首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerobic glycolysis is a well‐known hallmark of hepatocellular carcinoma (HCC). Hence, targeting the key enzymes of this pathway is considered a novel approach to HCC treatment. The effects of sodium butyrate (NaBu), a sodium salt of the short‐chain fatty acid butyrate, on aerobic glycolysis in HCC cells and the underlying mechanism are unknown. In the present study, data obtained from cell lines with mouse xenograft model revealed that NaBu inhibited aerobic glycolysis in the HCC cells in vivo and in vitro. NaBu induced apoptosis while inhibiting the proliferation of the HCC cells in vivo and in vitro. Furthermore, the compound inhibited the release of lactate and glucose consumption in the HCC cells in vitro and inhibited the production of lactate in vivo. The modulatory effects of NaBu on glycolysis, proliferation and apoptosis were related to its modulation of hexokinase 2 (HK2). NaBu downregulated HK2 expression via c‐myc signalling. The upregulation of glycolysis in the HCC cells induced by sorafenib was impeded by NaBu, thereby enhancing the anti‐HCC effect of sorafenib in vitro and in vivo. Thus, NaBu inhibits the expression of HK2 to downregulate aerobic glycolysis and the proliferation of HCC cells and induces their apoptosis via the c‐myc pathway.  相似文献   

2.
Angiopoietin‐like protein (ANGPTL) 4 is a key factor in the regulation of lipid and glucose metabolism in metabolic diseases. ANGPTL4 is highly expressed in various cancers, but the regulation of energy metabolism in tumours remains to be determined. This study explored the role of ANGPTL4 in aerobic glycolysis, glutamine consumption and fatty acid oxidation in nonsmall cell lung cancer (NSCLC) cells. Two NSCLC cell lines (A549 and H1299) were used to investigate the role of ANGPTL4 in energy metabolism by tracer techniques and with Seahorse XF technology in ANGPTLs4 knockdown cells. RNA microarrays and specific inhibitors were used to identify targets in ANGPTLs4‐overexpressing cells. The results showed that knockdown of ANGPTLs4 could inhibit energy metabolism and proliferation in NSCLC. ANGPTLs4 had no significant effect on glycolysis but affected glutamine consumption and fatty acid oxidation. Knockdown of ANGPTLs4 also significantly inhibited tumour metastasis and energy metabolism in mice and had a weak effect on glycolysis. RNA microarray analysis showed that ANGPTLs4 significantly affected glutaminase (GLS) and carnitine palmitoyl transferase 1 (CPT1). ANGPTLs4‐overexpressing cells were exposed to a glutamine deprivation environment, and cell proliferation and energy metabolism were significantly decreased but still differed from normal NSCLC cells. Treatment of ANGPTLs4‐overexpressing cells with GLS and CPT1 inhibitors simultaneously prevented the regulatory effects on cell proliferation and energy metabolism. ANGPTLs4 could promote glutamine consumption and fatty acid oxidation but not glycolysis or accelerate energy metabolism in NSCLC.  相似文献   

3.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. Although its pathogenesis remains unclear, a number of studies indicate that microglia‐mediated neuroinflammation makes a great contribution to the pathogenesis of PD. Melatonin receptor 1 (MT1) is widely expressed in glia cells and neurons in substantia nigra (SN). Neuronal MT1 is a neuroprotective factor, but it remains largely unknown whether dysfunction of microglial MT1 is involved in the PD pathogenesis. Here, we found that MT1 was reduced in microglia of SN in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced PD mouse model. Microglial MT1 activation dramatically inhibited lipopolysaccharide (LPS)‐induced neuroinflammation, whereas loss of microglial MT1 aggravated it. Metabolic reprogramming of microglia was found to contribute to the anti‐inflammatory effects of MT1 activation. LPS‐induced excessive aerobic glycolysis and impaired oxidative phosphorylation (OXPHOS) could be reversed by microglial MT1 activation. MT1 positively regulated pyruvate dehydrogenase alpha 1 (PDHA1) expression to enhance OXPHOS and suppress aerobic glycolysis. Furthermore, in LPS‐treated microglia, MT1 activation decreased the toxicity of conditioned media to the dopaminergic (DA) cell line MES23.5. Most importantly, the anti‐inflammatory effects of MT1 activation were observed in LPS‐stimulated mouse model. In general, our study demonstrates that MT1 activation inhibits LPS‐induced microglial activation through regulating its metabolic reprogramming, which provides a mechanistic insight for microglial MT1 in anti‐inflammation.  相似文献   

