.
Formaldehyde was tested for its killing and mutagenic activities in the ad-3 forward-mutation test in Neurospora crassa. The test was conducted in 3 two-component heterokaryons (dikaryons) of N. crassa in order to determine the effect of the uvs-2 allele, which causes a defect in nucleotide excision repair, on formaldehyde-induced killing and the induction of ad-3 mutants. These dikaryons were homokaryotic for uvs-2+ (H-12), homokaryotic for usv-2 (H-59), and heterokaryotic for uvs-2 (H-71). Formaldehyde induced killing and ad-3 mutants in H-12, but the presence of uvs-2 in the homokaryotic state (H-59) resulted in a 9-fold increase in killing and a 40-fold increase in the induction of ad-3 mutants. This increased sensitivity to formaldehyde-induced killing and mutation conferred by uvs-2 in the homokaryotic state (H-59 vs. H-12) is similar to that noted by others in Escherichia coli. Salmonella typhimurium and Saccharomyces cerevisiae. The dikaryon heterokaryotic for uvs-2 (H-71) has the same sensitivity to formaldehyde-induced ad-3 mutation as H-12, indicating that uvs-2 is recessive to uvs-2+.  相似文献   

4.
Two meiotic genes from natural populations are described. A female meiotic mutation,mei(1)g13, mapped to 17.4 on the X chromosome, causes nondisjunction of all homologs except for the fourth chromosomes. In addition, it reduces recombination by 10% in the homozygotes and causes 18% increased recombination in the heterozygotes. A male meiotic mutation,mei-1223 m144 , is located on the third chromosome. Although this mutation causes nondisjunction of all chromosomes, each chromosome pair exhibits a different nondisjunction frequency. Large variations in the sizes of the premature sperm heads observed in the homozygotes may reflect irregular meiotic pairing and the subsequent abnormal segregation, resulting in aneuploid chromosome complements.  相似文献   

5.
The yeast Saccharomyces cerevisiae is a unicellular fungus that can be cultured as a stable haploid or a stable diploid . Diploid cultures can be induced to undergo meiosis in a synchronous fashion under well-defined conditions. Consequently, yeasts can be used to study genetic effects both in mitotic and in meiotic cells. Haploid strains have been used to study the induction of point mutations. In addition to point mutation induction, diploid strains have been used for studying mitotic recombination, which is the expression of the cellular repair activities induced by inflicted damage. Chromosomal malsegregation in mitotic and meiotic cells can also be studied in appropriately marked strains. Yeast has a considerable potential for endogenous activation, provided the tests are performed with appropriate cells. Exogenous activation has been achieved with S9 rodent liver in test tubes as well as in the host-mediated assay, where cells are injected into rodents. Yeast cells can be recovered from various organs and tested for induced genetic effects. The most commonly used genetic end point has been mitotic recombination either as mitotic crossing-over or mitotic gene conversion. A number of different strains are used by different authors. This also applies to haploid strains used for monitoring induction of point mutations. Mitotic chromosome malsegregation has been studied mainly with strain D6 and meiotic malsegregation with strain DIS13 . Data were available on tests with 492 chemicals, of which 249 were positive, as reported in 173 articles or reports. The genetic test/carcinogenicity accuracy was 0.74, based on the carcinogen listing established in the Gene-Tox Program. The yeast tests supplement the bacterial tests for detecting agents that act via radical formation, antibacterial drugs, and other chemicals interfering with chromosome segregation and recombination processes.  相似文献   

6.
Procarbazine (Natulan) was tested for its mutagenic potency and specificity in the ad-3 forward-mutation test in heterokaryon 12 (H-12) of Neurospora crassa. In these experiments, procarbazine was a weak mutagen when present in growing cultures but nonmutagenic when conidial suspensions (nongrowing conidia) were treated. A total of 208 ad-3 mutants recovered after exposure of growing cultures of H-12 to 1 mg of procarbazine/ml, and 2 ad-3 mutants of spontaneous origin, were characterized genetically. These tests distinguish among gene/point mutations (ad-3R) at the ad-3A or ad-3B locus, multilocus deletion mutations ([ad-3]IR) covering one or more loci in the ad-3 and immediately adjacent regions, and 3 different classes of multiple-locus mutations: gene/point ad-3 mutations with a recessive lethal mutation elsewhere in the genome (ad-3R + RL), gene/point mutations with a closely linked recessive lethal mutation (ad-3R + RLCL), and multilocus deletion mutations with a closely linked recessive lethal mutation ([ad-3]IR + RLCL). All of the procarbazine-induced ad-3 mutants resulted from gene/point mutations; 92.2% (200/217) resulted from gene/point mutations at the ad-3A or ad-3B locus, and 3.7% (8/217) resulted from gene/point mutations with a recessive lethal mutation elsewhere in the genome. Identical percentages (15.4% [20/130] and 15.4% [12/78]) of the sigma ad-3BR and sigma ad-3AR mutants were leaky, and a high percentage (71.5% [93/130]) of the sigma ad-3BR mutants had nonpolarized complementation patterns. These results indicate that procarbazine-induced ad-3 mutants of Neurospora crassa are composed solely of gene/point mutations (ad-3R) that resulted, predominantly or exclusively, from base-pair substitutions. The Neurospora specific-locus data on procarbazine-induced ad-3 mutants are compared with data from similar experiments with the mouse using the morphological specific-locus assay; marked similarities were found between the mutagenic effects of procarbazine in the 2 specific-locus assays.  相似文献   

