首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA interference (RNAi)‐based tools are used in multiple organisms to induce antiviral resistance through the sequence‐specific degradation of target RNAs by complementary small RNAs. In plants, highly specific antiviral RNAi‐based tools include artificial microRNAs (amiRNAs) and synthetic trans‐acting small interfering RNAs (syn‐tasiRNAs). syn‐tasiRNAs have emerged as a promising antiviral tool allowing for the multi‐targeting of viral RNAs through the simultaneous expression of several syn‐tasiRNAs from a single precursor. Here, we compared in tomato plants the effects of an amiRNA construct expressing a single amiRNA and a syn‐tasiRNA construct expressing four different syn‐tasiRNAs against Tomato spotted wilt virus (TSWV), an economically important pathogen affecting tomato crops worldwide. Most of the syn‐tasiRNA lines were resistant to TSWV, whereas the majority of the amiRNA lines were susceptible and accumulated viral progenies with mutations in the amiRNA target site. Only the two amiRNA lines with higher amiRNA accumulation were resistant, whereas resistance in syn‐tasiRNA lines was not exclusive of lines with high syn‐tasiRNA accumulation. Collectively, these results suggest that syn‐tasiRNAs induce enhanced antiviral resistance because of the combined silencing effect of each individual syn‐tasiRNA, which minimizes the possibility that the virus simultaneously mutates all different target sites to fully escape each syn‐tasiRNA.  相似文献   

2.
植物抗病毒分子机制   总被引:1,自引:0,他引:1  
在与植物病毒的长期斗争中,植物进化出多种抗病毒机制,其中RNA沉默和R基因介导的病毒抗性是最受人们关注的两种机制.一方面,RNA沉默是植物抵抗病毒侵染的重要手段.植物在病毒侵染过程中可形成病毒来源的双链RNA,经过DCL蛋白的切割、加工形成sRNA,与AGO蛋白结合形成RISC指导病毒RNA的沉默,用于清除病毒.相应地,病毒在与植物的竞争中进化出RNA沉默抑制子,抑制宿主RNA沉默系统以逃避宿主RNA沉默抗病毒反应,增强致病能力.另一方面,植物也进化出R基因介导植物对包括病毒在内的多类病原的抗性.R蛋白直接或间接识别病毒因子,通过一系列的信号转导途径激活植物防御反应,限制病毒的进一步侵染.对植物抗病毒的研究有助于人们对植物抗病分子基础的理解,有重要的科学意义和潜在应用价值.本文综述了植物抗病毒分子机制的重要进展.  相似文献   

3.
4.
5.
6.
Recombination is a frequent phenomenon in RNA viruses whose net result is largely influenced by selective pressures. RNA silencing in plants acts as a defense mechanism against viruses and can be used to engineer virus resistance. Here, we have investigated the influence of RNA silencing as a selective pressure to favor recombinants of PVX-HCT, a chimeric Potato virus X (PVX) vector carrying the helper-component proteinase (HC-Pro) gene from Plum pox virus (PPV). All the plants from two lines expressing a silenced HC-Pro transgene were completely resistant to PPV. However a significant proportion became infected with PVX-HCT. Analysis of viral RNAs accumulating in silenced plants revealed that PVX-HCT escaped silencing-based resistance by removal of the HC-Pro sequences that represented preferential targets for transgene-promoted silencing. The virus vector also tended to lose the HC-Pro insert when infecting transgenic plants containing a nonsilenced HC-Pro transgene or wild-type (wt) Nicotiana benthamiana plants. Nevertheless, loss of HC-Pro sequences was faster in nonsilenced transgenic plants than in wt plants, suggesting the transgene plays a role in promoting a higher selective pressure in favor of recombinant virus versions. These results indicate that the outcome of recombination processes depends on the strength of selection pressures applied to the virus.  相似文献   