4.
Our knowledge of the coordination of fuel usage in skeletal muscle is incomplete. Whether and how microRNAs are involved in the substrate selection for oxidation is largely unknown. Here we show that mice lacking miR‐183 and miR‐96 have enhanced muscle oxidative phenotype and altered glucose/lipid homeostasis. Moreover, loss of miR‐183 and miR‐96 results in a shift in substrate utilization toward fat relative to carbohydrates in mice. Mechanistically, loss of miR‐183 and miR‐96 suppresses glucose utilization in skeletal muscle by increasing PDHA1 phosphorylation via targeting FoxO1 and PDK4. On the other hand, loss of miR‐183 and miR‐96 promotes fat usage in skeletal muscle by enhancing intramuscular lipolysis via targeting FoxO1 and ATGL. Thus, our study establishes miR‐183 and miR‐96 as master coordinators of fuel selection and metabolic homeostasis owing to their capability of modulating both glucose utilization and fat catabolism. Lastly, we show that loss of miR‐183 and miR‐96 can alleviate obesity and improve glucose metabolism in high‐fat diet‐induced mice, suggesting that miR‐183 and miR‐96 may serve as therapeutic targets for metabolic diseases.  相似文献   

5.
6.
Recent studies have demonstrated that one‐carbon metabolism plays a significant role in cancer development. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme of one‐carbon metabolism, has been reported to be dysregulated in many cancers. However, the specific role and mechanism of MTHFD2 in lung adenocarcinoma (LUAD) still remains unclear. In this study, we evaluated the clinicopathological and prognostic values of MTHFD2 in LUAD patients. We conducted a series of functional experiments in vivo and in vitro to explore novel mechanism of MTHFD2 in LUAD. The results showed that MTHFD2 was significantly up‐regulated in LUAD tissues and predicted poor prognosis of LUAD patients. Knockdown of MTHFD2 dramatically inhibited cell proliferation and migration by blocking the cell cycle and inducing the epithelial‐mesenchymal transition (EMT). In addition, MTHFD2 knockdown suppressed LUAD growth and metastasis in cell‐derived xenografts. Mechanically, we found that MTHFD2 promoted LUAD cell growth and metastasis via AKT/GSK‐3β/β‐catenin signalling. Finally, we identified miR‐30a‐3p as a novel regulator of MTHFD2 in LUAD. Collectively, MTHFD2 plays an oncogenic role in LUAD progression and is a promising target for LUAD diagnosis and therapy.  相似文献   

7.
Background: Lung adenocarcinoma (LUAD), the major subtype of lung cancer, is among the leading cause of cancer-related death worldwide. Energy-related metabolic reprogramming metabolism is a hallmark of cancer shared by numerous cancer types, including LUAD. Nevertheless, the functional pathways and molecular mechanism by which FAM83A-AS1 acts in metabolic reprogramming in lung adenocarcinoma have not been fully elucidated.Methods: We used transwell, wound-healing scratch assay, and metabolic assays to explore the effect of FAM83A-AS1 in LUAD cell lines. Western blotting, Co-IP assays, and ubiquitination assays were used to detect the effects of FAM83A-AS1 on HIF-1α expression, degradation, and its binding to VHL. Moreover, an in vivo subcutaneous tumor formation assay was used to detect the effect of FAM83A-AS1 on LUAD.Results: Herein, we identified FAM83A-AS1 as a metabolism-related lncRNA, which was highly correlated with glycolysis, hypoxia, and OXPHOS pathways in LUAD patients using bioinformatics analysis. In addition, we uncovered that FAM83A-AS1 could promote the migration and invasion of LUAD cells, as well as influence the stemness of LUAD cells in vivo and vitro. Moreover, FAM83A-AS1 was shown to promote glycolysis in LUAD cell lines in vitro and in vivo, and was found to influence the expression of genes related to glucose metabolism. Besides, we revealed that FAM83A-AS1 could affect glycolysis by regulating HIF-1α degradation. Finally, we found that FAM83A-AS1 knockdown could inhibit tumor growth and suppress the expression of HIF-1α and glycolysis-related genes in vivo.Conclusion: Our study demonstrates that FAM83A-AS1 contributes to LUAD proliferation and stemness via the HIF-1α/glycolysis axis, making it a potential biomarker and therapeutic target in LUAD patients.  相似文献   

