首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cumulative cultural evolution is what 'makes us odd'; our capacity to learn facts and techniques from others, and to refine them over generations, plays a major role in making human minds and lives radically different from those of other animals. In this article, I discuss cognitive processes that are known collectively as 'cultural learning' because they enable cumulative cultural evolution. These cognitive processes include reading, social learning, imitation, teaching, social motivation and theory of mind. Taking the first of these three types of cultural learning as examples, I ask whether and to what extent these cognitive processes have been adapted genetically or culturally to enable cumulative cultural evolution. I find that recent empirical work in comparative psychology, developmental psychology and cognitive neuroscience provides surprisingly little evidence of genetic adaptation, and ample evidence of cultural adaptation. This raises the possibility that it is not only 'grist' but also 'mills' that are culturally inherited; through social interaction in the course of development, we not only acquire facts about the world and how to deal with it (grist), we also build the cognitive processes that make 'fact inheritance' possible (mills).  相似文献   

2.
Altruism in insect societies and beyond: voluntary or enforced?   总被引:2,自引:0,他引:2  
The altruism of insect workers has puzzled researchers for decades. Inclusive fitness theory suggests that high relatedness has been key in promoting such altruism. Recent theory, however, indicates that the intermediate levels of relatedness found within insect societies are too low to directly cause the extreme altruism observed in many species. Instead, recent results show that workers are frequently coerced into acting altruistically. Hence, the altruism seen in many modern-day insect societies is not voluntary but enforced. Here, we also consider the role of coercion in promoting altruism and cooperation in other social systems, such as vertebrate and human societies, and interspecific mutualisms.  相似文献   

3.
Altruism among relatives and non-relatives   总被引:1,自引:0,他引:1  
Hamilton's [Hamilton, W.D., 1964. The genetical evolution of social behavior, I, II. J. Theor. Biol. 7, 1-52] kin-selection theory predicts that altruism will be greater with greater genetic overlap (degree of kinship) between giver and receiver. Kin may be identified in terms of social distance-the closer you feel to someone else, (a) the greater your genetic overlap with them should be, and (b) the more altruistic you should be toward them. The present experiment determined the amount of their own (hypothetical) monetary reward undergraduates were willing to forgo in order to give $75 to other people at various social distances. We found that (a) genetic relationship and (b) altruism varied inversely with social distance; the closer you feel to someone else, the closer their relation to you is likely to be, and the more altruistic you are likely to be toward them. However, even at the same social distance, participants were willing to forgo significantly more money for the benefit of relatives than for the benefit of non-relatives. These results are consistent with kin-selection theory and imply that altruism is determined by factors in addition to social distance.  相似文献   

4.
We revisit a model for the evolution of costly social behaviour in the presence of reproductive skew. The model population is structured into groups, and reproductive skew is captured by assuming individuals adopt one of two social roles (dominant/subordinate). Unlike previous work, we adopt an ultimate perspective by tracking a mutant allele over the entire course of an invasion. Our main analysis applies the theory of branching processes, but a parallel analysis using the inclusive-fitness approach is also provided. Our first two results are modifications of known inequalities describing selective advantages for behaviours expressed conditional upon social status. We find that altruistic subordinate individuals are favoured more readily than previously thought; spiteful dominant individuals, however, are favoured less readily. Secondly, we identify the condition under which unconditional altruism (performed by both dominant and subordinate) will be adaptive. Our third main result shows that increasing the strength of selection can also change the range of parameters over which costly social behaviours are favoured. We find that stronger selection makes it relatively easier for subordinate altruism to emerge, but more difficult for dominant spite and unconditional altruism to occur. We discuss the possible implications of our results for human social evolution.  相似文献   

