首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
MicroRNAs (miRNAs) are small, short noncoding RNAs that modulate the expression of numerous genes by targeting their mRNA. Numerous abnormal miRNA expression patterns are observed in various human malignancies, and certain miRNAs can act as oncogenes or tumor suppressors. Astrocytoma, the most common neuroepithelial cancer, represents the majority of malignant brain tumors in humans. In our previous studies, we found that the downregulation of miR-181b-5p in astrocytomas is associated with a poor prognosis. The aim of the present study was to investigate the functional role of miR-181b-5p and its possible target genes. miR-181b-5p was significantly downregulated in astrocytoma specimens, and the reduced expression of miR-181b-5p was inversely correlated with the clinical stage. The ectopic expression of miR-181b-5p inhibited proliferation, migration and invasion and induced apoptosis in astrocytoma cancer cells in vitro. The NOVA1 (neuro-oncological ventral antigen 1) gene was further identified as a novel direct target of miR-181b-5p. Specifically, miR-181b-5p bound directly to the 3''-untranslated region (UTR) of NOVA1 and suppressed its expression. In clinical specimens, NOVA1 was overexpressed, and its protein levels were inversely correlated with miR-181b-5p expression. Furthermore, the changing level of NOVA1 was significantly associated with a poor survival outcome. Similar to restoring miR-181b-5p expression, downregulating NOVA1 inhibited cell growth, migration and invasion. Overexpression of NOVA1 reversed the inhibitory effects of miR-181b-5p. Our results indicate that miR-181b-5p is a tumor suppressor in astrocytoma that inhibits tumor progression by targeting NOVA1. These findings suggest that miR-181b-5p may serve as a novel therapeutic target for astrocytoma.  相似文献   

6.
The E3 ligase HERC4 is overexpressed in human breast cancer and its expression levels correlated with the prognosis of breast cancer patients. However, the roles of HERC4 in mammary tumorigenesis remain unclear. Here we demonstrate that the knockdown of HERC4 in human breast cancer cells dramatically suppressed their proliferation, survival, migration, and tumor growth in vivo, while the overexpression of HERC4 promoted their aggressive tumorigenic activities. HERC4 is a new E3 ligase for the tumor suppressor LATS1 and destabilizes LATS1 by promoting the ubiquitination of LATS1. miRNA-136-5p and miRNA-1285-5p, expression of which is decreased in human breast cancers and is inversely correlated with the prognosis of breast cancer patients, are directly involved in suppressing the expression of HERC4. In summary, we discover a miRNA-HERC4-LATS1 pathway that plays important roles in the pathogenesis of breast cancer and represents new therapeutic targets for human breast cancer.  相似文献   

7.
The poor prognosis of ovarian cancer is mainly due to metastasis, and the specific mechanism underlying ovarian cancer metastasis is not clear. Ascites-derived exosomes (ADEs) play an important role in the progression of ovarian cancer, but the mechanism is unknown. Here, we found that ADEs promoted ovarian cancer metastasis not only in vitro but also in vivo. This promotive function was based on epithelial–mesenchymal transition (EMT) of ovarian cancer cells. Bioinformatics analysis of RNA sequencing microarray data indicated that miR-6780b-5p may be the key microRNA (miRNA) in ADEs that facilitates cancer metastasis. Moreover, the expression of exosomal miR-6780b-5p correlated with tumor metastasis in ovarian cancer patients. miR-6780b-5p overexpression promoted and miR-6780b-5p downregulation suppressed EMT of ovarian cancer cells. These results suggest that ADEs transfer miR-6780b-5p to ovarian cancer cells, promoting EMT and finally facilitating ovarian cancer metastasis.Subject terms: Cancer microenvironment, Ovarian cancer  相似文献   