8.
Lung adenocarcinoma (LUAD) is the most challenging neoplasm to treat in clinical practice. Ankyrin repeat domain 49 protein (ANKRD49) is highly expressed in several carcinomas; however, its pattern of expression and role in LUAD are not known. Tissue microarrays, immunohistochemistry, χ 2 test, Spearman correlation analysis, Kaplan–Meier, log‐rank test, and Cox''s proportional hazard model were used to analyse the clinical cases. The effect of ANKRD49 on the LUAD was investigated using CCK‐8, clonal formation, would healing, transwell assays, and nude mice experiment. Expressions of ANKRD49 and its associated downstream protein molecules were verified by real‐time PCR, Western blot, immunohistochemistry, and/or immunofluorescence analyses. ANKRD49 expression was highly elevated in LUAD. The survival rate and Cox''s modelling analysis indicated that there may be an independent prognostic indicator for LUAD patients. We also found that ANKRD49 promoted the invasion and migration in both in in vitro and in vivo assays, through upregulating matrix metalloproteinase (MMP)‐2 and MMP‐9 activities via the P38/ATF‐2 signalling pathway Our findings suggest that ANKRD49 is a latent biomarker for evaluating LUAD prognosis and promotes the metastasis of A549 cells via upregulation of MMP‐2 and MMP‐9 in a P38/ATF‐2 pathway‐dependent manner.  相似文献   

9.
Diabetic osteoporosis is secondary osteoporosis and a serious complication of diabetes with a high incidence rate and poor prognosis. The specific mechanism of diabetic osteoporosis is unclear, and prevention and treatment options are limited. Recently, melatonin has been found to prevent and treat diabetic osteoporosis. Herein, we investigated the mechanism whereby melatonin inhibits osteoclastogenesis and identified a new target for osteoporosis treatment. We established an in vitro osteoblast–osteoclast co‐culture system as a diabetic osteoporosis model. Osteoclastogenesis was determined using tartrate‐resistant acid phosphatase staining and cathepsin K expression. Real‐time PCR was used to ascertain expression of microRNA mir‐882, targeting Rev‐Erbα. Western blotting was performed to detect the expression of Rev‐Erbα, receptor activator of NF‐kB ligand (RANKL), and osteoprotegerin (OPG), and ELISA was utilized to analyse the secreted form of RANKL. High glucose promoted osteoclastogenesis and elevated the RANKL/OPG ratio in osteoblasts, while melatonin reversed these effects. High glucose inhibited Rev‐Erbα expression, while melatonin promoted its expression. Conversely, high glucose promoted mir‐882 expression, while melatonin inhibited it. We infer that melatonin inhibits RANKL expression in osteoblasts via the mir‐882/Rev‐Erbα axis, thus inhibiting osteoclastogenesis. Our findings provide insights into diabetic osteoporosis and identify a new therapeutic target for osteoporosis.  相似文献   

10.
TP53 mutation is the most widespread mutation in lung adenocarcinoma (LUAD). Meanwhile, p53 (encoded by TP53) has recently been implicated in immune responses. However, it is still unknown whether TP53 mutation remodels the tumour microenvironment to influence tumour progression and prognosis in LUAD. In this study, we developed a 6‐gene immune‐related risk model (IRM) to predict the survival of patients with LUAD in The Cancer Genome Atlas (TCGA) cohort based on TP53 status, and the predictive ability was confirmed in 2 independent cohorts. TP53 mutation led to a decreased immune response in LUAD. Further analysis revealed that patients in the high‐index group had observably lower relative infiltration of memory B cells and regulatory T cells and significantly higher relative infiltration of neutrophils and resting memory CD4+ T cells. Additionally, the IRM index positively correlated with the expression of critical immune checkpoint genes, including PDCD1 (encoding PD‐1) and CD274 (encoding PD‐L1), which was validated in the Nanjing cohort. Furthermore, as an independent prognostic factor, the IRM index was used to establish a nomogram for clinical application. In conclusion, this IRM may serve as a powerful prognostic tool to further optimize LUAD immunotherapy.  相似文献   