7.
Johnson TE 《Genetics》1979,92(4):1107-1120
A mutant of Neurospora crassa fails to produce perithecia when crossed as either the male (fertilizing) parent or the female (protoperithecial) parent. This mutant is unique in that it appears to be due to a single mutation that blocks sexual development when crossed as either parent. As either a male or female parent, the mutant, fmf-1, produces perithecia blocked at a diameter of 120 microns and containing no meiotic figures; normal perithecia are over 400 microns in diameter. The mutant maps to linkage group IL near arg-1. Forced heterokaryons have been made between fmf-1 and fmf-1+ nuclei. These heterokaryons are fertile when crossed, and fmf-1 can participate as either the male or female component; the mutation is thus heterokaryon recessive and nuclear nonautonomous. Homokaryotic fmf-1 conidia were purified from a mixed conidial population derived from such a heterokaryon; these conidia failed to function as the male parent, suggesting that the fmf-1+ gene product is not contained in the conidium. In mixed mating-type heterokaryons, formed using tol, fmf-1 participates in ascospore formation and triggers perithecial development. Moreover, tol suppresses the action of fmf-1 if present in both components of a cross.———These data suggest that (1) fmf-1 acts in the perithecium at some time between fusion of the conidium with the trichogyne and the onset of meiosis; (2) the fmf-1 gene product is not contained in conidia; and (3) both mating types may enter the protoperithecium when a mixed mating-type heterokaryon is used as the male parent.  相似文献   

8.
The mutagenic effects of 2-aminopurine (2AP) have been compared in the adenine-3 (ad-3) region of two-component heterokaryons of Neurospora crassa: nucleotide excision repair-proficient (uvs-2+/uvs-2+) heterokaryon 12 (H-12) and nucleotide excision repair-deficient (uvs-2/uvs-2) heterokaryon 59 (H-59). This forward-mutation, morphological and biochemical, specific-locus assay system permits the recovery of ad-3A and/or ad-3B mutants in 3 major classes: gene/point mutations, multilocus deletion mutations, and unknowns, and 3 different subclasses of multiple-locus mutations. Previous studies (Brockman et al., Mutation Res., 218 (1989) 1-11) showed that 2AP treatment of growing cultures of H-12 and H-59 gave no difference between ad-3 forward-mutation frequencies over a wide range of 2AP concentrations in each strain. In the present experiments, genetic analyses of ad-3 mutants recovered from these experiments has demonstrated qualitative differences between the spectra of the 3 main classes of ad-3 mutations. In H-12, 84.2% (203/241) resulted from gene/point mutation, 11.6% (28/241) from multilocus deletion mutation, and 4.1% (10/241) were unknowns. In contrast, in H-59, 43.0% (99/230) resulted from gene/point mutation, 55.7% (128/230) from multilocus deletion mutation, and 1.3% (3/230) were unknowns. In addition, quantitative differences were also found between the spectra of ad-3 mutations in 1 subclass of multiple-locus mutations, but not 2 additional subclasses. The first subclass consisted of 1.7% (4/241) and 9.6% (22/230) gene/point mutations with a closely linked recessive lethal mutation, in H-12 and H-59, respectively. The second two subclasses consisted of (a) 0.4% (1/241) and 0.4% (1/230) multilocus deletion mutations with a closely linked recessive lethal mutation, and (b) 13.3% (32/241) and 15.2% (35/230) gene/point mutations with a separate recessive lethal mutation elsewhere in the genome, in H-12 and H-59, respectively. Data from studies by others have shown that 2AP inhibits adenosine deaminase, resulting in nucleotide precursor pool inbalance, and that 2AP can saturate the mismatch repair system. As a consequence of either effect of 2AP, the spectrum of 2AP-induced mutation could include frameshift mutations and chromosome aberrations such as multilocus deletions in addition to base-pair substitutions. The defect in DNA repair due to the uvs-2 allele, which has been shown to be a deficiency in pyrimidine dimer excision (Worthy and Epler, 1974), most probably has some other excision-repair deficiency (Macleod and Stadler, 1986; Baker et al., 1991).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
T M Ong 《Mutation research》1978,53(3):297-308
N23 and N24, selected from hundreds of ad-3 mutants, have been used as testers for the spot, plate and suspension tests in Neurospora crassa. These two testers are highly sensitive to mutagens and are revertible by a specific group of chemicals. N23 can be reverted from an adenine-dependence to adenine-independence by agents which cause base-pair substitutions whereas N24 can be reverted by frameshift mutagens. Studies described here show that spot, plate and suspension tests using testers N23 and N24 are satisfactory substitutes for the ad-3 forward-mutation system for screening the mutagenic activity of environmental agents and chemical carcinogens in N. crassa.  相似文献   

