首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EEG correlates of individual differences in decision-making time were studied in subjects performing the task of memorizing and subsequently reproducing, on a monitor screen, a sequence of signals. Forty-six students were volunteers in the study, carried out with the use of an original computer-aided technique. Pioneering data on the individual specificity of physiological processes underlying human mental activity were obtained. Individual differences in EEG characteristics related to differences in the temporal parameters of the decision-making stage were found. In a situation directly preceding the activity, subjects characterized by a short decision-making time exhibited higher powers of the Δ (in the occipital, parietal, and central cortical areas) and θ-(in both the central and the right frontal and temporal areas) EEG rhythms. The subjects with a short decision-making time differed from those with a long decision-making time in a higher power of the θ rhythm in the right temporal area during memorization and an increased θ rhythm power in the frontal areas during reproduction of a signal sequence.  相似文献   

2.
To elucidate the cortical control of handwriting, we examined time-dependent statistical and correlational properties of simultaneously recorded 64-channel electroencephalograms (EEGs) and electromyograms (EMGs) of intrinsic hand muscles. We introduced a statistical method, which offered advantages compared to conventional coherence methods. In contrast to coherence methods, which operate in the frequency domain, our method enabled us to study the functional association between different neural regions in the time domain. In our experiments, subjects performed about 400 stereotypical trials during which they wrote a single character. These trials provided time-dependent EMG and EEG data capturing different handwriting epochs. The set of trials was treated as a statistical ensemble, and time-dependent correlation functions between neural signals were computed by averaging over that ensemble. We found that trial-to-trial variability of both the EMGs and EEGs was well described by a log-normal distribution with time-dependent parameters, which was clearly distinguished from the normal (Gaussian) distribution. We found strong and long-lasting EMG/EMG correlations, whereas EEG/EEG correlations, which were also quite strong, were short-lived with a characteristic correlation durations on the order of 100 ms or less. Our computations of correlation functions were restricted to the spectral range (13–30 Hz) of EEG signals where we found the strongest effects related to handwriting. Although, all subjects involved in our experiments were right-hand writers, we observed a clear symmetry between left and right motor areas: inter-channel correlations were strong if both channels were located over the left or right hemispheres, and 2–3 times weaker if the EEG channels were located over different hemispheres. Although we observed synchronized changes in the mean energies of EEG and EMG signals, we found that EEG/EMG correlations were much weaker than EEG/EEG and EMG/EMG correlations. The absence of strong correlations between EMG and EEG signals indicates that (i) a large fraction of the EEG signal includes electrical activity unrelated to low-level motor variability; (ii) neural processing of cortically-derived signals by spinal circuitry may reduce the correlation between EEG and EMG signals.  相似文献   

3.
Knowledge of the muscle activation and the development of muscle fatigue may provide more inside in the effects of long-term driving in the occurrence of health problems in the neck/shoulder/back area. The basic assumption behind fatigue detection with electromyography (EMG) is an increase in the EMG amplitude and a decrease of the mean frequency (MF). This study aimed at checking this assumption in monotonous task performance with low level activity during car driving. Surface electromyography was captured from left and right trapezius and deltoid muscles, during a repetitive, non-continuous, driving task (gearing and steering) and the active parts were separated from the non-active parts. Muscle stiffness was reported by more than half of the subjects after a 1 h drive. Only for the active parts a significant decrease of the MF was seen. But also the EMG amplitude decreased significantly. Two possible mechanisms are posted in literature for this finding: no extra recruitment of motor units (MU) and potentiation of muscle fibers. Literature also hypothesizes that low-force occupational work engages only a fraction of the MU available for recruitment and that these units are selectively type I muscle fibers (Cinderella fibers). Initiators of this phenomenon are probably the time lag between activations and the stress from driving and vibration exposure.  相似文献   

4.
Ten normal subjects performed continuous trunk flexion/extensions (F/E) without any restraining apparatus at free, 3, 2.25 and 1.5 s periods and a fatiguing task of F/E at 1.5 s period during 45 s. Kinematics of the trunk was obtained with bilateral electromyographic (EMG) activity of the erector spinae (three levels), the abdominal oblique muscles and the rectus abdominis muscles. The free period chosen by the subjects was found to vary between 3.05 and 1.47 s. Lateral flexion of the spine was similar in each task but rotation about its longitudinal axis increased as the F/E period shortened. When left and right side EMG signals were grouped by level of recording, a significant difference in activity was found. Subjects who produced the slowest free F/E displayed larger fatigue indexes derived from the EMG signals for some of their back muscles than for other subjects. The flexion/relaxation phenomenon was considered present in a muscle if a level <10% of the maximum signal recorded during extension was detected. The phenomenon was found in >50% of the observations and occurred at a similar angle in each task. Kinematics and several characteristics of the EMG signals of the trunk were statistically independent of the speed of motion.  相似文献   