11.
DEP domain containing 1(DEPDC1) is involved in the tumorigenesis of a variety of cancers. But its role in tumorigenesis of lung adenocarcinoma (LUAD) is not fully understood. Here, we investigated the role and the underlying mechanisms of DEPDC1 in the development of LUAD. The expression and prognostic values of DEPDC1 in LUAD were analysed by using the data from public databases. Gene enrichment in TCGA LUAD was analysed using GSEA software with the pre‐defined gene sets. Cell proliferation, migration and invasion of A549 cells were examined with colony formation, Transwell and wound healing assays. The function of DEPDC1 in autophagy and RAS‐ERK1/2 signalling was determined with Western blot assay upon DEPDC1 knockdown and/or overexpression in A549, HCC827 and H1993 cells. The results demonstrated that DEPDC1 expression was up‐regulated in LUAD tissues, and its high expression was correlated with unfavourable prognosis. The data also showed that DEPDC1 knockdown impaired proliferation, migration and invasion of A549 cells. Most notably, the results showed that DEPDC1 up‐regulated RAS expression and thus enhanced ERK1/2 activity, through which DEPDC1 could inhibit autophagy. In conclusion, our study revealed that DEPDC1 is up‐regulated in LUAD tissues and plays an oncogenic role in LUAD, and that DEPDC1 inhibits autophagy through the RAS‐ERK1/2 signalling in A549, HCC827 and H1993 cells.  相似文献   

12.
Background: Lung adenocarcinoma (LUAD) is the most frequent histological type of lung cancer, and its incidence has displayed an upward trend in recent years. Nevertheless, little is known regarding effective biomarkers for LUAD.Methods: The robust rank aggregation method was used to mine differentially expressed genes (DEGs) from the gene expression omnibus (GEO) datasets. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to extract hub genes from the protein–protein interaction (PPI) network. The expression of the hub genes was validated using expression profiles from TCGA and Oncomine databases and was verified by real-time quantitative PCR (qRT-PCR). The module and survival analyses of the hub genes were determined using Cytoscape and Kaplan–Meier curves. The function of KIF4A as a hub gene was investigated in LUAD cell lines.Results: The PPI analysis identified seven DEGs including BIRC5, DLGAP5, CENPF, KIF4A, TOP2A, AURKA, and CCNA2, which were significantly upregulated in Oncomine and TCGA LUAD datasets, and were verified by qRT-PCR in our clinical samples. We determined the overall and disease-free survival analysis of the seven hub genes using GEPIA. We further found that CENPF, DLGAP5, and KIF4A expressions were positively correlated with clinical stage. In LUAD cell lines, proliferation and migration were inhibited and apoptosis was promoted by knocking down KIF4A expression.Conclusion: We have identified new DEGs and functional pathways involved in LUAD. KIF4A, as a hub gene, promoted the progression of LUAD and might represent a potential therapeutic target for molecular cancer therapy.  相似文献   

13.
The tripartite motif-containing protein 21 (TRIM21) plays important roles in autophagy and innate immunity. Here, we found that HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5), as an interferon-stimulated gene 15 (ISG15) E3 ligase, catalyzes the ISGylation of TRIM21 at the Lys260 and Lys279 residues. Moreover, IFN-β also induces TRIM21 ISGylation at multiple lysine residues, thereby enhancing its E3 ligase activity for K63-linkage-specific ubiquitination and resulting in increased levels of TRIM21 and p62 K63-linked ubiquitination. The K63-linked ubiquitination of p62 at Lys7 prevents its self-oligomerization and targeting to the autophagosome. Taken together, our study suggests that the ISGylation of TRIM21 plays a vital role in regulating self-oligomerization and localization of p62 in the autophagy induced by IFN-β.Subject terms: Proteins, Autophagy, Innate immunity, Post-translational modifications  相似文献   