10.
The meiotic drive characteristics of the In(1)sc4Lsc8R/Y system have been examined by genetic analysis and by light and electron microscopy. sc4sc8/Y males show a direct correlation between nondisjunction frequency and meiotic drive. Temperature-shift experiments reveal that the temperature-sensitive period for nondisjunction is at meiosis, whereas that for meiotic drive has both meiotic and post-meiotic components. Cytological analyses in the light and electron microscopes reveal failures in spermiogenesis in the testes of sc4sc8 males. The extent of abnormal spermatid development increases as nondisjunction becomes more extreme.  相似文献   

11.
R Gupta 《Mutation research》1990,240(2):47-58
The antitumor agents m-AMSA, etoposide, teniposide and ellipticine have been reported to be potent clastogens in mammalian cells but non- or weakly mutagenic in bacteria; these observations have been correlated to the interference of these chemicals with DNA topoisomerase II activity in the former, but not in the latter, organisms. The genotoxicity of these 4 agents was evaluated using ad-3 reverse- and forward-mutation tests in Neurospora crassa. These agents (up to 0.8 mumole/plate) did not cause reversion in conidia of the ad-3A frameshift strains N24 and 12-9-26 using the overlay plate test, as contrasted to the positive control frameshift mutagen ICR-170. Heterokaryon 12 (H-12) of N. crassa permits the recovery of all classes of forward mutation at the ad-3+ region, including multilocus deletions. Using resting conidia of H-12 in a suspension assay, ellipticine was moderately mutagenic but no increase in ad-3 mutants was noted with the other 3 agents at a dose of 100 micrograms/ml. In vegetative cultures of H-12 grown in the presence of these agents, all 4 agents were nonmutagenic at a dose of 100 micrograms/ml. The positive control mutagen ICR-170 was mutagenic in both resting conidia and growing cultures of H-12. A similarity between the topoisomerase II of N. crassa and DNA gyrase of bacteria is suggested.  相似文献   

12.
A fourth mutant of Neurospora crassa, designated frq-4, has been isolated in which the period length of the circadian conidiation rhythm is shortened to 19.3 ± 0.3 hours. This mutant is tightly linked to the three previously isolated frq mutants, and all four map to the right arm of linkage group VII about 10 map units from the centromere. Complementation tests suggest, but do not prove, that all four mutations are allelic, since each of the four mutants is co-dominant with the frq+ allele—i.e., heterokaryons have period lengths intermediate between the mutant and wild-type—and since heterokaryons between pairs of mutants also have period lengths intermediate between those of the two mutants.  相似文献   

13.
Joseph O''Tousa 《Genetics》1982,102(3):503-524
The effects of a female-specific meiotic mutation, altered disjunction (ald: 361), are described. Although ald females show normal levels of meiotic exchange, sex- and 4th-chromosome nondisjunction occurs at an elevated level. A large proportion of the nondisjunction events is the result of nonhomologous disjunction of the sex and 4th chromosomes. These nonhomologous disjunction events, and probably all nondisjunction events occurring in ald females, are the result of two anomalies in chromosome behavior: (1) X chromosomes derived from exchange tetrads undergo nonhomologous disjunction and (2) the 4th chromosomes nonhomologously disjoin from larger chromosomes. There is at best a marginal effect of ald on the meiotic behavior of chromosomes 2 or 3. The results suggest that the ald+ gene product acts to prevent the participation of exchange X chromosomes and all 4th chromosomes in nonhomologous disjunction events. The possible role of ald+ in current models of the disjunction process is considered.  相似文献   

