首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells release diverse types of extracellular vesicles (EVs), which transfer complex signals to surrounding cells. Specific markers to distinguish different EVs (e.g. exosomes, ectosomes, enveloped viruses like HIV) are still lacking. We have developed a proteomic profiling approach for characterizing EV subtype composition and applied it to human Jurkat T cells. We generated an interactive database to define groups of proteins with similar profiles, suggesting release in similar EVs. Biochemical validation confirmed the presence of preferred partners of commonly used exosome markers in EVs: CD81/ADAM10/ITGB1, and CD63/syntenin. We then compared EVs from control and HIV‐1‐infected cells. HIV infection altered EV profiles of several cellular proteins, including MOV10 and SPN, which became incorporated into HIV virions, and SERINC3, which was re‐routed to non‐viral EVs in a Nef‐dependent manner. Furthermore, we found that SERINC3 controls the surface composition of EVs. Our workflow provides an unbiased approach for identifying candidate markers and potential regulators of EV subtypes. It can be widely applied to in vitro experimental systems for investigating physiological or pathological modifications of EV release.  相似文献   

2.
Intestinal barrier dysfunction and intestinal inflammation interact in the progression of Crohn''s disease (CD). A recent study indicated that Epac‐2 protected the intestinal barrier and had anti‐inflammatory effects. The present study examined the function of Epac‐2 in CD‐like colitis. Interleukin‐10 gene knockout (Il10 −/−) mice exhibit significant spontaneous enteritis and were used as the CD model. These mice were treated with Epac‐2 agonists (Me‐cAMP) or Epac‐2 antagonists (HJC‐0350) or were fed normally (control), and colitis and intestinal barrier structure and function were compared. A Caco‐2 and RAW 264.7 cell co‐culture system were used to analyse the effects of Epac‐2 on the cross‐talk between intestinal epithelial cells and inflammatory cells. Epac‐2 activation significantly ameliorated colitis in mice, which was indicated by reductions in the colitis inflammation score, the expression of inflammatory factors and intestinal permeability. Epac‐2 activation also decreased Caco‐2 cell permeability in an LPS‐induced cell co‐culture system. Epac‐2 activation significantly suppressed nuclear factor (NF)‐κB/mitogen‐activated protein kinase (MAPK) signalling in vivo and in vitro. Epac‐2 may be a therapeutic target for CD based on its anti‐inflammatory functions and protective effects on the intestinal barrier.  相似文献   

3.
For decades, mesenchymal stromal cells (MSCs) have been of great interest in the fields of regenerative medicine, tissue engineering and immunomodulation. Their tremendous potential makes it desirable to cryopreserve and bank MSCs to increase their accessibility and availability. Postnatally derived MSCs seem to be of particular interest because they are harvested after delivery without ethical controversy, they have the capacity to expand at a higher rate than adult‐derived MSCs, in which expansion decreases with ageing, and they have demonstrated immunological and haematological supportive properties similar to those of adult‐derived MSCs. In this review, we focus on MSCs obtained from Wharton''s jelly (the mucous connective tissue of the umbilical cord between the amniotic epithelium and the umbilical vessels). Wharton''s jelly MSCs (WJ‐MSCs) are a good candidate for cellular therapy in haematology, with accumulating data supporting their potential to sustain haematopoietic stem cell engraftment and to modulate alloreactivity such as Graft Versus Host Disease (GVHD). We first present an overview of their in‐vitro properties and the results of preclinical murine models confirming the suitability of WJ‐MSCs for cellular therapy in haematology. Next, we focus on clinical trials and discuss tolerance, efficacy and infusion protocols reported in haematology for GVHD and engraftment.  相似文献   