5.
Examinees, which consisted of 46 young males, were offered to memorize and recreate a sequence of signals on a computer monitor. These signals were to be recreated in regard to the original sequence and location. Examinees were divided into two groups depending on their degree of approximation of the correct location of the signal sequence. The first group, unlike the second (in contrast to the second one), had a very high rate of accuracy with the least number of mistakes. EEG reading was taken on the examinees prior to completing the test, during the memorization stage and during the completion of task. The EEG reading taken prior to the test and those of the completion of task showed no difference in the range ofteta rhythm for both groups of examinees. However, during the memorization stage, the examinees of the first group, unlike that of the second, showed an increase in the coefficient of proximity in the line of teta rhythm EEG of the right hemisphere of the brain. Three systems of connection with the focuses of activity in the right rear, right center and right front areas of the brain, in which the proximity of teta range of EEG during the memorization stage, were noticeably higher in the group of examines that showed high accuracy during the primary attempts of recreation of the sequence. Since the right hemisphere deals mainly with spatial perception of the information and is more active at processing of nonverbal and stereotyped signals, we suggest that students belonging to different groups employed different strategies of processing of the task during remembering.  相似文献   

6.
In this study, we explore the relationship between moments in the frontal and sagittal planes, generated by a lifting task, vs the electromyographic (EMG) activity of right and left trunk muscle groups. In particular, we postulate that the functional dependence between erector spinae muscle activity and the applied lifting moments about the spine is as follows: the sum of left and right erector spinae processed EMG depends on the sagittal plane moment, and the difference of left and right erector spinae processed EMG depends on the frontal plane moment. A simple out-of-sagittal plane physical model, treating the lumbar spine as a two degree-of-freedom pivot point is discussed to justify these hypotheses. To validate this model, we collected surface EMG and lifting moment data for ten males performing a grid of frontal and sagittal plane lifting tasks. A digital RMS-to-DC algorithm was developed for processing raw EMG. For these tests, we measured EMG for the left and right erector spinae and for the left and right external oblique muscles. The processed EMG signals of the left and right erector spinae muscles are summed and differenced for comparison to the measured sagittal and frontal plane moments. A linear correlation (r2) of 0.96 was obtained for the sum of erector spinae EMG vs the sagittal plane moment; a corresponding value of r2 = 0.95 was obtained for the difference vs the frontal plane moment. No correlations (r2 less than 0.004) was found for the sagittal plane moment and the difference of the left and right erector spinae EMG, and the frontal plane moment and the sum of the left and right erector spinae EMG.  相似文献   

7.
Maximal isometric force and electromyograph (EMG) activity of biceps brachii muscle during bilateral sustained elbow flexion were followed in 25 right-handed oarsmen. The percentage decline in force was greater for the left than for the right arm. Also, the mean power frequency (MPF) and the root mean square (rms) value of the EMG amplitude decreased more for the left than for the right arm. It was hypothesized that a common drive would indicate that the two forces curves would be highly correlated during the nonfatigued period, but the level of cross-correlation would decline during muscle fatigue. For the first 4 s of the contraction, the cross-correlation between the right and left force was high (r = 0.99), but thereafter it declined rapidly to a constant level. The decline of the cross-correlation was accompanied by a similar decrease in the correlation between the right and left EMG activations (MPF and rms). Thus, the decline in the cross-correlation level of force accompanied by a similar decrease in the correlation level of EMG would suggest a fatigue-induced neural derangement of the common drive.  相似文献   

8.
Surface electromyographic (EMG) amplitude and mean power frequency (MPF) were used to study the isometric muscular activity of the right versus the left upper trapezius muscles in 14 healthy right-handed women. The EMG activity was recorded simultaneously with force signals during a 10-15 s gradually increasing exertion of force, up to maximal force. Only one side at a time was tested. On both sides there was a significant increase in EMG amplitude (microV) during the gradually increasing force from 0% to 100% maximal voluntary contraction (MVC). The right trapezius muscle showed significantly less steep slopes for regression of EMG amplitude versus force at low force levels (0%-40% MVC) compared intra-individually with high force levels (60%-100% MVC). This was not found for the left trapezius muscle. At 40% MVC a significantly lower MPF value was found for the right trapezius muscle intra-individually compared with the left. An increase in MPF between 5% and 40% MVC was statistically significant when both sides were included in the test. The differences in EMG activity between the two sides at low force levels could be due to more slow-twitch (type I fibres) motor unit activity in the right trapezius muscles. It is suggested that this is related to right-handed activity.  相似文献   