14.
The basis for the reduced growth rates of heterokaryons between strains carrying nonallelic combinations of gene/point mutations (ad-3R) and multilocus deletion mutations (ad-3IR) has been investigated by a simple genetic test. The growth rates of forced 2-component heterokaryons (dikaryons) between multilocus deletion mutations were compared with forced 3-component heterokaryons (trikaryons) containing an ad-3AR ad-3BR double mutant as their third component. Since the third component has no genetic damage at other loci immediately adjacent to the ad-3A or ad-3B locus, the growth rate on minimal medium depends on the functional activity of the unaltered (and presumed "wild-type") ad-3A and ad-3B loci in the first two components. In many cases, the requirements of the original dikaryons have been satisfied by the addition of unaltered genes (in the third component), and these trikaryons grow at wild-type rate on minimal medium. Those trikaryons growing at less than wild-type rate were shown to be adenine-requiring, and wild-type growth rate was obtained with the addition of low levels of adenine to the medium. Such tests in the present experiments have shown that ad-3IR mutations result not only in inactivation of the ad-3 loci by multilocus deletion but also, in many cases, in partial gene inactivation by an unknown mechanisms at other loci in the immediately adjacent regions. The heterozygous effects observed in our present experiments with multilocus deletions in Neurospora can be explained either by a spreading-type position effect of the type found by others in Drosophila, mice, Oenothera and Aspergillus or by undetected genetic damage ("cryptic mutations") in the immediately adjacent genetic regions. An attempt will be made to distinguish between these two alternative hypotheses with techniques for DNA cloning and sequencing in future experiments.  相似文献   

15.
Orientation disruptor (ord), a meiotic mutant that is recombination defective in females and disjunction defective in males and females, has been analyzed using serial section electron and light microscopy. From analysis of primary spermatocytes we have confirmed that ord males are defective in some aspect of the mechanism(s) that holds sister chromatids together during meiosis. In addition, we have determined that ord causes high frequencies of nondisjunction during spermatogonial mitotic divisions, as well as during the meiotic divisions. Mitotic nondisjunction involves the large autosomes more frequently than the sex chromosomes or chromosome 4 and results in high frequencies of primary spermatocytes that are either monosomic or trisomic for chromosome 2 or 3. Abnormalities in spermatocyte cyst formation are also observed in males homozygous for ord. These abnormalities include loss of regulation of meiotic synchrony and the number of gonial cell divisions.  相似文献   

16.
The utilization of the specific-locus assay in the ad-3 region of two-component heterokaryons of Neurospora crassa is compared with that of other eukaryotic assay systems for the evaluation of the mutagenic effects of environmental chemicals. In contrast to other in vitro specific-locus assays, the Neurospora assay can detect mutations not only at the ad-3A and ad-3B loci but also recessive lethal mutations elsewhere in the genome. Mutational damage in this system can be characterized readily by means of classical genetic techniques involving heterokaryon tests to determine genotype, and allelic complementation among ad-3BR mutations. The percentages of ad-3BR mutations showing allelic complementation with polarized or nonpolirized complementation patterns provide a presumptive identification of the genetic alterations at the molecular level in individual mutants. Dikaryon and trikaryon tests (using 3 strains carrying multilocus deletion mutations as tester strains) distinguish ad-3 mutations resulting from gene/point mutation, multilocus deletion mutation, and various types of multiple-locus mutation.

The array of ad-3 mutations recovered from forward-mutation experiments can be expressed in terms of Mutational Spectra, which make it possible to make comparisons of mutational types between different doses of the same mutagen, different mutagens, or the effects of the same mutagen on different strains.