8.
9.
It has long been observed that tamoxifen sensitivity varies among breast cancer patients. Further, ethnic differences of tamoxifen therapy between Caucasian and African American have also been reported. Since most studies have been focused on Caucasian people, we sought to comprehensively evaluate genetic variants related to tamoxifen therapy in African-derived samples. An integrative “omic” approach developed by our group was used to investigate relationships among endoxifen (an active metabolite of tamoxifen) sensitivity, SNP genotype, mRNA and microRNA expressions in 58 HapMap YRI lymphoblastoid cell lines. We identified 50 SNPs that associate with cellular sensitivity to endoxifen through their effects on 34 genes and 30 microRNA expression. Some of these findings are shared in both Caucasian and African samples, while others are unique in the African samples. Among gene/microRNA that were identified in both ethnic groups, the expression of TRAF1 is also correlated with tamoxifen sensitivity in a collection of 44 breast cancer cell lines. Further, knock-down TRAF1 and over-expression of hsa-let-7i confirmed the roles of hsa-let-7i and TRAF1 in increasing tamoxifen sensitivity in the ZR-75-1 breast cancer cell line. Our integrative omic analysis facilitated the discovery of pharmacogenomic biomarkers that potentially affect tamoxifen sensitivity.  相似文献   

10.
ObjectiveMounting evidence demonstrates that long non-coding RNA (lncRNA) is dysregulated in breast cancers. This study was designed to detect the influences and regulatory mechanism of lncRNA PDCD4-AS1 in triple-negative breast cancer (TNBC).MethodsqRT-PCR and Western blot were utilized to investigate the expression levels of PDCD4-AS1, miR-10b-5p and IQGAP2 in TNBC tissues and cells. Online software and luciferase reporter gene system were employed to testify the interactions among these molecules. Loss and gain of function of PDCD4-AS1, miR-10b-5p or IQGAP2 were performed before MTT and colony formation assay, TUNEL staining in addition to Transwell and scratch assays were applied to measure the cell biological functions.ResultsIn this work, PDCD4-AS1 and IQGAP2 were lowly expressed while miR-10b-5p was strongly expressed in TNBC tissues and cells. PDCD4-AS1 or IQGAP2 overexpression effectively attenuated TNBC cell proliferation, migration and invasion, and increased the apoptosis rate, while this effect was abandoned in response to miR-10b-5p mimics transfection. miR-10b-5p bound to IQGAP2 and acted as a downstream target of PDCD4-AS1.ConclusionOur findings identified lncRNA PDCD4-AS1 as a tumor suppressor in TNBC by regulating IQGAP2 expression via miR-10b-5p, giving a novel insight into the regulatory mechanism of PDCD4-AS1 in the pathogenesis of TNBC.  相似文献   

11.
DNA glycosylases UNG and SMUG1 excise uracil from DNA and belong to the same protein superfamily. Vertebrates contain both SMUG1 and UNG, but their distinct roles in base excision repair (BER) of deaminated cytosine (U:G) are still not fully defined. Here we have examined the ability of human SMUG1 and UNG2 (nuclear UNG) to initiate and coordinate repair of U:G mismatches. When expressed in Escherichia coli cells, human UNG2 initiates complete repair of deaminated cytosine, while SMUG1 inhibits cell proliferation. In vitro, we show that SMUG1 binds tightly to AP-sites and inhibits AP-site cleavage by AP-endonucleases. Furthermore, a specific motif important for the AP-site product binding has been identified. Mutations in this motif increase catalytic turnover due to reduced product binding. In contrast, the highly efficient UNG2 lacks product-binding capacity and stimulates AP-site cleavage by APE1, facilitating the two first steps in BER. In summary, this work reveals that SMUG1 and UNG2 coordinate the initial steps of BER by distinct mechanisms. UNG2 is apparently adapted to rapid and highly coordinated repair of uracil (U:G and U:A) in replicating DNA, while the less efficient SMUG1 may be more important in repair of deaminated cytosine (U:G) in non-replicating chromatin.  相似文献   