4.
Aging drives progressive loss of the ability of tissues to recover from stress, partly through loss of somatic stem cell function and increased senescent burden. We demonstrate that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) rapidly senescence and become dysfunctional in culture. Injection of BM‐MSCs from young mice prolonged life span and health span, and conditioned media (CM) from young BM‐MSCs rescued the function of aged stem cells and senescent fibroblasts. Extracellular vesicles (EVs) from young BM‐MSC CM extended life span of Ercc1 −/− mice similarly to injection of young BM‐MSCs. Finally, treatment with EVs from MSCs generated from human ES cells reduced senescence in culture and in vivo, and improved health span. Thus, MSC EVs represent an effective and safe approach for conferring the therapeutic effects of adult stem cells, avoiding the risks of tumor development and donor cell rejection. These results demonstrate that MSC‐derived EVs are highly effective senotherapeutics, slowing the progression of aging, and diseases driven by cellular senescence.  相似文献   

5.
Mesenchymal stem cells (MSCs) are promising source of cell‐based regenerative therapy. In consideration of the risk of allosensitization, autologous MSC‐based therapy is preferred over allogenic transplantation in patients with chronic kidney disease (CKD). However, it remains uncertain whether adequate cell functionality is maintained under uremic conditions. As chronic inflammation and oxidative stress in CKD may lead to the accumulation of senescent cells, we investigated cellular senescence of CKD MSCs and determined the effects of metformin on CKD‐associated cellular senescence in bone marrow MSCs from sham‐operated and subtotal nephrectomized mice and further explored in adipose tissue‐derived MSCs from healthy kidney donors and patients with CKD. CKD MSCs showed reduced proliferation, accelerated senescence, and increased DNA damage as compared to control MSCs. These changes were significantly attenuated following metformin treatment. Lipopolysaccharide and transforming growth factor β1‐treated HK2 cells showed lower tubular expression of proinflammatory and fibrogenesis markers upon co‐culture with metformin‐treated CKD MSCs than with untreated CKD MSCs, suggestive of enhanced paracrine action of CKD MSCs mediated by metformin. In unilateral ureteral obstruction kidneys, metformin‐treated CKD MSCs more effectively attenuated inflammation and fibrosis as compared to untreated CKD MSCs. Thus, metformin preconditioning may exhibit a therapeutic benefit by targeting accelerated senescence of CKD MSCs.  相似文献   

6.
Decline in immune function during aging increases susceptibility to different aging‐related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance of naïve/memory T‐cell subpopulations, still remain largely elusive. Here, we show that loss of DJ‐1 encoded by PARK7/DJ‐1, causing early‐onset familial Parkinson’s disease (PD), unexpectedly diminished signs of immunoaging in T‐cell compartments of both human and mice. Compared with two gender‐matched unaffected siblings of similar ages, the index PD patient with DJ‐1 deficiency showed a decline in many critical immunoaging features, including almost doubled non‐senescent T cells. The observation was further consolidated by the results in 45‐week‐old DJ‐1 knockout mice. Our data demonstrated that DJ‐1 regulates several immunoaging features via hematopoietic‐intrinsic and naïve‐CD8‐intrinsic mechanisms. Mechanistically, DJ‐1 depletion reduced oxidative phosphorylation (OXPHOS) and impaired TCR sensitivity in naïve CD8 T cells at a young age, accumulatively leading to a reduced aging process in T‐cell compartments in older mice. Our finding suggests an unrecognized critical role of DJ‐1 in regulating immunoaging, discovering a potent target to interfere with immunoaging‐ and aging‐associated diseases.  相似文献   

