首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During pathogenesis, effector proteins are secreted from the pathogen to the host plant to provide virulence activity for invasion of the host. However, once the host plant recognizes one of the delivered effectors, effector‐triggered immunity activates a robust immune and hypersensitive response (HR). In planta, the effector AvrRps4 is processed into the N‐terminus (AvrRps4N) and the C‐terminus (AvrRps4C). AvrRps4C is sufficient to trigger HR in turnip and activate AtRRS1/AtRPS4‐mediated immunity in Arabidopsis; on the other hand, AvrRps4N induces HR in lettuce. Furthermore, AvrRps4N‐mediated HR requires a conserved arginine at position 112 (R112), which is also important for full‐length AvrRps4 (AvrRps4F) processing. Here, we show that effector processing and effector recognition in lettuce are uncoupled for the AvrRps4 family. In addition, we compared effector recognition by lettuce of AvrRps4 and its homologues, HopK1 and XopO. Interestingly, unlike for AvrRps4 and HopK1, mutation of the conserved R111 in XopO by itself was insufficient to abolish recognition. The combination of amino acid substitutions arginine 111 to leucine with glutamate 114 to lysine abolished the XopO‐mediated HR, suggesting that AvrRps4 family members have distinct structural requirements for perception by lettuce. Together, our results provide an insight into the processing and recognition of AvrRps4 and its homologues.  相似文献   

2.
The phagosome harboring the bacterial pathogen Legionella pneumophila is known to be enriched with phosphatidylinositol 4‐phosphate (PtdIns4P), which is important for anchoring a subset of its virulence factors and potentially for signaling events implicated in the biogenesis of the Legionella‐containing vacuole (LCV) that supports intracellular bacterial growth. Here we demonstrate that the effector MavQ is a phosphoinositide 3‐kinase that specifically catalyzes the conversion of phosphatidylinositol (PtdIns) into PtdIns3P. The product of MavQ is subsequently phosphorylated by the effector LepB to yield PtdIns(3,4)P2, whose 3‐phosphate is then removed by another effector SidF to generate PtdIns4P. We also show that MavQ is associated with the LCV and the ∆mavQ mutant displays phenotypes in the anchoring of a PtdIns4P‐binding effector similar to those of ∆lepB or ∆sidF mutants. Our results establish a mechanism of de novo PtdIns4P biosynthesis by L. pneumophila via a catalysis axis comprised of MavQ, LepB, and SidF on the surface of its phagosome.  相似文献   

3.
The plant extracellular space, including the apoplast and plasma membrane, is the initial site of plant–pathogen interactions. Pathogens deliver numerous secreted proteins, called effectors, into this region to suppress plant immunity and establish infection. Downy mildew caused by the oomycete pathogen Sclerospora graminicola (Sg) is an economically important disease of Poaceae crops including foxtail millet (Setaria italica). We previously reported the genome sequence of Sg and showed that the jacalin‐related lectin (JRL) gene family has significantly expanded in this lineage. However, the biological functions of JRL proteins remained unknown. Here, we show that JRL from Sg (SgJRL) functions as an apoplastic virulence effector. We identified eight SgJRLs by protein mass spectrometry analysis of extracellular fluid from Sg‐inoculated foxtail millet leaves. SgJRLs consist of a jacalin‐like lectin domain and an N‐terminal putative secretion signal; SgJRL expression is induced by Sg infection. Heterologous expression of three SgJRLs with N‐terminal secretion signal peptides in Nicotiana benthamiana enhanced the virulence of the pathogen Phytophthora palmivora inoculated onto the same leaves. Of the three SgJRLs, SG06536 fused with green fluorescent protein (GFP) localized to the apoplastic space in N. benthamiana leaves. INF1‐mediated induction of defence‐related genes was suppressed by co‐expression of SG06536‐GFP. These findings suggest that JRLs are novel apoplastic effectors that contribute to pathogenicity by suppressing plant defence responses.  相似文献   