12.
Drug resistance in colorectal cancer is a great challenge in clinic. Elucidating the deep mechanism underlying drug resistance will bring much benefit to diagnosis, therapy and prognosis in patients with colorectal cancer. In this study, miR-29b-3p was shown to be involved in resistance to 5-fluorouracil (5-FU)-induced necroptosis of colorectal cancer. Further, miR-29b-3p was shown to target a regulatory subunit of necroptosis TRAF5. Rescue of TRAF5 could reverse the effect of miR-29b-3p on 5-FU-induced necroptosis, which was consistent with the role of necrostatin-1 (a specific necroptosis inhibitor). Then it was demonstrated that miR-29b-3p was positively correlated with chemoresistance in colorectal cancer while TRAF5 negatively. In conclusion, it is deduced that miR-29b-3p/TRAF5 signaling axis plays critical role in drug resistance in chemotherapy for colorectal cancer patients by regulating necroptosis. The findings in this study provide us a new target for interfere therapy in colorectal cancer.Key words: Colorectal cancer, miR-29b-3p, TRAF5, necroptosis, 5-fluorouracil resistance  相似文献   

13.
Breast cancer is a major cause of cancer-related death in women worldwide. Non-coding RNAs are a potential resource to be used as an early diagnostic biomarker for breast cancer. Circular RNAs are a recently identified group of non-coding RNA with a significant role in disease development with potential utility in diagnosis/prognosis in cancer. In this study, we identified 26 differentially expressed circular RNAs associated with early-stage breast cancer. RNA sequencing and two circRNA detection tools (find_circ and DCC) were used to understand the circRNA expression signature in breast cancer. We identified hsa_circ_0006743 (circJMJD1C) and hsa_circ_0002496 (circAPPBP1) to be significantly up-regulated in early-stage breast cancer tissues. Co-expression analysis identified four pairs of circRNA-miRNA (hsa_circ_0023990 : hsa-miR-548b-3p, hsa_circ_0016601 : hsa_miR-1246, hsa_circ_0001946 : hsa-miR-1299 and hsa_circ_0000117:hsa-miR-502-5p) having potential interaction. The miRNA target prediction and network analysis revealed mRNA possibly regulated by circRNAs. We have thus identified circRNAs of diagnostic implications in breast cancer and also observed circRNA-miRNA interaction which could be involved in breast cancer development.  相似文献   

14.
A better understanding of breast cancer pathogenesis would contribute to improved diagnosis and therapy and potentially decreased mortality rates. Here, we found that the MORC family CW-type zinc finger 4 (MORC4) overexpression in breast cancer tissues is associated with poor survival, and the short-interfering RNA knockdown of MORC4 suppresses the growth of breast cancer cells by promoting apoptosis. To investigate the mechanisms associated with MORC4 upregulation, microRNAs potentially targeting MORC4 were analyzed, with miR-193b-3p identified as the regulator and a negative correlation between miR-193b-3p and MORC4 expression determined in both breast cancer cell lines and tissues. Further analysis verified that MORC4 silencing did not affect miR-193b-3p expression, although altered miR-193b-3p expression attenuated MORC4 protein levels. Moreover, dual-luciferase reporter assays verified miR-193b-3p binding to the 3′ untranslated region of MORC4. Furthermore, restoration of miR-193b-3p expression in breast cancer cells led to decreased growth and activation of apoptosis, which was consistent with results associated with MORC4 silencing in breast cancer cells. These results identified MORC4 as differentially expressed in breast cancer cells and tissues and its downregulation by miR-193b-3p, as well as its roles in regulating the growth of breast cancer cells via regulation of apoptosis. Our findings offer novel insights into potential mechanisms associated with breast cancer pathogenesis.  相似文献   

15.
Jab1 overexpression correlates with poor prognosis in breast cancer patients, suggestting that targeting the aberrant Jab1 signaling in breast cancer could be a promising strategy. In the current study, we investigate the hypothesis that Jab1 positively regulates the DNA repair protein Rad51 and, in turn, the cellular response of breast cancer to chemotherapy with adriamycin and cisplatin. High-throughput mRNA sequencing (RNA-Seq) data from 113 normal and 1109 tumor tissues (obtained from TCGA) were integrated to our analysis to give further support to our findings. We found that Jab1 was overexpressed in adriamycin-resistant breast cancer cell MCF-7R compared with parental MCF-7 cells, and that knockdown of Jab1 expression conferred cellular sensitivity to adriamycin and cisplatin both in vivo and in vitro. By contrast, exogenous Jab1 expression enhanced the resistance of breast cancer cells to adriamycin and cisplatin. Moreover, we discovered that Jab1 positively regulated Rad51 in p53-dependent manner and that overexpression of Rad51 conferred cellular resistance to adriamycin and cisplatin in Jab1-deficient cells. Data from TCGA further validated an correlation between Jab1 and Rad51 in breast cancer, and elevated Jab1 and Rad51 associated with poor survival in breast cancer patients. Our findings indicate that Jab1 association with Rad51 plays an important role in cellular response to chemotherapy in breast cancer.  相似文献   

