首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.  相似文献   

2.
Oxidative DNA damage, caused by either endogenous or exogenous sources of reactive oxygen species (ROS), has been linked several diseases including Graves' disease (GD). 7,8‐Dihydro‐8‐oxoguanine (8‐oxoG) is a major lesion produced by ROS and is considered a key biomarker of oxidative DNA damage. In humans, 8‐oxoG is mainly repaired by 8‐oxoguanine DNA N‐glycosylase‐1 (hOGG1), which is an essential component of the base excision repair (BER) pathway. The functional studies showed that hOGG1 Ser326Cys polymorphism is associated with the reduced DNA repair activity and increased risk for some oxidative stress‐related diseases. In this study, we firstly investigated hOGG1 Ser326Cys polymorphism in GD. According to our results, Cys/Cys genotype frequency in the GD patients (23.4%) was significantly higher than the controls (9.2%). Cys/Cys genotype had an 3.5‐fold [95% CI (confidence interval): 2.10–6.01, p < 0.001] the Cys allele had 1.83‐fold (95% CI: 1.43–2.34, p < 0.001) increase in the risk for developing GD. Our results suggest that Ser326Cys polymorphism of the hOGG1 gene is associated with GD risk. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Knee replacement surgery is an ischemia/reperfusion model, as it uses tourniquet applied to the knee area to stop the blood flow during the operation. Fifty patients that were undergoing elective arthroscopic knee surgery were included in our study. Human 8-oxoguanine glycosylase 1 (hOGG1) is an enzyme to repair specific DNA lesions and a good marker of hydroxyl radical damage to DNA. XPD is another DNA repair gene. We investigated the effect of hOGG1 (Ser326Cys) and XPD (Lys751Gln) polymorphisms on the oxidative stress level after reperfusion. To evaluate oxidative stress conditions, we measured 8-hydroxyguanosine and malondialdehyde (MDA) levels. Polymorphism analyses were done by PCR-RFLP; serum 8-hydroxyguanosine and MDA levels were determined by enzyme-linked immunoassay. There were no significant differences between serum MDA and 8-hydroxyguanosine levels in the samples taken before and after tourniquet application; none of these parameters were related with hOGG1 genotypes. However, we observed increased MDA levels after tourniquet application in M allele carriers for the XPD gene; this could mean that M allele carriers are more prone to DNA damage due to oxidative activity.  相似文献   

4.
Using siRNA technology, we down-regulated in human B-lymphoblastoid TK6 cells the two major oxidative DNA glycosylases/AP lyases that repair free radical-induced base damages, hNTH1 and hOGG1. The down-regulation of hOGG1, the DNA glycosylase whose main substrate is the mutagenic but not cytotoxic 8-oxoguanine, resulted in reduced radiation cytotoxicity and decreased double strand break (DSB) formation post-irradiation. This supports the idea that the oxidative DNA glycosylases/AP lyases convert radiation-induced clustered DNA lesions into lethal DSBs and is in agreement with our previous finding that overexpression of hNTH1 and hOGG1 in TK6 cells increased radiation lethality, mutant frequency at the thymidine kinase locus and the enzymatic production of DSBs post-irradiation [N. Yang, H. Galick, S.S. Wallace, Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks, DNA Repair (Amst) 3 (2004) 1323-1334]. Interestingly, cells deficient in hNTH1, the DNA glycosylase that repairs a major lethal single free radical damage, thymine glycol, were more radiosensitive but at the same time fewer DSBs were formed post-irradiation. These results indicate that hNTH1 plays two roles in the processing of radiation damages: repair of potentially lethal single lesions and generation of lethal DSBs at clustered damage sites. In contrast, in hydrogen peroxide-treated cells where the majority of free radical DNA damages are single lesions, the base excision repair pathway functioned to protect the cells. Here, overexpression of hNTH1 and hOGG1 resulted in reduced cell killing while suppression of glycosylase expression resulted in elevated cell death.  相似文献   