4.
In the devastating rice blast fungus Magnaporthe oryzae, six Magnaporthe appressoria‐specific (MAS) proteins are encoded by MoGAS1, MoGAS2 and MoMAS3MoMAS6. MoGAS1 and MoGAS2 were previously characterized as M. oryzae virulence factors; however, the roles of the other four genes are unknown. Here, we found that, although the loss of any MAS gene did not affect appressorial formation or vegetative growth, ∆Momas3 and ∆Momas5 mutant strains (but not the others) were reduced in virulence on susceptible CO‐39 rice seedlings. Focusing on ∆Momas3 and ∆Momas5 mutant strains, we found that they could penetrate host leaf surfaces and fill the first infected rice cell but did not spread readily to neighbouring cells, suggesting they were impaired for biotrophic growth. Live‐cell imaging of fluorescently labelled MoMas3 and MoMas5 proteins showed that during biotrophy, MoMas3 localized to the apoplastic compartment formed between fungal invasive hyphae and the plant‐derived extra‐invasive hyphal membrane while MoMas5 localized to the appressoria and the penetration peg. The loss of either MoMAS3 or MoMAS5 resulted in the accumulation of reactive oxygen species (ROS) in infected rice cells, resulting in the triggering of plant defences that inhibited mutant growth in planta. ∆Momas3 and ∆Momas5 biotrophic growth could be remediated by inhibiting host NADPH oxidases and suppressing ROS accumulation. Thus, MoMas3 and MoMas5 are novel virulence factors involved in suppressing host plant innate immunity to promote biotrophic growth.  相似文献   

5.
Pathogen type 3 secretion systems (T3SS) manipulate host cell pathways by directly delivering effector proteins into host cells. In Vibrio parahaemolyticus, the leading cause of bacterial seafood‐borne diarrheal disease, we showed that a T3SS effector, VgpA, localizes to the host cell nucleolus where it binds Epstein–Barr virus nuclear antigen 1‐binding protein 2 (EBP2). An amino acid substitution in VgpA (VgpAL10A) did not alter its translocation to the nucleus but abolished the effector’s capacity to interact with EBP2. VgpA‐EBP2 interaction led to the re‐localization of c‐Myc to the nucleolus and increased cellular rRNA expression and proliferation of cultured cells. The VgpA‐EBP2 interaction elevated EBP2’s affinity for c‐Myc and prolonged the oncoprotein’s half‐life. Studies in infant rabbits demonstrated that VgpA is translocated into intestinal epithelial cells, where it interacts with EBP2 and leads to nucleolar re‐localization of c‐Myc. Moreover, the in vivo VgpA‐EBP2 interaction during infection led to proliferation of intestinal cells and heightened V. parahaemolyticus’ colonization and virulence. These observations suggest that direct effector stimulation of a c‐Myc controlled host cell growth program can contribute to pathogenesis.  相似文献   

6.
ObjectivesMitophagy is considered to be a key mechanism in the pathogenesis of intestinal ischaemic reperfusion (IR) injury. NOD‐like receptor X1 (NLRX1) is located in the mitochondria and is highly expressed in the intestine, and is known to modulate ROS production, mitochondrial damage, autophagy and apoptosis. However, the function of NLRX1 in intestinal IR injury is unclear.Materials and methodsNLRX1 in rats with IR injury or in IEC‐6 cells with hypoxia reoxygenation (HR) injury were measured by Western blotting, real‐time PCR and immunohistochemistry. The function of NLRX1‐FUNDC1‐NIPSNAP1/NIPSNAP2 axis in mitochondrial homeostasis and cell apoptosis were assessed in vitro.ResultsNLRX1 is significantly downregulated following intestinal IR injury. In vivo studies showed that rats overexpressing NLRX1 exhibited resistance against intestinal IR injury and mitochondrial dysfunction. These beneficial effects of NLRX1 overexpression were dependent on mitophagy activation. Functional studies showed that HR injury reduced NLRX1 expression, which promoted phosphorylation of FUN14 domain‐containing 1 (FUNDC1). Based on immunoprecipitation studies, it was evident that phosphorylated FUNDC1 could not interact with the mitophagy signalling proteins NIPSNAP1 and NIPSNAP2 on the outer membrane of damaged mitochondria, which failed to launch the mitophagy process, resulting in the accumulation of damaged mitochondria and epithelial apoptosis.ConclusionsNLRX1 regulates mitophagy via FUNDC1‐NIPSNAP1/NIPSNAP2 signalling pathway. Thus, this study provides a potential target for the development of a therapeutic strategy for intestinal IR injury.  相似文献   