9.
The purpose of the present study was to investigate whether corticospinal projections from human supplementary motor area (SMA) are functional during precise force control with the precision grip (thumb-index opposition). Since beta band corticomuscular coherence (CMC) is well-accepted to reflect efferent corticospinal transmission, we analyzed the beta band CMC obtained with simultaneous recording of electroencephalographic (EEG) and electromyographic (EMG) signals. Subjects performed a bimanual precise visuomotor force tracking task by applying isometric low grip forces with their right hand precision grip on a custom device with strain gauges. Concurrently, they held the device with their left hand precision grip, producing similar grip forces but without any precision constraints, to relieve the right hand. Some subjects also participated in a unimanual control condition in which they performed the task with only the right hand precision grip while the device was held by a mechanical grip. We analyzed whole scalp topographies of beta band CMC between 64 EEG channels and 4 EMG intrinsic hand muscles, 2 for each hand. To compare the different topographies, we performed non-parametric statistical tests based on spatio-spectral clustering. For the right hand, we obtained significant beta band CMC over the contralateral M1 region as well as over the SMA region during static force contraction periods. For the left hand, however, beta band CMC was only found over the contralateral M1. By comparing unimanual and bimanual conditions for right hand muscles, no significant difference was found on beta band CMC over M1 and SMA. We conclude that the beta band CMC found over SMA for right hand muscles results from the precision constraints and not from the bimanual aspect of the task. The result of the present study strongly suggests that the corticospinal projections from human SMA become functional when high precision force control is required.  相似文献   

10.
Two groups of eight adults successfully trained with biofeedback for increases in 40-Hz EEG responses in left or right hemispheres also demonstrated significant 40-Hz EEG increases during baseline periods, and increases in the contralateral hemisphere during training periods. No changes in heart rate, 40-Hz EMG, or 21- to 31-Hz beta, alpha, or theta EEG occurred over training days. Three subjects returning for additional training demonstrated suppression of 40-Hz EEG. A group of four subjects experiencing daily bidirectional training produced substantial within-session control of 40-Hz EEG but no changes over days. Data from posttraining tests without feedback for successful subjects in both groups indicated significant control of 40-Hz EEG responses in the initial parts of these sessions, and some correlated changes in other EEG responses. Measures of successful subjects' experiences during training and control tests indicated awareness of changes in subjective concomitants of EEG responses. This study suggests further strategies for research on behavioral correlates of EEG activity.  相似文献   

11.
Sex differences in electroencephalographic (EEG) correlates of creativity were studied using verbal and figural divergent tasks to be performed in accordance with the instructions to “give any solution” or “give an original solution.” The common effect was a greater activity of the right hemisphere, which did not depend on the sex, task type, or instructions for performance of the tasks. The α2 and β2 rhythms were the main EEG frequency correlates of creative thinking; the degree and sign of their reactivity depended on the aforementioned factors. Although the creative abilities in men and women were similar under test conditions, the EEG correlates of both figural and verbal tasks were sex-dependent. A high reactivity of the α2 rhythm was more marked during verbal creative thinking in women; and that of the β2 rhythm, during figural creative thinking in men. The instruction-related improvement of the critical selection of solutions was to a greater extent reflected by changes in the cortical activity, more pronounced in the frontal cortex in the women. Thus, the same creative productivity in men and women was mediated by different strategies of performance of both figural and verbal tasks, and the sex-related differences in these strategies remained even when the motivation for creativity was changed.  相似文献   

12.
Wheelchair control requires multiple degrees of freedom and fast intention detection, which makes electroencephalography (EEG)-based wheelchair control a big challenge. In our previous study, we have achieved direction (turning left and right) and speed (acceleration and deceleration) control of a wheelchair using a hybrid brain–computer interface (BCI) combining motor imagery and P300 potentials. In this paper, we proposed hybrid EEG-EOG BCI, which combines motor imagery, P300 potentials, and eye blinking to implement forward, backward, and stop control of a wheelchair. By performing relevant activities, users (e.g., those with amyotrophic lateral sclerosis and locked-in syndrome) can navigate the wheelchair with seven steering behaviors. Experimental results on four healthy subjects not only demonstrate the efficiency and robustness of our brain-controlled wheelchair system but also indicate that all the four subjects could control the wheelchair spontaneously and efficiently without any other assistance (e.g., an automatic navigation system).  相似文献   

13.