5.
8-Oxoguanine-DNA glycosylases play a key role in the repair of oxidatively damaged DNA. The Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are DNA base excision repair enzymes that catalyze the removal of 7,8-dihydro-8-oxoguanine (oxoG) residue, and cleave DNA strand. Specific contacts between DNA phosphate groups and amino acids from active centers of these enzymes play a significant role in DNA-protein interactions. In order to design new non-hydrolyzable substrate analogs of Fpg and hOGG1 for structural studies modified DNA duplexes containing pyrophosphate or OEt-substituted pyrophosphate internucleotide (SPI) groups near the damage were tested. We showed that enzymes recognize and specifically bind to DNA duplexes obtained. The mechanism of incision of oxoG by the Fpg and hOGG1 was determined. We revealed that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the oxoG. In contrast, Fpg and hOGG1 effectively incise DNA duplex carrying analogous phosphate modifications 5' to the oxoG. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or substituted pyrophosphate groups immediately 3' to the oxoG are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a oxoG-containing DNA bound to catalytically active wild-type enzymes as well as their pro- and eucaryotic homologs.  相似文献   

6.
7.
8.
XRCC1 participates in DNA single strand break and base excision repair (BER) to preserve genetic stability in mammalian cells. XRCC1 participation in these pathways is mediated by its interactions with several of the acting enzymes. Here, we report that XRCC1 interacts physically and functionally with hOGG1, the human DNA glycosylase that initiates the repair by BER of the mutagenic oxidized base 8-oxoguanine. This interaction leads to a 2- to 3-fold stimulation of the DNA glycosylase activity of hOGG1. XRCC1 stimulates the formation of the hOGG1 Schiff-base DNA intermediate without interfering with the endonuclease activity of APE1, the second enzyme in the pathway. On the contrary, the stimulation in the appearance of the incision product seems to reflect the addition of the effects of XRCC1 on the two first enzymes of the pathway. The data presented support a model by which XRCC1 will pass on the DNA intermediate from hOGG1 to the endonuclease APE1. This results in an acceleration of the overall repair process of oxidized purines to yield an APE1-cleaved abasic site, which can be used as a substrate by DNA polymerase beta. More importantly, the results unveil a highly coordinated mechanism by which XRCC1, through its multiple protein-protein interactions, extends its orchestrating role from the base excision step to the resealing of the repaired DNA strand.  相似文献   

9.
10.
The DNA backbone is often considered a track that allows long-range sliding of DNA repair enzymes in their search for rare damage sites in DNA. A proposed exemplar of DNA sliding is human 8-oxoguanine (oG) DNA glycosylase 1 (hOGG1), which repairs mutagenic oG lesions in DNA. Here we use our high-resolution molecular clock method to show that macroscopic 1D DNA sliding of hOGG1 occurs by microscopic 2D and 3D steps that masquerade as sliding in resolution-limited single-molecule images. Strand sliding was limited to distances shorter than seven phosphate linkages because attaching a covalent chemical road block to a single DNA phosphate located between two closely spaced damage sites had little effect on transfers. The microscopic parameters describing the DNA search of hOGG1 were derived from numerical simulations constrained by the experimental data. These findings support a general mechanism where DNA glycosylases use highly dynamic multidimensional diffusion paths to scan DNA.  相似文献   

11.
Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are base excision repair enzymes involved in the 8-oxoguanine (oxoG) repair pathway. Specific contacts between these enzymes and DNA phosphate groups play a significant role in DNA-protein interactions. To reveal the phosphates crucial for lesion excision by Fpg and hOGG1, modified DNA duplexes containing pyrophosphate and OEt-substituted pyrophosphate internucleotide (SPI) groups near the oxoG were tested as substrate analogues for both proteins. We have shown that Fpg and hOGG1 recognize and specifically bind the DNA duplexes tested. We have found that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the 8-oxoguanosine (oxodG) and one nucleotide 3' away from it. In contrast, they efficiently incised DNA duplexes bearing the same phosphate modifications 5' to the oxodG and two nucleotides 3' away from the lesion. The effect of these phosphate modifications on the substrate properties of oxoG-containing DNA duplexes is discussed. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or SPI groups immediately 3' to the oxodG or one nucleotide 3' away from it are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a wild-type enzymes bound to oxoG-containing DNA.  相似文献   

