首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Invasive plant species can interact with native soil microbes in ways that change how they use nutrients and allocate biomass. To examine whether Microstegium vimineum form symbiotic associations with arbuscular mycorrhizal fungi (AMF) and whether AMF mediate nutrient acquisition and growth of the plant, we conducted a field survey in Raleigh, NC and Hangzhou, China and two experiments in growth chambers. This is the first report that M. vimineum is mycorrhizal, with colonization rates of 47 and 21 % in its native and invaded range, respectively. In the growth chamber, addition of an AMF inoculum mixture significantly promoted M. vimineum biomass accumulation in both field and sterilized soils, particularly after 64 days of growth. Arbuscular mycorrhizal fungi also increased plant phosphorous (P) uptake but did not consistently affect total plant nitrogen (N) acquisition, leading to decreases in plant N:P ratios. More interestingly, AMF significantly altered plant morphology, increasing the number of stolons and aerial roots per individual (59 and 723 %), aerial roots per gram aboveground biomass (374 %) and aerial roots per stolon (404 %). Our results suggest that mycorrhizal enhancement of plant growth by stimulating tillering may serve as another mechanism by which M. vimineum can quickly take over new territory. Future studies on invasive plant-microbial interactions are needed to understand the mechanisms through which microbes contribute to the competitive ability of invasive plants.  相似文献   

2.
Little bluestem grass Schizachyrium scoparium ([Michx.] Nash) plants were grown under field conditions for 2 years in soils fumigated with methyl bromide and chloropicrin, or in unfumigated soil, and treated with supplemental inorganic nutrients (bases calcium and magnesium) phosphorus, nitrogen, and potassium. Most differences in measured plant responses were due to interactions between fumigation and nutrient treatments. These included biomass production, root mass per unit length (μg/cm), root lengths, flowering culm production, percent colonization, colonized root length, and spore production in rhizosphere soil. Plants generally responded to mycorrhizal fungal colonization by reducing total root length and producing thicker roots. Treatment of plants with bases appeared to profoundly affect the mycorrhizal association by reducing sporulation of vesicular-arbuscular mycorrhizal fungi and increasing colonization. When fumigated or unfumigated soils were considered separately, base-treated plants produced more biomass than other treatments. Base-treated plants grown on unfumigated soil had more flowering culms and longer colonized root lengths than all other plants. Percent colonization by mycorrhizal fungi and colonized root length were positively correlated with phosphorus/nitrogen ratios, but the ratio was not correlated with plant biomass production. This suggests that phosphorus is not a limiting nutrient in our soil and investment in a mycorrhizal association may not result in enhanced plant growth. The base-nutrient effects may indicate a need to reevaluate earlier studies of macro nutrient effects that did not take into account the role played by calcium and magnesium in assessing fungus-host plant interactions.  相似文献   

3.
Many invasive plants have enhanced mutualistic arbuscular mycorrhizal (AM) fungal associations, however, mechanisms underlying differences in AM fungal associations between introduced and native populations of invasive plants have not been explored. Here we test the hypothesis that variation in root exudate chemicals in invasive populations affects AM fungal colonization and then impacts plant performance. We examined flavonoids (quercetin and quercitrin) in root exudates of native and introduced populations of the invasive plant Triadica sebifera and tested their effects on AM fungi and plant performance. We found that plants from introduced populations had higher concentrations of quercetin in root exudates, greater AM fungal colonization and higher biomass. Applying root exudates more strongly increased AM fungal colonization of target plants and AM fungal spore germination when exudate donors were from introduced populations. The role of root exudate chemicals was further confirmed by decreased AM fungal colonization when activated charcoal was added into soil. Moreover, addition of quercetin into soil increased AM fungal colonization, indicating quercetin might be a key chemical signal stimulating AM fungal associations. Together these results suggest genetic differences in root exudate flavonoids play an important role in enhancing AM fungal associations and invasive plants’ performance, thus considering root exudate chemicals is critical to unveiling mechanisms governing shifting plant-soil microbe interactions during plant invasions.Subject terms: Population dynamics, Community ecology, Plant ecology  相似文献   