5.
The adaptive dynamics of altruism in spatially heterogeneous populations   总被引:4,自引:0,他引:4  
Abstract.— We study the spatial adaptive dynamics of a continuous trait that measures individual investment in altruism. Our study is based on an ecological model of a spatially heterogeneous population from which we derive an appropriate measure of fitness. The analysis of this fitness measure uncovers three different selective processes controlling the evolution of altruism: the direct physiological cost, the indirect genetic benefits of cooperative interactions, and the indirect genetic costs of competition for space. In our model, habitat structure and a continuous life cycle makes the cost of competing for space with relatives negligible. Our study yields a classification of adaptive patterns of altruism according to the shape of the costs of altruism (with decelerating, linear, or accelerating dependence on the investment in altruism). The invasion of altruism occurs readily in species with accelerating costs, but large mutations are critical for altruism to evolve in selfish species with decelerating costs. Strict selfishness is maintained by natural selection only under very restricted conditions. In species with rapidly accelerating costs, adaptation leads to an evolutionarily stable rate of investment in altruism that decreases smoothly with the level of mobility. A rather different adaptive pattern emerges in species with slowly accelerating costs: high altruism evolves at low mobility, whereas a quasi-selfish state is promoted in more mobile species. The high adaptive level of altruism can be predicted solely from habitat connectedness and physiological parameters that characterize the pattern of cost. We also show that environmental changes that cause increased mobility in those highly altruistic species can beget selection-driven self-extinction, which may contribute to the rarity of social species.  相似文献   

6.
My aim in this paper is to demonstrate that a very simple learning rule based on imitation can help to sustain altruism as a culturally transmitted pattern or behaviour among agents playing a standard prisoner’s dilemma game. The point of this demonstration is not to prove that imitation is single-handedly responsible for existing levels of altruism (a thesis that is false), nor is the point to show that imitation is an important factor in explanations for the evolution of altruism (a thesis already prominent in the existing literature). The point is to show that imitation contributes to the evolution of altruism in a particular way that is not always fairly represented by evolutionary game theory models. Specifically, the paper uses a simple model to illustrate that cultural transmission includes mechanisms that do not transmit phenotype vertically (i.e. from parent to related offspring) and that these mechanisms can promote altruism in the absence of any direct biological propensity favouring such behaviour. This is a noteworthy result because it shows that evolutionary models can be built to explicitly reflect the contribution of non-vertical transmission in our explanations for the evolution of altruism among humans and other social species.  相似文献   

7.
Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes.  相似文献   

8.
Social interactions, including cooperation and altruism, are characteristic of numerous species, but many aspects of the evolution, ecology and genetics of social behavior remain unclear. The microbial soil amoeba Dictyostelium discoideum is a model system for the study of social evolution and provides insights into the nature of social cooperation and its genetic basis. This species exhibits altruism during both asexual and sexual cycles of its life history, and recent studies have uncovered several possible genetic mechanisms associated with kin discrimination and cheating behavior during asexual fruiting-body formation. By contrast, the molecular and evolutionary mechanisms that underlie sexual macrocyst formation remain largely enigmatic. D. discoideum, given its utility in molecular genetic studies, should continue to help us address these and other relevant questions in sociobiology, and thereby contribute to a coherent theoretical framework for the nature of social cooperation.  相似文献   

9.
Because culture requires transmission of information between individuals, thinking about the origin of culture has mainly focused on the genetic evolution of abilities for social learning. Current theory considers how social learning affects the adaptiveness of a single cultural trait, yet human culture consists of the accumulation of very many traits. Here we introduce a new modeling strategy that tracks the adaptive value of many cultural traits, showing that genetic evolution favors only limited social learning owing to the accumulation of maladaptive as well as adaptive culture. We further show that culture can be adaptive, and refined social learning can evolve, if individuals can identify and discard maladaptive culture. This suggests that the evolution of such "adaptive filtering" mechanisms may have been crucial for the birth of human culture.  相似文献   