Aim

The aim of this study was to identify adaptations in muscle activity distribution to spinal tissue creep in presence of muscle fatigue.

Methods

Twenty-three healthy participants performed a fatigue task before and after 30 minutes of passive spinal tissue deformation in flexion. Right and left erector spinae activity was recorded using large-arrays surface electromyography (EMG). To characterize muscle activity distribution, dispersion was used. During the fatigue task, EMG amplitude root mean square (RMS), median frequency and dispersion in x- and y-axis were compared before and after spinal creep.

Results

Important fatigue-related changes in EMG median frequency were observed during muscle fatigue. Median frequency values showed a significant main creep effect, with lower median frequency values on the left side under the creep condition (p≤0.0001). A significant main creep effect on RMS values was also observed as RMS values were higher after creep deformation on the right side (p = 0.014); a similar tendency, although not significant, was observed on the left side (p = 0.06). A significant creep effects for x-axis dispersion values was observed, with higher dispersion values following the deformation protocol on the left side (p≤0.001). Regarding y-axis dispersion values, a significant creep x fatigue interaction effect was observed on the left side (p = 0.016); a similar tendency, although not significant, was observed on the right side (p = 0.08).

Conclusion

Combined muscle fatigue and creep deformation of spinal tissues led to changes in muscle activity amplitude, frequency domain and distribution.  相似文献   

14.
Electroencephalography (EEG) is an effective, efficient, and noninvasive method of assessing and recording brain activity. Given the excellent temporal resolution, EEG can be used to examine the neural response related to specific behaviors, states, or external stimuli. An example of this utility is the assessment of the mirror neuron system (MNS) in humans through the examination of the EEG mu rhythm. The EEG mu rhythm, oscillatory activity in the 8-12 Hz frequency range recorded from centrally located electrodes, is suppressed when an individual executes, or simply observes, goal directed actions. As such, it has been proposed to reflect activity of the MNS. It has been theorized that dysfunction in the mirror neuron system (MNS) plays a contributing role in the social deficits of autism spectrum disorder (ASD). The MNS can then be noninvasively examined in clinical populations by using EEG mu rhythm attenuation as an index for its activity. The described protocol provides an avenue to examine social cognitive functions theoretically linked to the MNS in individuals with typical and atypical development, such as ASD.   相似文献   

15.
The aim of the study was to investigate whether there was a difference in the electromyographic (EMG) activity of human shoulder muscles between the dominant and nondominant side during movement and to explore whether a possible side-difference depends on the specific task. We compared the EMG activity with surface and intramuscular electrodes in eight muscles of both shoulders in 20 healthy subjects whose hand preference was evaluated using a standard questionnaire. EMG signals were recorded during abduction and external rotation. During abduction, the normalized EMG activity was significantly smaller on the dominant side compared to the nondominant side for all the muscles except for infraspinatus and lower trapezius (P 相似文献   

16.
Cross-correlation between surface electromyogram (EMG) signals is commonly used as a means of quantifying EMG cross talk during voluntary activation. To examine the reliability of this method, the relationship between cross talk and the cross-correlation between surface EMG signals was examined by using model simulation. The simulation results illustrate an increase in cross talk with increasing subcutaneous fat thickness. The results also indicate that the cross-correlation function decays more rapidly with increasing distance from the active fibers than cross talk, which was defined as the normalized EMG amplitude during activation of a single muscle. The influence of common drive and short-term motor unit synchronization on the cross-correlation between surface EMG signals was also examined. While common drive did not alter the maximum value of the cross-correlation function, the correlation increased with increasing motor unit synchronization. It is concluded that cross-correlation analysis is not a suitable means of quantifying cross talk or of distinguishing between cross talk and coactivation during voluntary contraction. Furthermore, it is possible that a high correlation between surface EMG signals may reflect an association between motor unit firing times, for example due to motor unit synchronization.  相似文献   