4.
土壤养分分布具有高度空间异质性, 植物的根系觅养行为是其对土壤养分异质性的一种适应。不同植物为了适应养分异质性会产生不同的根系觅养行为, 通过调整自身的根系觅养范围、觅养精度和觅养速度来更好地吸收利用土壤中的养分。外来植物与本地植物的竞争是决定其成功入侵的重要因素, 土壤养分等环境因素会影响它们之间的竞争关系。近年来, 外来入侵植物的觅养行为逐渐受到人们的关注, 关于入侵植物根系觅养行为的研究成果陆续出现: (1)总体来看, 外来入侵植物具有较强的根系觅养能力, 但根系觅养范围与觅养精度之间的权衡关系还不确定; (2)营养异质性会影响入侵植物与本地植物之间的竞争, 反过来, 二者之间的竞争也会影响根系觅养行为对营养异质性的响应; (3)丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)能够提高入侵植物的根系觅养能力, 外来植物入侵能够改变入侵植物对AMF的偏好性, 形成AMF对入侵的正反馈作用, 而本地植物与AMF的相互作用也会影响入侵植物的竞争力。未来还应加强营养异质环境下种间竞争和AMF共生对入侵植物根系觅养行为的影响机制研究, 以及全球变化背景下入侵植物根系觅养行为的变化与机制方面的研究, 可以更深入地认识外来植物的觅养行为在其成功入侵中的作用, 并为利用营养调控来防控入侵植物提供理论依据。  相似文献   

5.
Frew  Adam  Powell  Jeff R.  Johnson  Scott N. 《Plant and Soil》2020,447(1-2):463-473
Aims

Arbuscular mycorrhizal (AM) fungi associate with the majority of terrestrial plants, influencing their growth, nutrient uptake and defence chemistry. Consequently, AM fungi can significantly impact plant-herbivore interactions, yet surprisingly few studies have investigated how AM fungi affect plant responses to root herbivores. This study aimed to investigate how AM fungi affect plant tolerance mechanisms to belowground herbivory.

Methods

We examined how AM fungi affect plant (Saccharum spp. hybrid) growth, nutrient dynamics and secondary chemistry (phenolics) in response to attack from a root-feeding insect (Dermolepida albohirtum).

Results

Root herbivory reduced root mass by almost 27%. In response, plants augmented investment in aboveground biomass by 25%, as well as increasing carbon concentrations. The AM fungi increased aboveground biomass, phosphorus and carbon. Meanwhile, root herbivory increased foliar phenolics by 31% in mycorrhizal plants, and increased arbuscular colonisation of roots by 75% overall. AM fungi also decreased herbivore performance, potentially via increasing root silicon concentrations.

Conclusions

Our results suggest that AM fungi may be able to augment plant tolerance to root herbivory via resource allocation aboveground and, at the same time, enhance plant root resistance by increasing root silicon. The ability of AM fungi to facilitate resource allocation aboveground in this way may be a more widespread strategy for plants to cope with belowground herbivory.

  相似文献   

6.
Allelochemicals defend plants against herbivore and pathogen attack aboveground and belowground. Whether such plant defenses incur ecological costs by reducing benefits from plant mutualistic symbionts is largely unknown. We explored a potential trade-off between inherent plant chemical defense and belowground mutualism with arbuscular mycorrhizal fungi (AMF) in Plantago lanceolata L., using plant genotypes from lines selected for low and high constitutive levels of the iridoid glycosides (IG) aucubin and catalpol. As selection was based on IG concentrations in leaves, we first examined whether IG concentrations covaried in roots. Root and leaf IG concentrations were strongly positively correlated among genotypes, indicating genetic interdependence of leaf and root defense. We then found that root AMF arbuscule colonization was negatively correlated with root aucubin concentration. This negative correlation was observed both in plants grown with monocultures of Glomus intraradices and in plants colonized from whole-field soil inoculum. Overall, AMF did not affect total biomass of plants; an enhancement of initial shoot biomass was offset by a lower root biomass and reduced regrowth after defoliation. Although the precise effects of AMF on plant biomass varied among genotypes, plants with high IG levels and low AMF arbuscule colonization in roots did not produce less biomass than plants with low IG and high AMF arbuscule colonization. Therefore, although an apparent trade-off was observed between high root chemical defense and AMF arbuscule colonization, this did not negatively affect the growth responses of the plants to AMF. Interestingly, AMF induced an increase in root aucubin concentration in the high root IG genotype of P. lanceolata. We conclude that AMF does not necessarily stimulate plant growth, that direct plant defense by secondary metabolites does not necessarily reduce potential benefits from AMF, and that AMF can enhance concentrations of root chemical defenses, but that these responses are plant genotype-dependent.  相似文献   