14.
ObjectivesBreast cancer‐amplified sequence 3 (BCAS3) was initially found to be amplified in human breast cancer (BRCA); however, there has been little consensus on the functions of BCAS3 in breast tumours.Materials and methodsWe analysed BCAS3 expression in BRCA using bio‐information tools. Affinity purification and mass spectrometry were employed to identify BCAS3‐associated proteins. GST pull‐down and ubiquitination assays were performed to analyse the interaction mechanism between BCAS3/p53 and CUL4A‐RING E3 ubiquitin ligase (CRL4A) complex. BCAS3 was knocked down individually or in combination with p53 in MCF‐7 cells to further explore the biological functions of the BCAS3/p53 axis. The clinical values of BCAS3 for BRCA progression were evaluated via semiquantitative immunohistochemistry (IHC) analysis and Cox regression.ResultsWe reported that the expression level of BCAS3 in BRCA was higher than that in adjacent normal tissues. High BCAS3 expression promoted growth, inhibited apoptosis and conferred chemoresistance in breast cancer cells. Mechanistically, BCAS3 overexpression fostered BRCA cell growth by interacting with the CRL4A complex and promoting ubiquitination and proteasomal degradation of p53. Furthermore, BCAS3 could regulate cell growth, apoptosis and chemoresistance through a p53‐mediated mechanism. Clinically, BCAS3 overexpression was significantly correlated with a malignant phenotype. Moreover, higher expression of BCAS3 correlates with shorter overall survival (OS) in BRCA.ConclusionsThe functional characterization of BCAS3 offers new insights into the oncogenic properties and chemotherapy resistance in breast cancer.  相似文献   

15.
Pyruvate dehydrogenase E1α (PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321), and a PDHA1 mutant mimicking a deacetylated lysine (PDHA1K321R) increases PDH activity, compared to the K321 acetylation mimic (PDHA1K321Q) or wild-type PDHA1. Finally, PDHA1K321Q exhibited a more transformed in vitro cellular phenotype compared to PDHA1K321R. These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyllysine, suggesting that the acetylome, as well as the kinome, links glycolysis to respiration.  相似文献   

16.
Recent studies demonstrate that metabolic disturbance, such as augmented glycolysis, contributes to fibrosis. The molecular regulation of this metabolic perturbation in fibrosis, however, has been elusive. COUP‐TFII (also known as NR2F2) is an important regulator of glucose and lipid metabolism. Its contribution to organ fibrosis is undefined. Here, we found increased COUP‐TFII expression in myofibroblasts in human fibrotic kidneys, lungs, kidney organoids, and mouse kidneys after injury. Genetic ablation of COUP‐TFII in mice resulted in attenuation of injury‐induced kidney fibrosis. A non‐biased proteomic study revealed the suppression of fatty acid oxidation and the enhancement of glycolysis pathways in COUP‐TFII overexpressing fibroblasts. Overexpression of COUP‐TFII in fibroblasts also induced production of alpha‐smooth muscle actin (αSMA) and collagen 1. Knockout of COUP‐TFII decreased glycolysis and collagen 1 levels in fibroblasts. Chip‐qPCR revealed the binding of COUP‐TFII on the promoter of PGC1α. Overexpression of COUP‐TFII reduced the cellular level of PGC1α. Targeting COUP‐TFII serves as a novel treatment approach for mitigating fibrosis in chronic kidney disease and potentially fibrosis in other organs.  相似文献   