7.
Zhu H  Duan CG  Hou WN  Du QS  Lv DQ  Fang RX  Guo HS 《Journal of virology》2011,85(24):13384-13397
RNA silencing provides protection against RNA viruses by targeting both the helper virus and its satellite RNA (satRNA). Virus-derived small interfering RNAs (vsiRNAs) bound with Argonaute (AGO) proteins are presumed participants in the silencing process. Here, we show that a vsiRNA targeted to virus RNAs triggers the host RNA-dependent RNA polymerase 6 (RDR6)-mediated degradation of viral RNAs. We confirmed that satRNA-derived small interfering RNAs (satsiRNAs) could be associated with different AGO proteins in planta. The most frequently cloned satsiRNA, satsiR-12, was predicted to imperfectly match to Cucumber mosaic virus (CMV) RNAs in the upstream area of the 3' untranslated region (3' UTR). Moreover, an artificial satsiR-12 (asatsiR-12) mediated cleavage of a green fluorescent protein (GFP) sensor construct harboring the satsiR-12 target site. asatsiR-12 also mediated reduction of viral RNAs in 2b-deficient CMV (CMVΔ2b)-infected Nicotiana benthamiana. The reduction was not observed in CMVΔ2b-infected RDR6i plants, in which RDR6 was silenced. Following infection with 2b-containing CMV, the reduction in viral RNAs was not observed in plants of either genotype, indicating that the asatsiR-12-mediated reduction of viral RNAs in the presence of RDR6 was inhibited by the 2b protein. Our results suggest that satsiR-12 targeting the 3' UTR of CMV RNAs triggered RDR6-dependent antiviral silencing. Competition experiments with wild-type CMV RNAs and anti-satsiR-12 mutant RNA1 in the presence of 2b and satRNA demonstrate the inhibitory effect of the 2b protein on the satsiR-12-related degradation of CMV RNAs, revealing a substantial suppressor function of the 2b protein in native CMV infection. Our data provide evidence for the important biological functions of satsiRNAs in homeostatic interactions among the host, virus, and satRNA in the final outcome of viral infection.  相似文献   

8.
RNA silencing plays an important role in development through the action of micro (mi) RNAs that fine tune the expression of a large portion of the genome. But, in plants and insects, it is also a very important player in innate immune responses, especially in antiviral defense. It is now well established that the RNA silencing machinery targets plant as well as insect viruses. While the genetic basis underlying this defense mechanism in these organisms starts being elucidated, much less is known about the possible antiviral role of RNA silencing in mammals. In order to identify siRNAs coming from viruses in infected human cells, small RNAs from cells infected with RNA viruses, such as hepatitis C virus, yellow fever virus or HIV-1, were cloned and sequenced, but no virus-specific siRNAs could be detected. On the contrary, viral small RNAs were found in cells infected by the DNA virus Epstein-Barr. A closer look at these revealed that they were not siRNAs, but rather resembled miRNAs. This finding indicated that, rather than being targeted by RNA silencing, human DNA viruses seem to have evolved their own miRNAs to modulate the expression of host genes. This primary observation has been extended to other members of the herpesvirus family as well as other DNA viruses such as the polyomavirus SV40. Viral miRNAs have the potential to act both in cis to regulate expression of viral genes, or in trans on host genes. There are good indications for the cis mode of action, but the identification of cellular targets of these small viral regulators is only in its infancy.  相似文献   

9.
10.
11.
Artificial microRNA-mediated virus resistance in plants   总被引:11,自引:1,他引:11       下载免费PDF全文
Qu J  Ye J  Fang R 《Journal of virology》2007,81(12):6690-6699
RNA silencing in plants is a natural defense system against foreign genetic elements including viruses. This natural antiviral mechanism has been adopted to develop virus-resistant plants through expression of virus-derived double-stranded RNAs or hairpin RNAs, which in turn are processed into small interfering RNAs (siRNAs) by the host's RNA silencing machinery. While these virus-specific siRNAs were shown to be a hallmark of the acquired virus resistance, the functionality of another set of the RNA silencing-related small RNAs, microRNAs (miRNAs), in engineering plant virus resistance has not been extensively explored. Here we show that expression of an artificial miRNA, targeting sequences encoding the silencing suppressor 2b of Cucumber mosaic virus (CMV), can efficiently inhibit 2b gene expression and protein suppressor function in transient expression assays and confer on transgenic tobacco plants effective resistance to CMV infection. Moreover, the resistance level conferred by the transgenic miRNA is well correlated to the miRNA expression level. Comparison of the anti-CMV effect of the artificial miRNA to that of a short hairpin RNA-derived small RNA targeting the same site revealed that the miRNA approach is superior to the approach using short hairpin RNA both in transient assays and in transgenic plants. Together, our data demonstrate that expression of virus-specific artificial miRNAs is an effective and predictable new approach to engineering resistance to CMV and, possibly, to other plant viruses as well.  相似文献   

12.
Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria‐derived succinate that accumulated both in the respiratory fluids of virus‐challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus‐triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate‐dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.  相似文献   