16.
17.
Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system. Due to the lack of early symptoms, diagnosis of RCC usually occurs at late stages or after cancer metastasis leading to poor prognosis. Therefore, it is crucial to study early molecular mechanisms and biomarkers. Previous studies have suggested that microRNAs are involved in RCC initiation and development, making them a good candidate for early diagnosis and therapy. MiR146b-5P plays important roles in the progression of multiple cancers including thyroid cancer, pancreatic cancer, cervical cancer. However, it is not clear whether and how miR146b-5P is involved in RCC. In this study, we aimed to investigate the function of miR146b-5P in RCC. We examined the expression levels of miR146b-5p in renal cancer tissue and cell lines. We also explored the effects of blocking miR146b-5p in renal tumor growth and inflammatory signaling. Finally, we determined if miR146b-5p regulates tumorigenesis through TRAF6. We found that miR146b-5p levels were significantly increased in renal cancer tissue and renal cancer cells. Blocking miR146b-5p suppressed renal tumor growth and enhanced inflammatory response through increased TRAF6 expression. These effects were eliminated in TRAF6 knockout mice. Our results suggest that enhanced miR146b-5p expression may be a biomarker for RCC and modulating miR146b-5p and TRAF6 levels represent a potential therapeutic strategy for RCC.  相似文献   

18.
To investigate the prognostic significance of Survivin and Nectin-4 expression in breast carcinomas. Imprint smears were obtained from 140 breast carcinoma specimens and studied immunocytochemically for the expression of Survivin and Nectin-4. The results were correlated with several clinicopathological parameters, including five-year survival. Increased Survivin staining pattern correlated with increased grade (p < 0.0001), increased lymph node invasion (p < 0.0001), increased tumor size and reduced survival (p < 0.0001). Elevated Nectin-4 expression also correlated significantly with increased grade (p < 0.0001), increased tumor size (p < 0.0001) and reduced survival (p < 0.0001). In addition, Survivin and Nectin-4 staining patterns correlated strongly with one another (p < 0.0001). However, on multivariate analysis, neither Survivin nor Nectin-4 expression seemed to have an independent impact on survival in our study cases. The findings of our study suggest that increased expression of Survivin and Nectin-4 may indicate a worse prognosis in breast cancer patients. The exact implications of the expression of these markers in breast cancer prognosis and treatment remain to be clarified.  相似文献   

19.
G protein-coupled receptors (GPCRs) are the largest family of druggable targets, and their biological functions depend on different ligands and intracellular interactomes. Some microRNAs (miRNAs) bind as ligands to RNA-sensitive toll-like receptor 7 to regulate the inflammatory response, thereby contributing to the pathogenesis of cancer or neurodegeneration. It is unknown whether miRNAs bind to angiotensin II (Ang II) type 2 receptor (AGTR2), a critical protective GPCR in cardiovascular diseases, as ligands or intracellular interactomes. Here, screening for miRNAs that bind to AGTR2, we identified and confirmed that the pre-miRNA hsa-let-7a-2 non-competitively binds to the intracellular third loop of AGTR2. Functionally, intracellular hsa-let-7a-2 overexpression suppressed the Ang II-induced AGTR2 effects such as cAMP lowering, RhoA inhibition, and activation of Src homology 2 domain-containing protein-tyrosine phosphatase 1, whereas hsa-let-7a-2 knockdown enhanced these effects. Consistently, overexpressed hsa-let-7a-2 restrained the AGTR2-induced antiproliferation, antimigration, and proapoptosis of cells, and vasodilation of mesenteric arteries. Our findings demonstrated that hsa-let-7a-2 is a novel intracellular partner of AGTR2 that negatively regulates AGTR2-activated signals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号