7.
Osteoarthritis (OA) is a whole‐joint disease characterized by synovial inflammation and cartilage degeneration. However, the relationship between synovial inflammation and cartilage degeneration remains unclear. The modified Hulth''s method was adopted to establish a knee OA (KOA) rabbit model. Synovial tissue was collected after 8 weeks, and synovial tissue‐derived extracellular vesicles (ST‐EVs) were extracted by filtration combined with size exclusion chromatography (SECF), followed by identification through transmission electron microscopy (TEM), nanoparticle tracer analysis (NTA) and Western blot (WB). The collagenase digestion method was used to extract normal rabbit chondrocytes, which were then treated with the SF‐EVs to observe the effect and mechanism of SF‐EVs on chondrocytes. The morphology, particle size and labelled protein marker detection confirmed that SECF successfully extract ST‐EVs. The ST‐EVs in the KOA state significantly inhibited chondrocyte proliferation and promoted chondrocytes apoptosis. Moreover, the ST‐EVs also promoted the expression of pro‐inflammatory cytokines (IL‐1β, IL‐6, TNF‐α and COX‐2) and cartilage degradation‐related enzymes (MMP13, MMP9 and ADAMTS5) in the chondrocytes. Mechanistically, the ST‐EVs significantly promoted the activation of NF‐κB signalling pathway in chondrocytes. Inhibition the activation of the NF‐κB signalling pathway significantly rescued the expression of inflammatory cytokines and cartilage degradation‐related enzymes in the ST‐EVs–induced chondrocytes. In conclusion, the ST‐EVs promote chondrocytes inflammation and degradation by activating the NF‐κB signalling pathway, providing novel insights into the occurrence and development of OA.  相似文献   

8.
T cells, the critical immune cells of the adaptive immune system, are often dysfunctional in Alzheimer''s disease (AD) and are involved in AD pathology. Reports highlight neuroinflammation as a crucial modulator of AD pathogenesis, and aberrant T cells indirectly contribute to neuroinflammation by secreting proinflammatory mediators via direct crosstalk with glial cells infiltrating the brain. However, the mechanisms underlying T‐cell abnormalities in AD appear multifactorial. Risk factors for AD and pathological hallmarks of AD have been tightly linked with immune responses, implying the potential regulatory effects of these factors on T cells. In this review, we discuss how the risk factors for AD, particularly Apolipoprotein E (ApoE), Aβ, α‐secretase, β‐secretase, γ‐secretase, Tau, and neuroinflammation, modulate T‐cell activation and the association between T cells and pathological AD hallmarks. Understanding these associations is critical to provide a comprehensive view of appropriate therapeutic strategies for AD.  相似文献   

9.
Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.  相似文献   

10.
ObjectivesAlthough multilineage cells derived from oral tissues, especially the dental pulp, apical papilla, periodontal ligament, and oral mucosa, have neural crest‐derived stem cell (NCSC)‐like properties, the differences in the characteristics of these progenitor cell compartments remain unknown. The current study aimed to elucidate these differences.Material and methodsSphere‐forming apical papilla‐derived cells (APDCs), periodontal ligament‐derived cells (PDLDCs), and oral mucosa stroma‐derived cells (OMSDCs) from the same individuals were isolated from impacted developing teeth. All sphere‐forming cells were characterized through biological analyses of stem cells.ResultsAll sphere‐forming cells expressed neural crest‐related markers. The expression of certain tissue‐specific markers such as CD24 and CD56 (NCAM1) differed among tissue‐derived cells. Surprisingly, the expression of only CD24 and CD56 could be discriminated in human tissues. Although APDCs and PDLDCs exhibited greater mineralized cell differentiation than OMSDCs, they exhibited poorer differentiation into adipocytes in vitro. In immunocompromised mice, APDCs formed hard tissues better than PDLDCs and OMSDCs.ConclusionsAlthough cells with NCSC‐like properties present the same phenotype, they differ in the expression of certain markers and differentiation abilities. This study is the first to demonstrate the differences in the differentiation ability and molecular markers among multilineage human APDCs, PDLDCs, and OMSDCs obtained from the same patients, and to identify tissue‐specific markers that distinguish tissues in the developing stage of the human tooth with immature apex.