12.
The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5' to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is "hardwired." Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F(*149)) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F(*292)) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.  相似文献   

13.
DNA continuously undergoes oxidation damage from both exogenous and endogenous sources, including ionizing radiation, ultraviolet light, and products of metabolism. Replication of damaged DNA sometimes gives rise to mutations which can contribute to disease and aging. One of the most mutagenic lesions caused by DNA oxidation is 7,8-dihydro-8-oxoguanine (oxoG), which, if not repaired, results in G?→?T transversions. In human cells, oxoG is repaired through excision by 8-oxoguanine-DNA glycosylase hOGG1. In addition to its glycosylase activity, hOGG1 possesses an AP-lyase activity, which catalyzes the elimination of the 3’-phosphate (β-elimination) at the nascent, or preformed abasic (AP) site. The glycosidic bond breakage is initiated by a nucleophilic attack at C1’ by the Lys-249 residue resulting in a covalent enzyme–DNA-Schiff base intermediate, which then rearranges, and undergoes elimination. The 3-D structure of hOGG1shows that DNA binding is accompanied with drastic conformational changes, including DNA kinking, eversion of oxoGua from the double helix, and insertion of few amino acid residues into DNA. Previously (Kuznetsov et al., 2005, 2007), we have studied the stopped-flow kinetics of oxoG and AP site lesions processing by hOGG1. The character of tryptophan and 2-aminopurine fluorescence traces revealed that both the protein and the damaged DNA undergo extensive conformational changes in the course of DNA substrate binding- and -cleavage. To understand better, the mechanism by which hOGG1 recognizes DNA lesions, we have examined the influence of amino acid substitutions on conformational dynamics of hOGG1 and DNA during specific site recognition and conversion. Fluorescence kinetics of enzyme mutant forms F45?W, F319?W, Y203?W, Y203A, H270?W, K249Q demonstrated the multistep character of catalytic process and made clear the role of these amino acids for hOGG1 catalysis.  相似文献   

14.
We determined the mitochondrial membrane status, presence of reactive oxygen species (ROS), and oxidative DNA adduct formation in normal human oral keratinocytes (NHOK) during senescence. The senescent cells showed accumulation of intracellular ROS and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG), a major oxidative DNA adduct. Exposure of cells to H2O2 induced 8-oxo-dG accumulation in cellular DNA, which was rapidly removed in replicating NHOK. However, the 8-oxo-dG removal activity was almost completely abolished in the senescing culture. Both replicating and senescing NHOK expressed readily detectable 8-oxo-dG DNA glycosylase (hOGG1), the enzyme responsible for glycosidic cleavage of 8-oxo-dG. After exposure to H2O2, however, the intranuclear level of the hOGG1-alpha isoform was decreased in senescing but not in replicating NHOK. These results indicated that senescing NHOK accumulated oxidative DNA lesions in part due to increased level of endogenous ROS and impaired intranuclear translocation of hOGG1 enzyme upon exposure to oxidative stress.  相似文献   

15.
The generation of reactive oxygen species in the cell provokes, among other lesions, the formation of 8-oxo-7,8-dihydroguanine (8-oxoG) in DNA. Due to mispairing with adenine during replication, 8-oxoG is highly mutagenic. To minimise the mutagenic potential of this oxidised purine, human cells have a specific 8-oxoG DNA glycosylase/AP lyase (hOGG1) that initiates the base excision repair (BER) of 8-oxoG. We show here that in vitro this first enzyme of the BER pathway is relatively inefficient because of a high affinity for the product of the reaction it catalyses (half-life of the complex is >2 h), leading to a lack of hOGG1 turnover. However, the glycosylase activity of hOGG1 is stimulated by the major human AP endonuclease, HAP1 (APE1), the enzyme that performs the subsequent step in BER, as well as by a catalytically inactive mutant (HAP1-D210N). In the presence of HAP1, the AP sites generated by the hOGG1 DNA glycosylase can be occupied by the endonuclease, avoiding the re-association of hOGG1. Moreover, the glycosylase has a higher affinity for a non-cleaved AP site than for the cleaved DNA product generated by HAP1. This would shift the equilibrium towards the free glycosylase, making it available to initiate new catalytic cycles. In contrast, HAP1 does not affect the AP lyase activity of hOGG1. This stimulation of only the hOGG1 glycosylase reaction accentuates the uncoupling of its glycosylase and AP lyase activities. These data indicate that, in the presence of HAP1, the BER of 8-oxoG residues can be highly efficient by bypassing the AP lyase activity of hOGG1 and thus excluding a potentially rate limiting step.  相似文献   