7.
A significant challenge for understanding how fungal communities may change in the Anthropocene are the multiple aspects of simultaneous environmental change. To address this challenge, we used a seven-year multi-factorial field experiment in southern California to examine how root-associated fungi respond to aridity, nitrogen deposition, and plant invasions. We hypothesized that all three global change drivers reduce the abundance of arbuscular mycorrhizal fungi responsible for nutrient uptake (edaphophilic AMF), while increasing the abundance of AMF that colonize roots at high rates (rhizophilic AMF). We found that invasive grasses hosted lower abundances of edaphophilic AMF, and higher abundances of rhizophilic AMF and opportunistically parasitic fungi. Aridity reduced overall AMF abundance while N addition altered the allocation of AMF biomass, increasing root colonization while reducing the density of extraradical hyphae. Overall, these results imply that ongoing global change will alter both the composition of AMF and how these fungi interact with plants.  相似文献   

8.

Background and aims

Accurate predictions of nutrient acquisition by plant roots and mycorrhizas are critical in modelling plant responses to climate change.

Methods

We conducted a field experiment with the aim to investigate root nutrient uptake in a future climate and studied root production by ingrowth cores, mycorrhizal colonization, and fine root N and P uptake by root assay of Deschampsia flexuosa and Calluna vulgaris.

Results

Net root growth increased under elevated CO2, warming and drought, with additive effects among the factors. Arbuscular mycorrhizal colonization increased in response to elevated CO2, while ericoid mycorrhizal colonization was unchanged. The uptake of N and P was not increased proportionally with root growth after 5 years of treatment.

Conclusions

While aboveground biomass was unchanged, the root growth was increased under elevated CO2. The results suggest that plant production may be limited by N (but not P) when exposed to elevated CO2. The species-specific response to the treatments suggests different sensitivity to global change factors, which could result in changed plant competitive interactions and belowground nutrient pool sizes in response to future climate change.  相似文献   

9.
外来植物成功入侵与菌根共生体存在着密不可分的关系,丛枝菌根真菌(AMF)侵染率是反映其侵染植物情况的重要指标,影响侵染率的因素很多,但是入侵植物与本地植物互作对AMF侵染率的影响目前还不清楚。因此,本研究以外来入侵植物黄顶菊Flaveria bidentis、豚草Ambrosia artemisiifolia、三叶鬼针草Bidens pilosa和本地植物狗尾草Setaria viridis、黄香草木犀Melilotus officinalis、藜Chenopodium album为研究对象,设置入侵植物单种处理、本地植物单种处理、每种入侵植物分别与本地植物两两混种处理以及每种入侵植物同时与所有本地植物混种处理,观察测定不同处理下入侵植物与本地植物根系丛枝、泡囊、菌丝及总侵染率,比较研究本地植物种类变化对入侵植物和本地植物根系AMF侵染率的影响,以及3种入侵菊科植物对本地植物AMF侵染率的影响规律是否一致。结果表明,与入侵植物单种相比,除豚草与藜、豚草同时与3种本地植物混种两个处理中,豚草根系的AMF菌丝及总侵染率显著增加外,其余所有处理中入侵植物总侵染率均无显著差异;与狗尾草或黄香草木犀单种相比,每种入侵植物同时与所有本地植物混种处理中,本地植物狗尾草和黄香草木犀根系上的AMF菌丝及总侵染率均显著降低,即随本地植物种类数目的增加,对本地植物根系的菌丝及总侵染率存在显著抑制作用,而对入侵植物无显著影响。  相似文献   

10.
Inoculation of finger millet (Eleusine coracana Gaertn.) plants with one of six different vesicular, arbuscular, mycorrhizal (VAM) fungi increased plant biomass, height, leaf area and absolute growth rate; however, effectiveness of the various VAM fungi varied significantly. Maximum root colonization and mycorrhizal efficacy was observed with plants inoculated with Glomus caledonicum. Among five host genotypes tested for mycorrhizal dependency against G. caledonicum, genotype HR-374 gave the highest plant biomass, mycorrhizal efficacy and root colonization, the inoculation resulting in increased mineral (phosphate, nitrogen, Zn2+ and Cu2+) content and uptake in shoots.  相似文献   