7.
The binding of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein to the angiotensin‐converting enzyme 2 (ACE2) receptor expressed on the host cells is a critical initial step for viral infection. This interaction is blocked through competitive inhibition by soluble ACE2 protein. Therefore, developing high‐affinity and cost‐effective ACE2 mimetic ligands that disrupt this protein–protein interaction is a promising strategy for viral diagnostics and therapy. We employed human and plant defensins, a class of small (2–5 kDa) and highly stable proteins containing solvent‐exposed alpha‐helix, conformationally constrained by two disulfide bonds. Therefore, we engineered the amino acid residues on the constrained alpha‐helix of defensins to mimic the critical residues on the ACE2 helix 1 that interact with the SARS‐CoV‐2 spike protein. The engineered proteins (h‐deface2, p‐deface2, and p‐deface2‐MUT) were soluble and purified to homogeneity with a high yield from a bacterial expression system. The proteins demonstrated exceptional thermostability (Tm 70.7°C), high‐affinity binding to the spike protein with apparent K d values of 54.4 ± 11.3, 33.5 ± 8.2, and 14.4 ± 3.5 nM for h‐deface2, p‐deface2, and p‐deface2‐MUT, respectively, and were used in a diagnostic assay that detected SARS‐CoV‐2 neutralizing antibodies. This work addresses the challenge of developing helical ACE2 mimetics by demonstrating that defensins provide promising scaffolds to engineer alpha‐helices in a constrained form for designing of high‐affinity ligands.  相似文献   

8.
Obesity is associated with lipid droplet (LD) accumulation, dysregulated lipolysis and chronic inflammation. Previously, the caspase recruitment domain‐containing protein 9 (CARD9) has been identified as a potential contributor to obesity‐associated abnormalities including cardiac dysfunction. In the current study, we explored a positive feedback signalling cycle of dysregulated lipolysis, CARD9‐associated inflammation, impaired lipophagy and excessive LD accumulation in sustaining the chronic inflammation associated with obesity. C57BL/6 WT and CARD9−/− mice were fed with normal diet (ND, 12% fat) or a high fat diet (HFD, 45% fat) for 5 months. Staining of LDs from peritoneal macrophages (PMs) revealed a significant increase in the number of cells with LD and the number of LD per cell in the HFD‐fed WT but not CARD9−/− obese mice. Rather, CARD9 KO significantly increased the mean LD size. WT obese mice showed down regulation of lipolytic proteins with increased diacylglycerol (DAG) content, and CARD9 KO normalized DAG with restored lipolytic protein expression. The build‐up of DAG in the WT obese mice is further associated with activation of PKCδ, NF‐κB and p38 MAPK inflammatory signalling in a CARDD9‐dependent manner. Inhibition of adipose triglyceride lipase (ATGL) by Atglistatin (Atg) resulted in similar effects as in CARD9−/− mice. Interestingly, CARD9 KO and Atg treatment enhanced lipophagy. In conclusion, HFD feeding likely initiated a positive feedback signalling loop from dysregulated lipolysis, CARD9‐dependent inflammation, impaired lipophagy, to excessive LD accumulation and sustained inflammation. CARD9 KO and Atg treatment protected against the chronic inflammation by interrupting this feedforward cycle.  相似文献   

9.
Ferroptosis is an iron‐dependent form of non‐apoptotic cell death implicated in liver, brain, kidney, and heart pathology. How ferroptosis is regulated remains poorly understood. Here, we show that PPARα suppresses ferroptosis by promoting the expression of glutathione peroxidase 4 (Gpx4) and by inhibiting the expression of the plasma iron carrier TRF. PPARα directly induces Gpx4 expression by binding to a PPRE element within intron 3. PPARα knockout mice develop more severe iron accumulation and ferroptosis in the liver when fed a high‐iron diet than wild‐type mice. Ferrous iron (Fe2+) triggers ferroptosis via Fenton reactions and ROS accumulation. We further find that a rhodamine‐based "turn‐on" fluorescent probe(probe1) is suitable for the in vivo detection of Fe2+. Probe1 displays high selectivity towards Fe2+, and exhibits a stable response for Fe2+ with a concentration of 20 μM in tissue. Our data thus show that PPARα activation alleviates iron overload‐induced ferroptosis in mouse livers through Gpx4 and TRF, suggesting that PPARα may be a promising therapeutic target for drug discovery in ferroptosis‐related tissue injuries. Moreover, we identified a fluorescent probe that specifically labels ferrous ions and can be used to monitor Fe2+ in vivo.  相似文献   