Another important feature of this specific-locus assay system is that the effects of mutagens can be studied in both DNA excision repair-proficient (H-12) and -deficient (H-59) two-component heterokaryons to evaluate both quantitative and qualitative differences between the spectra of induced d-3  相似文献   


17.
The genetic effects of MNNG, 4NQO and ICR-170 have been compared on 5 different UV-sensitive strains and a standard wild-type strain of Neurospora crassa with regard to inactivation and the induction of forward-mutations at the ad-3A and ad-3B loci. Whereas all UV-sensitive strains (upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) are more sensitive to inactivation by MNNG and ICR-170 than wild-type, only uvs-5 shows survival comparable to wild-type after 4NQO treatment, all other strains are more sensitive to 4NQO. In contrast to the effects on inactivation, a wide variety of effects were found for the induction of ad-3A and ad-3B mutations: higher forward-mutation frequencies than were found in wild-type were obtained after treatment with MNNG or 4NQO for upr-1 and uvs-2, no significant increase over the spontaneous mutation frequency was found with uvs-3 after MNNG, 4NQO or ICR-170 treatment; mutation frequencies comparable to that found in wild-type were obtained with uvs-6 after MNNG, 4NQO or ICR-170 treatment and with upr-1 after ICR-170 treatment. Lower forward-mutation frequencies than were found in wild-type were obtained with uvs-2 after ICR-170 treatment and with uvs-5 after MNNG, 4NQO or ICR-170 treatment. These data clearly show that the process of forward-mutation at the ad-3A and ad-3B loci is under genetic control by mutations at other loci (e.g. upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) and that the effect is markedly mutagen-dependent.  相似文献   

18.
The mutagenic activity of the monofunctional alkylating agent ethylenimine (EI) was tested with the adenine-3 (ad-3) system in a two-component heterokaryon of Neurospora crassa. The results of forward-mutation experiments showed that EI is a potent mutagen in N. crassa.Genetic analysis of EI-induced ad-3 mutants showed that the frequencies of leakiness, allelic complementation, and non-polarized complementation patterns are similar to those of ad-3 mutants induced by other alkylating agents. It seems, therefore, that in addition to multilocus deletions (which occur at low a frequency), EI-induced mutations probably include base-pair substitutions, frameshift mutations, and other types of intragenic alterations.  相似文献   

19.
Neocarzinostatin (NCS) is an acidic, single-chain polypeptide of 109 amino acids that has shown some antitumor activity in clinical trials. NCS is mutagenic in recA+ strains of Escherichia coli, but not in recA strains; on the other hand, a defect in the nucleotide-excision-repair pathway has no effect on the mutagenicity of NCS in E. coli. Similar results are seen in mammalian cells. Excision-repair-deficient xeroderma pigmentosum (XP) cells repair NCS-induced DNA damage at the same rate as repair-proficient XP heterozygotes, and X-ray-sensitive ataxia telangiectasia fibroblasts are also sensitive to NCS. I have investigated the mutagenicity of NCS in the ad-3 forward-mutation test in nucleotide excision-repair-sufficient and -deficient heterokaryons of Neurospora crassa. Resting conidia from a repair-sufficient strain, H-12, and a nucleotide-excision-repair-deficient strain (uvs-2) H-59, were exposed to NCS. These conidia were assayed for survival and ad-3 forward mutation. The results show that H-59 is more sensitive to the killing and mutagenic activities of NCS than is H-12. These data indicate, in contrast to E. coli and mammalian cells, that the nucleotide-excision-repair pathway of N. crassa does repair NCS-induced lesions. In other experiments, ad-3 mutants induced by NCS in H-59 were characterized to determine the spectrum of NCS-induced mutation. The results show that NCS induces both intracistronic mutations and multilocus deletions in H-59.  相似文献   

20.
James M. Mason 《Genetics》1976,84(3):545-572
The effects of a semidominant autosomal meiotic mutant, orientation disruptor (symbol: ord), located at 2–103.5 on the genetic map and in region 59B-D of the salivary map, have been examined genetically and cytologically. The results are as follows. (1) Crossing over in homozygous females is reduced to about seven percent of controls on all chromosomes, with the reduction greatest in distal regions. (2) Crossing over on different chromosomes is independent. (3) Reductional nondisjunction of any given chromosome is increased to about thirty percent of gametes from homozygous females. The probability of such nondisjunction is the same among exchange and nonexchange tetrads with the exception that a very proximal exchange tends to regularize segregation. (4) Equational nondisjunction of each chromosome is increased to about ten percent of gametes in homozygous females; this nondisjunction is independent of exchange. (5) The distributive pairing system is operative in homozygous females. (6) In homozygous males, reductional nondisjunction of each chromosome is increased to about ten percent, and equational nondisjunction to about twenty percent, of all gametes. (7) Cytologically, two distinct meiotic divisions occur in spermatocytes of homozygous males. The first division looks normal although occasional univalents are present at prophase I and a few lagging chromosomes are seen at anaphase I. However, sister chromatids of most chromosomes have precociously separated by metaphase II. Possible functions of the ord+ gene are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号