11.
Fine root morphological traits and distribution, arbuscular mycorrhizal (AM) fungi, soil fertility, and nutrient concentration in fine root tissue were compared in sites under different successional phases: grass plants, secondary forest, and mature forest in Londrina county, Paraná state, southern Brazil. Soil cores were collected randomly at the 0-10- and 10-20-cm depths in three quadrants (50 m2) in each site. Plants from the different successional stages displayed high differences in fine root distribution, fine root traits, and mycorrhizal root colonization. There were increases in the concentration of nutrients both in soil and fine roots and decrease of bulk soil density along the succession. The fine root biomass and diameter increased with the succession progress. The total fine root length, specific root length, root hair length, and root hair incidence decreased with the succession advance. Similarly, the mycorrhizal root colonization and the density of AM fungi spores in the soil decreased along the succession. Mycorrhizal root colonization and spore density were positively correlated with fine root length, specific root length, root hair length, root hair incidence, and bulk density and negatively correlated with fine root diameter and concentration of some nutrients both in soil and root tissues. Nutrient concentration in root tissue and in soil was positively correlated with fine root diameter and negatively correlated with specific root length, root hair length, and root hair incidence. These results suggest different adaptation strategies of plant roots for soil exploration and mineral acquisition among the different successional stages. Early successional stages displayed plants with fine root morphology and AM fungi colonization to improve the root functional efficiencies for uptake of nutrients and faster soil resource exploration. Late successional stages displayed plants with fine root morphology and mycorrhizal symbiosis for both a lower rate of soil proliferation and soil exploration capacity to acquire nutrients.  相似文献   

12.
根毛和共生真菌增加了吸收面积,提高了植物获取磷等土壤资源的能力。由于野外原位观测根表微观结构较为困难,吸收细根、根毛、共生真菌如何相互作用并适应土壤资源供应,缺乏相应的数据和理论。该研究以受磷限制的亚热带森林为对象,选取了21种典型树种,定量了根毛存在情况、属性变异,分析了根毛形态特征与共生真菌侵染率、吸收细根功能属性之间的关系,探讨了根表结构对低磷土壤的响应和适应格局。结果表明:1)在亚热带森林根毛不是普遍存在的, 21个树种中仅发现7个树种存有根毛, 4个为丛枝菌根(AM)树种, 3个为外生菌根(ECM)树种。其中,马尾松(Pinus massoniana)根毛出现率最高,为86%;2)菌根类型是理解根-根毛-共生真菌关系的关键,AM树种根毛密度与共生真菌侵染率正相关,但ECM树种根毛直径与共生真菌侵染率负相关; 3) AM树种根毛长度和根毛直径、ECM树种根毛出现率与土壤有效磷含量呈负相关关系。该研究揭示了不同菌根类型树种根毛-共生真菌-根属性的格局及相互作用,为精细理解养分获取策略奠定了基础。  相似文献   

13.
Mycorrhizal respiration: implications for global scaling relationships   总被引:1,自引:0,他引:1  
Most plant species form mycorrhizas, yet these are neglected by plant physiologists. One consequence of this neglect is reduced ability to predict plant respiration, because respiration rate (R) in mycorrhizal roots might be higher than in non-mycorrhizal roots owing to increased substrate availability associated with enhanced nutrient uptake, coupled with increased respiratory product demand. Other predictions include that mycorrhizal colonization will affect scaling of R with tissue nitrogen concentrations; that mycorrhizal and non-mycorrhizal root R differ in their response to nutrient supply; and that the impact of colonization on R is related to fungal biomass. Failure to examine properly the role of colonization in determining root R means that current interpretations of root and soil respiration data might be flawed.  相似文献   

14.
We tested the hypothesis whether differences between plant populations in root colonization by arbuscular mycorrhizal (AM) fungi could be caused by genetic differentiation between populations. In addition, we investigated whether the response to AM fungi differs between plants from different populations and if it is affected by the soil in which the plants are cultivated. We used Aster amellus, which occurs in fragmented dry grasslands, as a model species and we studied six different populations from two regions, which varied in soil nutrient concentration.We found significant differences in the degree of mycorrhizal colonization of plant roots between regions in the field. To test if these differences were due to phenotypic plasticity or had a genetic basis, we performed a greenhouse experiment. The results suggested that Aster amellus is an obligate mycotrophic plant species with a high dependency upon mycorrhiza. Plant biomass was affected only by soil, and not by population or the interaction between the population and the soil. Mycorrhizal colonization was significantly affected by all three factors (soil, population, interaction of soil and population). Plants from the population originating from the soil with lower nutrient availability developed more mycorrhiza even when grown in soil with higher nutrient availability. The correspondence between mycorrhizal colonization of plants in the field and in both soils in the pot experiment suggests that the observed differences in root colonization have a genetic basis.  相似文献   