10.
The C‐terminal domain of Bacillus cereus hemolysin II (HlyIIC), stabilizes the trans‐membrane‐pore formed by the HlyII toxin and may aid in target cell recognition. Initial efforts to determine the NMR structure of HlyIIC were hampered by cis/trans isomerization about the single proline at position 405 that leads to doubling of NMR resonances. We used the mutant P405M‐HlyIIC that eliminates the cis proline to determine the NMR structure of the domain, which revealed a novel fold. Here, we extend earlier studies to the NMR structure determination of the cis and trans states of WT‐HlyIIC that exist simultaneously in solution. The primary structural differences between the cis and trans states are in the loop that contains P405, and structurally adjacent loops. Thermodynamic linkage analysis shows that at 25 C the cis proline, which already has a large fraction of 20% in the unfolded protein, increases to 50% in the folded state due to coupling with the global stability of the domain. The P405M or P405A substitutions eliminate heterogeneity due to proline isomerization but lead to the formation of a new dimeric species. The NMR structure of the dimer shows that it is formed through domain‐swapping of strand β5, the last segment of secondary structure following P405. The presence of P405 in WT‐HlyIIC strongly disfavors the dimer compared to the P405M‐HlyIIC or P405A‐HlyIIC mutants. The WT proline may thus act as a “gatekeeper,” warding off aggregative misfolding.  相似文献   

11.
The type I interferon (IFN‐I, IFN‐α/β)‐mediated immune response is the first line of host defense against invading viruses. IFN‐α/β binds to IFN‐α/β receptors (IFNARs) and triggers the expression of IFN‐stimulated genes (ISGs). Thus, stabilization of IFNARs is important for prolonging antiviral activity. Here, we report the induction of an RNA‐binding motif‐containing protein, RBM47, upon viral infection or interferon stimulation. Using multiple virus infection models, we demonstrate that RBM47 has broad‐spectrum antiviral activity in vitro and in vivo. RBM47 has no noticeable impact on IFN production, but significantly activates the IFN‐stimulated response element (ISRE) and enhances the expression of interferon‐stimulated genes (ISGs). Mechanistically, RBM47 binds to the 3''UTR of IFNAR1 mRNA, increases mRNA stability, and retards the degradation of IFNAR1. In summary, this study suggests that RBM47 is an interferon‐inducible RNA‐binding protein that plays an essential role in enhancing host IFN downstream signaling.  相似文献   

12.
Aging is an important risk factor for cardiovascular diseases, and aging‐related cardiac dysfunction serves as a major determinant of morbidity and mortality in elderly populations. Our previous study has identified fibronectin type III domain‐containing 5 (FNDC5) and its cleaved form, irisin, as the cardioprotectant against doxorubicin‐induced cardiomyopathy. Herein, aging or matched young mice were overexpressed with FNDC5 by adeno‐associated virus serotype 9 (AAV9) vectors, or subcutaneously infused with irisin to uncover the role of FNDC5 in aging‐related cardiac dysfunction. To verify the involvement of nucleotide‐binding oligomerization domain‐like receptor with a pyrin domain 3 (NLRP3) and AMP‐activated protein kinase α (AMPKα), Nlrp3 or Ampkα2 global knockout mice were used. Besides, young mice were injected with AAV9‐FNDC5 and maintained for 12 months to determine the preventive effect of FNDC5. Moreover, neonatal rat cardiomyocytes were stimulated with tumor necrosis factor‐α (TNF‐α) to examine the role of FNDC5 in vitro. We found that FNDC5 was downregulated in aging hearts. Cardiac‐specific overexpression of FNDC5 or irisin infusion significantly suppressed NLRP3 inflammasome and cardiac inflammation, thereby attenuating aging‐related cardiac remodeling and dysfunction. In addition, irisin treatment also inhibited cellular senescence in TNF‐α‐stimulated cardiomyocytes in vitro. Mechanistically, FNDC5 activated AMPKα through blocking the lysosomal degradation of glucagon‐like peptide‐1 receptor. More importantly, FNDC5 gene transfer in early life could delay the onset of cardiac dysfunction during aging process. We prove that FNDC5 improves aging‐related cardiac dysfunction by activating AMPKα, and it might be a promising therapeutic target to support cardiovascular health in elderly populations.  相似文献   

13.
14.
The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS‐CoV‐2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS‐CoV‐2 and SARS‐CoV share an otherwise non‐conserved part of non‐structural protein 3 (Nsp3), therefore named as “SARS‐unique domain” (SUD). We previously found a yeast‐2‐hybrid screen interaction of the SARS‐CoV SUD with human poly(A)‐binding protein (PABP)‐interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS‐CoV SUD:Paip1 interaction by size‐exclusion chromatography, split‐yellow fluorescent protein, and co‐immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS‐CoV‐2 and Paip1. The three‐dimensional structure of the N‐terminal domain of SARS‐CoV SUD (“macrodomain II”, Mac2) in complex with the middle domain of Paip1, determined by X‐ray crystallography and small‐angle X‐ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC‐SARS‐CoV replicon‐transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS‐CoV and SARS‐CoV‐2.  相似文献   