17.
The incidence of lung cancer is increasing worldwide. Although great progress in lung cancer treatment has been made, the clinical outcome is still unsatisfactory. Tripartite motif (TRIM)-containing proteins has been shown to be closely related to tumor progression. However, the function of TRIM46 in lung cancer is largely unknown. Here, TRIM46 amplification was found in lung adenocarcinoma (LUAD) tissues and TRIM46 amplification was significantly associated with a poor survival rate. Overexpression of wild type TRIM46 increased the proliferation of LUAD cells and glycolysis, promoted xenografts growth, and enhanced cisplatin (DDP) resistance of LUAD cells via increased ubiquitination of pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) and upregulation of p-AKT. In contrast, overexpression of RING-mutant TRIM46 did not show any effects, suggesting the function of TRIM46 was dependent on the E3 ligase activity. Furthermore, we found that TRIM46 promoted LUAD cell proliferation and DDP resistance by enhancing glycolysis. PHLPP2 overexpression reversed the effects of TRIM46 overexpression. Amplification of TRIM46 also promoted LUAD growth and enhanced its DDP resistance in a patient-derived xenograft (PDX) model. In conclusion, our data highlight the importance of TRIM46/PHLPP2/AKT signaling in lung cancer and provide new insights into therapeutic strategies for lung cancer.Subject terms: Cancer, Biomarkers  相似文献   

18.
19.
MiR‐589‐5p could promote liver cancer, but the specific mechanisms are largely unknown. This study examined the role and mechanisms of miR‐589‐5p in liver cancer. The expressions of miR‐589‐5p, METTL3 and m6A in liver cancers were determined by RT‐qPCR. The relationship between miR‐589‐5p and METTL3‐mediated m6A methylation was examined by m6A RNA immunoprecipitation. After transfection, the viability, migration, invasion and expressions of METTL3 and miR‐589‐5p in liver cancer cells were detected by CCK‐8, wound‐healing, transwell and RT‐qPCR. After the xenograft tumour was established in mice, the tumour volume was determined and the expressions of METTL3, miR‐589‐5p, MMP‐2, TIMP‐2, E‐cadherin, N‐cadherin and Vimentin in tumour tissue were detected by RT‐qPCR and Western blotting. In vitro study showed that miR‐589‐5p and METTL3 were highly expressed in liver cancer. METTL3 was positively correlated with miR‐589‐5p. METTL3 up‐regulated the expression of miR‐589‐5p and promoted the maturation of miR‐589‐5p. Overexpressed miR‐589‐5p and METTL3 promoted the viability, migration and invasion of liver cancer cells, while the effects of silencing miR‐589‐5p and METTL3 on the cells were the opposite. The effects of METTL3 overexpression and silencing were reversed by miR‐589‐5p inhibitor and mimic, respectively. In vivo study showed that METLL3 silencing inhibited the growth of xenograft tumour and the expressions of METTL3, MMP‐2, N‐cadherin and Vimentin, promoted the expressions of TIMP‐2 and E‐cadherin, while miR‐589‐5p mimic caused the opposite results and further reversed the effects of METLL3 silencing. In summary, this study found that METTL3‐mediated maturation of miR‐589‐5p promoted the malignant development of liver cancer.  相似文献   

20.
Gastric cancer is a major cause of mortality worldwide. The glutamate/aspartate transporter SLC1A3 has been implicated in tumour metabolism and progression, but the roles of SLC1A3 in gastric cancer remain unclear. We used bioinformatics approaches to analyse the expression of SLC1A3 and its role in gastric cancer. The expression levels of SLC1A3 were examined using RT‐qPCR and Western bolting. SLC1A3 overexpressing and knock‐down cell lines were constructed, and the cell viability was evaluated. Glucose consumption, lactate excretion and ATP levels were determined. The roles of SLC1A3 in tumour growth were evaluated using a xenograft tumour growth model. SLC1A3 was found to be overexpressed in gastric cancer, and this overexpression was associated with poor prognosis. In vitro and in vivo assays showed that SLC1A3 affected glucose metabolism and promoted gastric cancer growth. GSEA analysis suggested that SLC1A3 was positively associated with the up‐regulation of the PI3K/AKT pathway. SLC1A3 overexpression activated the PI3K/AKT pathway and up‐regulated GLUT1, HK II and LDHA expression. The PI3K/AKT inhibitor LY294002 prevented SLC1A3‐induced glucose metabolism and cell proliferation. Our findings indicate that SLC1A3 promotes gastric cancer progression via the PI3K/AKT signalling pathway. SLC1A3 is therefore a potential therapeutic target in gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号