13.
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.  相似文献   

14.
RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus infected Drosophila. Furthermore, we demonstrate that the Nora virus VP1 protein contains RNAi suppressive activity in vitro and in vivo that enhances pathogenicity of recombinant Sindbis virus in an RNAi dependent manner. Nora virus VP1 and the viral suppressor of RNAi of Cricket paralysis virus (1A) antagonized Argonaute-2 (AGO2) Slicer activity of RNA induced silencing complexes pre-loaded with a methylated single-stranded guide strand. The convergent evolution of AGO2 suppression in two unrelated insect RNA viruses highlights the importance of AGO2 in antiviral defense.  相似文献   

15.
16.
Eukaryotes employ RNA silencing as an innate defense system against invading viruses. Dicer proteins play the most crucial role in initiating this antiviral pathway as they recognize and process incoming viral nucleic acids into small interfering RNAs. Generally, 2 successive infection stages constitute viral infection in plants. First, the virus multiplies in initially infected cells or organs after viral transmission and then the virus subsequently spreads systemically through the vasculature to distal plant tissues or organs. Thus, antiviral silencing in plants must cope with both local and systemic invasion of viruses. In a recent study using 2 sets of different experiments, we clearly demonstrated the differential requirement for Dicer-like 4 (DCL4) and DCL2 proteins in the inhibition of intracellular and systemic infection by potato virus X in Arabidopsis thaliana. Taken together with the results of other studies, here we further discuss the functional specificity of DCL proteins in the antiviral silencing pathway.  相似文献   

17.
Expression of double-stranded RNA (dsRNA) homologous to virus sequences can effectively interfere with RNA virus infection in plant cells by triggering RNA silencing. Here we applied this approach against a DNA virus, African cassava mosaic virus (ACMV), in its natural host cassava. Transgenic cassava plants were developed to express small interfering RNAs (siRNA) from a CaMV 35S promoter-controlled, intron-containing dsRNA cognate to the common region-containing bidirectional promoter of ACMV DNA-A. In two of three independent transgenic lines, accelerated plant recovery from ACMV-NOg infection was observed, which correlates with the presence of transgene-derived siRNAs 21–24 nt in length. Overall, cassava mosaic disease symptoms were dramatically attenuated in these two lines and less viral DNA accumulation was detected in their leaves than in those of wild-type plants. In a transient replication assay using leaf disks from the two transgenic lines, strongly reduced accumulation of viral single-stranded DNA was observed. Our study suggests that a natural RNA silencing mechanism targeting DNA viruses through production of virus-derived siRNAs is turned on earlier and more efficiently in transgenic plants expressing dsRNA cognate to the viral promoter and common region.  相似文献   

18.
19.
Viruses often usurp host machineries for their amplification, but it remains unclear if hosts may subvert virus proteins to regulate viral proliferation. Here, we show that the 17K protein, an important virulence factor conserved in barley yellow dwarf viruses (BYDVs) and related poleroviruses, is phosphorylated by host GRIK1‐SnRK1 kinases, with the phosphorylated 17K (P17K) capable of enhancing the abundance of virus‐derived small interfering RNAs (vsiRNAs) and thus antiviral RNAi. Furthermore, P17K interacts with barley small RNA‐degrading nuclease 1 (HvSDN1) and impedes HvSDN1‐catalyzed vsiRNA degradation. Additionally, P17K weakens the HvSDN1‐HvAGO1 interaction, thus hindering HvSDN1 from accessing and degrading HvAGO1‐carried vsiRNAs. Importantly, transgenic expression of 17K phosphomimetics (17K5D), or genome editing of SDN1, generates stable resistance to BYDV through elevating vsiRNA abundance. These data validate a novel mechanism that enhances antiviral RNAi through host subversion of a viral virulence protein to inhibit SDN1‐catalyzed vsiRNA degradation and suggest new ways for engineering BYDV‐resistant crops.  相似文献   

20.
RIG‐I is a key cytosolic sensor that detects RNA viruses through its C‐terminal region and activates the production of antiviral interferons (IFNs) and proinflammatory cytokines. While posttranslational modification has been demonstrated to regulate RIG‐I signaling activity, its significance for the sensing of viral RNAs remains unclear. Here, we first show that the RIG‐I C‐terminal region undergoes deacetylation to regulate its viral RNA‐sensing activity and that the HDAC6‐mediated deacetylation of RIG‐I is critical for viral RNA detection. HDAC6 transiently bound to RIG‐I and removed the lysine 909 acetylation in the presence of viral RNAs, promoting RIG‐I sensing of viral RNAs. Depletion of HDAC6 expression led to impaired antiviral responses against RNA viruses, but not against DNA viruses. Consequently, HDAC6 knockout mice were highly susceptible to RNA virus infections compared to wild‐type mice. These findings underscore the critical role of HDAC6 in the modulation of the RIG‐I‐mediated antiviral sensing pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号