This study illustrates that neural crest‐derived cells from distinct oral tissues, namely the apical papilla, periodontal ligament, and oral mucosa, have varying differentiation potential, and tissue‐derived cell‐specific molecular markers have been identified. CD24 and NCAM1/CD56 expression were found to differ among multilineage oral tissue‐derived cells, similar to our observation in human tissue.  相似文献   

11.
Aging‐associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world''s population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging‐associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin‐37 (IL‐37) is a potent anti‐inflammatory cytokine, and we present data demonstrating that IL‐37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin‐37 (IL‐37) in aged mice reduces or prevents aging‐associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL‐37 expression decreases the surface expression of programmed cell death protein 1 (PD‐1) and augments cytokine production from aged T‐cells. Improved T‐cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T‐cells and Lat in CD8+ T‐cells when aged mice were treated with recombinant IL‐37 (rIL‐37) but not control immunoglobin (Control Ig). Importantly, IL‐37‐mediated rejuvenation of aged endogenous T‐cells was also observed in aged chimeric antigen receptor (CAR) T‐cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL‐37 in boosting the function of aged T‐cells and highlight its therapeutic potential to overcome aging‐associated immunosenescence.  相似文献   

12.
Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm−1 μm) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer’s disease and Parkinson’ disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.  相似文献   

13.
Angiotensin I‐converting enzyme (ACE, CD143) plays a crucial role in blood pressure regulation, vascular remodeling, and immunity. A wide spectrum of mAbs to different epitopes on the N and C domains of human ACE have been generated and used to study different aspects of ACE biology, including establishing a novel approach–conformational fingerprinting. Here we characterized a novel set of 14 mAbs, developed against human seminal fluid ACE. The epitopes for these novel mAbs were defined using recombinant ACE constructs with truncated N and C domains, species cross‐reactivity, ACE mutagenesis, and competition with the previously mapped anti‐ACE mAbs. Nine mAbs recognized regions on the N domain, and 5 mAbs–on the C domain of ACE. The epitopes for most of these novel mAbs partially overlap with epitopes mapped onto ACE by the previously generated mAbs, whereas mAb 8H1 recognized yet unmapped region on the C domain where three ACE mutations associated with Alzheimer''s disease are localized and is a marker for ACE mutation T877M. mAb 2H4 could be considered as a specific marker for ACE in dendritic cells. This novel set of mAbs can identify even subtle changes in human ACE conformation caused by tissue‐specific glycosylation of ACE or mutations, and can detect human somatic and testicular ACE in biological fluids and tissues. Furthermore, the high reactivity of these novel mAbs provides an opportunity to study changes in the pattern of ACE expression or glycosylation in different tissues, cells, and diseases, such as sarcoidosis and Alzheimer''s disease.  相似文献   

14.
Pediatric Crohn''s disease is a chronic auto inflammatory bowel disorder affecting children under the age of 17 years. A putative etiopathogenesis of Crohn''s disease (CD) is associated with disregulation of immune response to antigens commonly present in the gut microenvironment. Heat shock proteins (HSP) have been identified as ubiquitous antigens with the ability to modulate inflammatory responses associated with several autoimmune diseases. The present study tested the contribution of immune responses to HSP in the amplification of autoimmune inflammation in chronically inflamed mucosa of pediatric CD patients. Colonic biopsies obtained from normal and CD mucosa were stimulated with pairs of Pan HLA-DR binder HSP60-derived peptides (human/bacterial homologues). The modulation of RNA and protein levels of induced proinflammatory cytokines were measured. We identified two epitopes capable of sustaining proinflammatory responses, specifically TNF〈 and IFN© induction, in the inflamed intestinal mucosa in CD patients. The responses correlated positively with clinical and histological measurements of disease activity, thus suggesting a contribution of immune responses to HSP in pediatric CD site-specific mucosal inflammation.  相似文献   