15.
喀斯特地区土壤瘠薄,植被恢复困难,根系对幼苗生长发育起重要作用.丛枝菌根真菌(AMF)侵染可促进喀斯特植物干物质积累及提升抗逆能力,但AMF对喀斯特地区主要恢复树种根系侵染机制及影响的研究尚不够深入.本研究以喀斯特地区典型造林树种任豆(Zenia insignis)幼苗为试验材料,利用不同养分条件的喀斯特原生土壤开展盆...  相似文献   

16.
The majority of terrestrial plants form mutualistic associations with arbuscular mycorrhizal fungi (AMF) and rhizobia (i.e., nitrogen‐fixing bacteria). Understanding these associations has important implications for ecological theory and for restoration practice. Here, we tested whether the presence of AMF and rhizobia influences the performance of native woody plants invaded by a non‐native grass in experimental microcosms. We planted eight plant species (i.e., Acacia acuminata, A. microbotrya, Eucalyptus loxophleba subsp. loxophleba, E. astringens, Calothamnus quadrifidus, Callistemon phoeniceus, Hakea lissocarpha and H. prostrata) in microcosms of field‐conditioned soil with and without addition of AMF and rhizobia in a fully factorial experimental design. After seedling establishment, we seeded half the microcosms with an invasive grass Bromus diandrus. We measured shoot and root biomass of native plants and Bromus, and on roots, the percentage colonization by AMF, number of rhizobia‐forming nodules and number of proteaceous root clusters. We found no effect of plant root symbionts or Bromus addition on performance of myrtaceous, and as predicted, proteaceous species as they rely little or not at all on AMF and rhizobia. Soil treatments with AMF and rhizobia had a strong positive effect (i.e., larger biomass) on native legumes (Amicrobotrya and A. acuminata). However, the beneficial effect of root symbionts on legumes became negative (i.e., lower biomass and less nodules) if Bromus was present, especially for one legume, i.e., A. acuminata, suggesting a disruptive effect of the invader on the mutualism. We also found a stimulating effect of Bromus on root nodule production in Amicrobotrya and AMF colonization in A. acuminata which could be indicative of legumes’ increased resource acquisition requirement, i.e., for nitrogen and phosphorus, respectively, in response to the Bromus addition. We have demonstrated the importance of measuring belowground effects because the aboveground effects gave limited indication of the effects occurring belowground.  相似文献   

17.
Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.  相似文献   

18.
Herbaceous plant species are important components of forest ecosystems, and their persistence in forests may be affected by invasive plant species that reduce mycorrhizal colonization of plant roots. I examined the effect of the invasive plant Alliaria petiolata on arbuscular mycorrhizal fungi (AMF) colonizing the roots of three forest plant species. AMF root colonization and community structure was examined from plants that were growing either in the absence or presence of Alliaria under natural forest conditions. AMF root colonization varied among the plant species but was not significantly affected by Alliaria. With molecular methods, ~12 different taxa of AMF could be distinguished among the root samples, and these taxa belonged to the genera Acaulospora and Glomus, with Glomus dominating AMF communities. There were significant differences between the community of AMF colonizing roots of Maianthemum racemosum and Trillium grandiflorum, but only AMF communities of Maianthemum roots were significantly affected by Alliaria. Indicator species analysis found that an Acaulospora species type was a significant indicator of Maianthemum plants grown in the absence of Alliaria. These results suggest invasive plants like Alliaria may selectively suppress AMF fungi, and this suppression can affect AMF communities colonizing the roots of some native plant species.  相似文献   

19.

Aims

Non-native shrubs are important invaders of the Eastern Deciduous Forest, dramatically altering forest structure and functioning. Study of invasion mechanisms in this system has emphasized aboveground processes, and plant-soil feedbacks are relatively unexplored as a mechanism of shrub dominance. We tested whether plant-soil feedback in this habitat is affected by competition and whether arbuscular mycorrhizal fungi (AMF) are involved in plant-soil feedback.

Methods

We used a standard two-phase plant-soil feedback experiment run concurrently for each of three invasive shrub species, measuring feedback effects on AMF colonization, aboveground biomass, and the responses of native plant species in greenhouse mesocosms.

Results

Lonicera maackii and Ligustrum vulgare reduced AMF colonization of native roots, both with legacy effects (prior growth in soil) and direct effects (current growth in soil). Elaeagnus umbellata grown with natives left a legacy of increased AMF colonization of native communities.

Conclusions

Our results suggest that woody invasive species can alter the AMF associations of native plants even after the invasive is no longer present. Such consequences merit study with other native species and where environmental factors, such as light availability, might be expected to compound the effects of changes in AMF.  相似文献   

20.
Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号