17.
With the advancement of contemporary techniques for studies of high-frequency electroencephalograms (EEGs), possible contamination of the EEG with the electromyogram (EMG) of pericranial muscles has raised more and more concern. The aim of the present study was to demonstrate if certain EEG correlates of mental activities can be revealed in a high-frequency scalp EEG in spite of EMG contamination. Nineteen healthy women who performed similar test tasks before and after cosmetic injections of Dysport in various facial regions for reduction of the activity of facial muscles took part in the study. Inductions of emotional states with different valences, memory storing, and extraction of verbal information were used in the test tasks. The default state of rest was examined as well. During performance of the tasks, parallel registrations of the EEG from the scalp surface (19 channels) and EMG from several facial muscles (6 channels) were carried out. Changes in the spectral power in β2 and low γ frequency bands (18–40 Hz) in EEG- and EMG-derivations after Dysport injections were analyzed. Changes in the spectral power in the same bands in pairwise comparisons for the test tasks before and after Dysport injections were also analyzed separately. It was demonstrated that Dysport injections lead to reduction of the EMG power in areas of the injections and to reduction of EEG power in the frontal and temporal derivations. However, the EEG-correlates revealed when comparing different test tasks remained qualitatively invariable as for after and before Disport injections. These facts confirm that EMG makes a noticeable contribution to the electric activity registered from the scalp in the frequency ranges greater than 18 Hz. At the same time, one can see that at least in certain experimental situations the influence of EMG does not make impossible identification of EEG-correlates of mental activity with EEG registration from the head surface at least in the β2 and low γ frequency bands (18–40 Hz).  相似文献   

18.
The purpose of the study was to compare the electromyographic (EMG) activity of the trunk muscles between normal subjects and chronic low back pain (CLBP) patients during standardized trunk movements. Thirty-three male subjects (18 normals, 15 suffering from non specific CLBP) aged between 35 and 45 yr participated. A biomechanical analysis involving the recording of EMG signals from 12 trunk muscles, the kinematics of trunk segments and the computation of L5/S1 moments was performed. The subjects performed flexion-extension and lateral bending (left and right) tasks (three complete cycles) with and without a 12 kg load. Between group comparisons were performed on the full cycle average pattern of all biomechanical variables for each task. The reliability of EMG variables was evaluated for 10 subjects (5 normals and 5 CLBP) who performed the tasks on three different days. The reliability of EMG amplitude values was generally excellent for agonist muscles but poor to moderate for antagonists. The EMG amplitude analysis revealed significant differences between groups for some muscles (left lumbar and thoracic erector spinae). The abnormal (asymmetric) EMG patterns detected among CLBP patients were not explained by postural asymmetries.  相似文献   

19.
Several studies have demonstrated that chewing can be regarded as a preventive measure for cognitive impairment, whereas masticatory deficiency, associated with soft-diet feeding, is a risk factor for the development of dementia. At present the link between orofacial sensorimotor activity and cognitive functions is unknown. In subjects with unilateral molar loss we have shown asymmetries in both pupil size and masticatory muscles electromyographic (EMG) activity during clenching: the molar less side was characterized by a lower EMG activity and a smaller pupil. Since implant-prostheses, greatly reduced both the asymmetry in EMG activity and in pupil’s size, trigeminal unbalance, leading to unbalance in the activity of the Locus Coeruleus (LC), may be responsible for the pupil’s asymmetry. According to the findings obtained in animal models, we propose that the different activity of the right and left LC may induce an asymmetry in brain activity, thus leading to cognitive impairment. According to this hypothesis, prostheses improved the performance in a complex sensorimotor task and increased the mydriasis associated with haptic tasks. In conclusion, the present study indicates that the implant-prosthesis therapy, which reduces the unbalance of trigeminal proprioceptive afferents and the asymmetry in pupil’s size, may improve arousal, boosting performance in a complex sensorimotor task.  相似文献   

20.
We tested whether evening exposure to unilateral photic stimulation has repercussions on interhemispheric EEG asymmetries during wakefulness and later sleep. Because light exerts an alerting response in humans, which correlates with a decrease in waking EEG theta/alpha-activity and a reduction in sleep EEG delta activity, we hypothesized that EEG activity in these frequency bands show interhemispheric asymmetries after unilateral bright light (1,500 lux) exposure. A 2-h hemi-field light exposure acutely suppressed occipital EEG alpha activity in the ipsilateral hemisphere activated by light. Subjects felt more alert during bright light than dim light, an effect that was significantly more pronounced during activation of the right than the left visual cortex. During subsequent sleep, occipital EEG activity in the delta and theta range was significantly reduced after activation of the right visual cortex but not after stimulation of the left visual cortex. Furthermore, hemivisual field light exposure was able to shift the left predominance in occipital spindle EEG activity toward the stimulated hemisphere. Time course analysis revealed that this spindle shift remained significant during the first two sleep cycles. Our results reflect rather a hemispheric asymmetry in the alerting action of light than a use-dependent recovery function of sleep in response to the visual stimulation during prior waking. However, the observed shift in the spindle hemispheric dominance in the occipital cortex may still represent subtle local use-dependent recovery functions during sleep in a frequency range different from the delta range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号