15.
Fracture non‐union represents a common complication, seen in 5%–10% of all acute fractures. Despite the enhancement in scientific understanding and treatment methods, rates of fracture non‐union remain largely unchanged over the years. This systematic review investigates the biological, molecular and genetic profiles of both (i) non‐union tissue and (ii) non–union‐related tissues, and the genetic predisposition to fracture non‐union. This is crucially important as it could facilitate earlier identification and targeted treatment of high‐risk patients, along with improving our understanding on pathophysiology of fracture non‐union. Since this is an update on our previous systematic review, we searched the literature indexed in PubMed Medline; Ovid Medline; Embase; Scopus; Google Scholar; and the Cochrane Library using Medical Subject Heading (MeSH) or Title/Abstract words (non‐union(s), non‐union(s), human, tissue, bone morphogenic protein(s) (BMPs) and MSCs) from August 2014 (date of our previous publication) to 2 October 2021 for non‐union tissue studies, whereas no date restrictions imposed on non–union‐related tissue studies. Inclusion criteria of this systematic review are human studies investigating the characteristics and properties of non‐union tissue and non–union‐related tissues, available in full‐text English language. Limitations of this systematic review are exclusion of animal studies, the heterogeneity in the definition of non‐union and timing of tissue harvest seen in the included studies, and the search term MSC which may result in the exclusion of studies using historical terms such as ‘osteoprogenitors’ and ‘skeletal stem cells’. A total of 24 studies (non‐union tissue: n = 10; non–union‐related tissues: n = 14) met the inclusion criteria. Soft tissue interposition, bony sclerosis of fracture ends and complete obliteration of medullary canal are commonest macroscopic appearances of non‐unions. Non‐union tissue colour and surrounding fluid are two important characteristics that could be used clinically to distinguish between septic and aseptic non‐unions. Atrophic non‐unions had a predominance of endochondral bone formation and lower cellular density, when compared against hypertrophic non‐unions. Vascular tissues were present in both atrophic and hypertrophic non‐unions, with no difference in vessel density between the two. Studies have found non‐union tissue to contain biologically active MSCs with potential for osteoblastic, chondrogenic and adipogenic differentiation. Proliferative capacity of non‐union tissue MSCs was comparable to that of bone marrow MSCs. Rates of cell senescence of non‐union tissue remain inconclusive and require further investigation. There was a lower BMP expression in non‐union site and absent in the extracellular matrix, with no difference observed between atrophic and hypertrophic non‐unions. The reduced BMP‐7 gene expression and elevated levels of its inhibitors (Chordin, Noggin and Gremlin) could potentially explain impaired bone healing observed in non‐union MSCs. Expression of Dkk‐1 in osteogenic medium was higher in non‐union MSCs. Numerous genetic polymorphisms associated with fracture non‐union have been identified, with some involving the BMP and MMP pathways. Further research is required on determining the sensitivity and specificity of molecular and genetic profiling of relevant tissues as a potential screening biomarker for fracture non‐unions.  相似文献   

16.
ObjectivesAcute lung injury (ALI) not only affects pulmonary function but also leads to intestinal dysfunction, which in turn contributes to ALI. Mesenchymal stem cell (MSC) transplantation can be a potential strategy in the treatment of ALI. However, the mechanisms of synergistic regulatory effects by MSCs on the lung and intestine in ALI need more in‐depth study.Materials and methodsWe evaluated the therapeutic effects of MSCs on the murine model of lipopolysaccharide (LPS)‐induced ALI through survival rate, histopathology and bronchoalveolar lavage fluid. Metagenomic sequencing was performed to assess the gut microbiota. The levels of pulmonary and intestinal inflammation and immune response were assessed by analysing cytokine expression and flow cytometry.ResultsMesenchymal stem cells significantly improved the survival rate of mice with ALI, alleviated histopathological lung damage, improved intestinal barrier integrity, and reduced the levels of inflammatory cytokines in the lung and gut. Furthermore, MSCs inhibited the inflammatory response by decreasing the infiltration of CD8+ T cells in both small‐intestinal lymphocytes and Peyer''s patches. The gut bacterial community diversity was significantly altered by MSC transplantation. Furthermore, depletion of intestinal bacterial communities with antibiotics resulted in more severe lung and gut damages and mortality, while MSCs significantly alleviated lung injury due to their immunosuppressive effect.ConclusionsThe present research indicates that MSCs attenuate lung and gut injury partly via regulation of the immune response in the lungs and intestines and gut microbiota, providing new insights into the mechanisms underlying the therapeutic effects of MSC treatment for LPS‐induced ALI.  相似文献   