16.
If unrepaired, damage to genomic DNA can cause mutations and/or be cytotoxic. Single base lesions are repaired via the base excision repair (BER) pathway. The first step in BER is the recognition and removal of the nucleobase lesion by a glycosylase enzyme. For example, human oxoguanine glycosylase 1 (hOGG1) is responsible for removal of the prototypic oxidatively damaged nucleobase, 8-oxo-7,8-dihydroguanine (8-oxoG). To date, most studies of glycosylases have used free duplex DNA substrates. However, cellular DNA is packaged as repeating nucleosome units, with 145 base pair segments of DNA wrapped around histone protein octamers. Previous studies revealed inhibition of hOGG1 at the nucleosome dyad axis and in the absence of chromatin remodelers. In this study, we reveal that even in the absence of chromatin remodelers or external cofactors, hOGG1 can initiate BER at positions off the dyad axis and that this activity is facilitated by spontaneous and transient unwrapping of DNA from the histones. Additionally, we find that solution accessibility as determined by hydroxyl radical footprinting is not fully predictive of glycosylase activity and that histone tails can suppress hOGG1 activity. We therefore suggest that local nuances in the nucleosome environment and histone-DNA interactions can impact glycosylase activity.  相似文献   

17.
We have investigated the role of Tyr-203, His-270, and Lys-249 amino acid residues from the 8-oxoguanine glycosylase (hOGG1) active site in the process of recognition of 7,8-dihydro-8-oxoguanine (oxoG) damaged nucleotide and in the catalytic stages of enzymatic reaction. The pre-steady state kinetic analysis of conformational transitions of mutant forms of the enzyme and model DNA substrates during the enzymatic process revealed that the studied amino acid residues are involved in the specific binding of DNA substrates. The Tyr-203 is responsible for recognition of the damaged nucleotide; interaction between His-270 and DNA is necessary for the formation of the catalytically active complex with the oxoG-containing DNA. The Lys-249 acts not only as one of the catalytically important amino acids of the active site of the enzyme, but also plays a significant role in the formation of specific enzyme–substrate complex. The present study significantly complements the molecular-kinetic model of the enzymatic reaction and helps to clarify the origin of the high specificity of hOGG1 to oxidized bases in DNA.  相似文献   

18.
The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro, hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome.  相似文献   

19.
Metallothioneins (MT) play an important biological role in preventing oxidative damage to cells. We have previously demonstrated that the efficiency of the protective effect of MT-III against the DNA degradation from oxidative damage was much higher than that of MT-I/II. As an extension of the latter investigation, this study aimed to assess the ability of MT-III to suppress 8-oxoguanine (8-oxoG), which is one of the major base lesions formed after an oxidative attack to DNA and the mutant frequency of the HPRT gene in human fibroblast GM00637 cells upon exposure to gamma-rays. We found that human MT-III expression decreased the level of 8-oxoG and mutation frequency in the gamma-irradiated cells. Using an 8-oxoguanine DNA glycosylase (OGG1)-specific siRNAs, we also found that MT-III expression resulted in the suppression of the gamma-radiation-induced 8-oxoG accumulation and mutation in the OGG1-depleted cells. Moreover, the down-regulation of MT in human neuroblastoma SKNSH cells induced by MT-specific siRNA led to a significant increase in the 8-oxoG level, after exposure to gamma-irradiation. These results suggest that under the conditions of gamma-ray oxidative stress, MT-III prevents the gamma-radiation-induced 8-oxoG accumulation and mutation in normal and hOGG1-depleted cells, and this suppression might, at least in part, contribute to the anticarcinogenic and neuroprotective role of MT-III.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号