15.
ObjectivesEvidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti‐fibrotic effect of sorafenib.Materials and MethodsThe effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4. In vitro, Fer‐1 and DFO were used to block ferroptosis and then explored the anti‐fibrotic effect of sorafenib by detecting α‐SMA, COL1α1 and fibronectin proteins. Finally, HIF‐1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway.ResultsSorafenib attenuated liver injury and ECM accumulation in CCl4‐induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib‐treated HSC‐T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib‐elicited HSC ferroptosis and ECM reduction were abrogated by Fer‐1 and DFO. Additionally, both HIF‐1α and SLC7A11 proteins were reduced in sorafenib‐treated HSC‐T6 cells. SLC7A11 was positively regulated by HIF‐1α, inactivation of HIF‐1α/SLC7A11 pathway was required for sorafenib‐induced HSC ferroptosis, and elevation of HIF‐1α could inhibit ferroptosis, ultimately limited the anti‐fibrotic effect.ConclusionsSorafenib triggers HSC ferroptosis via HIF‐1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.  相似文献   

16.
The piRNA amplification pathway in Bombyx is operated by Ago3 and Siwi in their piRISC form. The DEAD‐box protein, Vasa, facilitates Ago3‐piRISC production by liberating cleaved RNAs from Siwi‐piRISC in an ATP hydrolysis‐dependent manner. However, the Vasa‐like factor facilitating Siwi‐piRISC production along this pathway remains unknown. Here, we identify DEAD‐box polypeptide 43 (DDX43) as the Vasa‐like protein functioning in Siwi‐piRISC production. DDX43 belongs to the helicase superfamily II along with Vasa, and it contains a similar helicase core. DDX43 also contains a K‐homology (KH) domain, a prevalent RNA‐binding domain, within its N‐terminal region. Biochemical analyses show that the helicase core is responsible for Ago3‐piRISC interaction and ATP hydrolysis, while the KH domain enhances the ATPase activity of the helicase core. This enhancement is independent of the RNA‐binding activity of the KH domain. For maximal DDX43 RNA‐binding activity, both the KH domain and helicase core are required. This study not only provides new insight into the piRNA amplification mechanism but also reveals unique collaborations between the two domains supporting DDX43 function within the pathway.  相似文献   

17.
The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH‐dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC‐mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2‐Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC‐mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.  相似文献   

18.
19.
Aging‐associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world''s population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging‐associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin‐37 (IL‐37) is a potent anti‐inflammatory cytokine, and we present data demonstrating that IL‐37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin‐37 (IL‐37) in aged mice reduces or prevents aging‐associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL‐37 expression decreases the surface expression of programmed cell death protein 1 (PD‐1) and augments cytokine production from aged T‐cells. Improved T‐cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T‐cells and Lat in CD8+ T‐cells when aged mice were treated with recombinant IL‐37 (rIL‐37) but not control immunoglobin (Control Ig). Importantly, IL‐37‐mediated rejuvenation of aged endogenous T‐cells was also observed in aged chimeric antigen receptor (CAR) T‐cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL‐37 in boosting the function of aged T‐cells and highlight its therapeutic potential to overcome aging‐associated immunosenescence.  相似文献   

20.
Apple valsa canker (AVC), caused by Valsa mali, is one of the most serious diseases of apple trees in eastern Asia, and the most important factor limiting apple production in China. This disease is difficult to control by chemical and agricultural measures, thus biocontrol may constitute a desirable alternative strategy. A Bacillus amyloliquefaciens strain denoted GB1 isolated from ageing cucumber stems, exhibited a strong antagonistic activity against V. mali, inhibiting significantly the germination of conidia and the growth of hyphae. GB1 conidial suspensions (above 106 CFU/ml) applied prior to wound inoculation of apple twigs with V. mali resulted in total inhibition of infection. Strain GB1 colonized xylem and phloem tissues surrounding the wounds made on apple twigs and formed biofilms over them. Results indicate that B. amyloliquefaciens GB1 may be a promising agent for the biocontrol of AVC, and provide new insights into the ability of B. amyloliquefaciens to colonize apple trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号