17.
18.
Olfactory impairment is an initial non‐motor symptom of Parkinson''s disease that causes the deposition of aggregated α‐synuclein (α‐syn) in olfactory neurons. Transient receptor potential canonical (TRPC) channels are a diverse group of non‐selective Ca2+ entry channels involved in the progression or pathogenesis of PD via Ca2+ homeostatic regulation. However, the relationship between TRPC and α‐syn pathology in an olfactory system remains unclear. To address this issue, we assessed the olfactory function in α‐syn transgenic mice. In contrast with control mice, the transgenic mice exhibited impaired olfaction, TRPC3 activation and apoptotic neuronal cell death in the olfactory system. Similar results were observed in primary cultures of olfactory neurons, that is TRPC3 activation, increasing intracellular Ca2+ concentration and apoptotic cell death in the α‐syn‐overexpressed neurons. These changes were significantly attenuated by TRPC3 knockdown. Therefore, our findings suggest that TRPC3 activation and calcium dyshomeostasis play a key role in α‐syn‐induced olfactory dysfunction in mice.  相似文献   

19.
Severe respiratory viral infectious diseases such as influenza and COVID‐19 especially affect the older population. This is partly ascribed to diminished CD8+ T‐cell responses a result of aging. The phenotypical diversity of the CD8+ T‐cell population has made it difficult to identify the impact of aging on CD8+ T‐cell subsets associated with diminished CD8+ T‐cell responses. Here we identify a novel human CD8+ T‐cell subset characterized by expression of Killer‐cell Immunoglobulin‐like Receptors (KIR+) and CD45RA (RA+). These KIR+RA+ T cells accumulated with age in the blood of healthy individuals (20–82 years of age, n = 50), expressed high levels of aging‐related markers of T‐cell regulation, and were functionally capable of suppressing proliferation of other CD8+ T cells. Moreover, KIR+RA+ T cells were a major T‐cell subset becoming activated in older adults suffering from an acute respiratory viral infection (n = 36), including coronavirus and influenza virus infection. In addition, older adults with influenza A infection showed that higher activation status of their KIR+RA+ T cells associated with longer duration of respiratory symptoms. Together, our data indicate that KIR+RA+ T cells are a unique human T‐cell subset with regulatory properties that may explain susceptibility to viral respiratory disease at old age.  相似文献   

20.
Adipose stem and precursor cells (ASPCs) give rise to adipocytes and determine the composition and plasticity of adipose tissue. Recently, several studies have demonstrated that ASPCs partition into at least three distinct cell subpopulations, including the enigmatic CD142+ cells. An outstanding challenge is to functionally characterise this population, as discrepant properties, from adipogenic to non‐ and anti‐adipogenic, have been reported for these cells. To resolve these phenotypic ambiguities, we characterised mammalian subcutaneous CD142+ ASPCs across various experimental conditions, demonstrating that CD142+ ASPCs exhibit high molecular and phenotypic robustness. Specifically, we find these cells to be firmly non‐ and anti‐adipogenic both in vitro and in vivo, with their inhibitory signals also impacting adipogenic human cells. However, these CD142+ ASPC‐specific properties exhibit surprising temporal phenotypic alterations, and emerge only in an age‐dependent manner. Finally, using multi‐omic and functional assays, we show that the inhibitory nature of these adipogenesis‐regulatory CD142+ ASPCs (Aregs) is driven by specifically expressed secretory factors that cooperate with the retinoic acid signalling pathway to transform the adipogenic state of CD142 ASPCs into a non‐adipogenic, Areg‐like state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号