10.
Cooperation is rife in the microbial world, yet our best current theories of the evolution of cooperation were developed with multicellular animals in mind. Hamilton’s theory of inclusive fitness is an important case in point: applying the theory in a microbial setting is far from straightforward, as social evolution in microbes has a number of distinctive features that the theory was never intended to capture. In this article, I focus on the conceptual challenges posed by the project of extending Hamilton’s theory to accommodate the effects of gene mobility. I begin by outlining the basics of the theory of inclusive fitness, emphasizing the role that the concept of relatedness is intended to play. I then provide a brief history of this concept, showing how, over the past fifty years, it has departed from the intuitive notion of genealogical kinship to encompass a range of generalized measures of genetic similarity. I proceed to argue that gene mobility forces a further revision of the concept. The reason in short is that, when the genes implicated in producing social behaviour are mobile, we cannot talk of an organism’s genotype simpliciter; we can talk only of an organism’s genotype at a particular stage in its life cycle. We must therefore ask: with respect to which stage(s) in the life cycle should relatedness be evaluated? For instance: is it genetic similarity at the time of social interaction that matters to the evolution of social behaviour, or is it genetic similarity at the time of reproduction? I argue that, strictly speaking, it is neither of these: what really matters to the evolution of social behaviour is diachronic genetic similarity between the producers of fitness benefits at the time they produce them and the recipients of those benefits at the end of their life-cycle. I close by discussing the implications of this result. The main payoff is that it makes room for a possible new mechanism for the evolution of altruism in microbes that does not require correlated interaction among bearers of the genes for altruism. The importance of this mechanism in nature remains an open empirical question.  相似文献   

11.
Learning by following explicit advice is fundamental for human cultural evolution, yet the neurobiology of adaptive social learning is largely unknown. Here, we used simulations to analyze the adaptive value of social learning mechanisms, computational modeling of behavioral data to describe cognitive mechanisms involved in social learning, and model-based functional magnetic resonance imaging (fMRI) to identify the neurobiological basis of following advice. One-time advice received before learning had a sustained influence on people's learning processes. This was best explained by social learning mechanisms implementing a more positive evaluation of the outcomes from recommended options. Computer simulations showed that this "outcome-bonus" accumulates more rewards than an alternative mechanism implementing higher initial reward expectation for recommended options. fMRI results revealed a neural outcome-bonus signal in the septal area and the left caudate. This neural signal coded rewards in the absence of advice, and crucially, it signaled greater positive rewards for positive and negative feedback after recommended rather than after non-recommended choices. Hence, our results indicate that following advice is intrinsically rewarding. A positive correlation between the model's outcome-bonus parameter and amygdala activity after positive feedback directly relates the computational model to brain activity. These results advance the understanding of social learning by providing a neurobiological account for adaptive learning from advice.  相似文献   

12.
Humans form impressions of others by associating persons (faces) with negative or positive social outcomes. This learning process has been referred to as social conditioning. In everyday life, affective nonverbal gestures may constitute important social signals cueing threat or safety, which therefore may support aforementioned learning processes. In conventional aversive conditioning, studies using electroencephalography to investigate visuocortical processing of visual stimuli paired with danger cues such as aversive noise have demonstrated facilitated processing and enhanced sensory gain in visual cortex. The present study aimed at extending this line of research to the field of social conditioning by pairing neutral face stimuli with affective nonverbal gestures. To this end, electro-cortical processing of faces serving as different conditioned stimuli was investigated in a differential social conditioning paradigm. Behavioral ratings and visually evoked steady-state potentials (ssVEP) were recorded in twenty healthy human participants, who underwent a differential conditioning procedure in which three neutral faces were paired with pictures of negative (raised middle finger), neutral (pointing), or positive (thumbs-up) gestures. As expected, faces associated with the aversive hand gesture (raised middle finger) elicited larger ssVEP amplitudes during conditioning. Moreover, theses faces were rated as to be more arousing and unpleasant. These results suggest that cortical engagement in response to faces aversively conditioned with nonverbal gestures is facilitated in order to establish persistent vigilance for social threat-related cues. This form of social conditioning allows to establish a predictive relationship between social stimuli and motivationally relevant outcomes.  相似文献   

13.
Understanding the evolution of altruism requires knowledge of both its constraints and its drivers. Here we show that, paradoxically, ecological constraints on altruism may ultimately be its strongest driver. We construct a two-trait, coevolutionary adaptive dynamics model of social evolution in a genetically structured population with local resource competition. The intensity of local resource competition, which influences the direction and strength of social selection and which is typically treated as a static parameter, is here allowed to be an evolvable trait. Evolution of survival/fecundity altruism, which requires weak local competition, increases local competition as it evolves, creating negative environmental feedback that ultimately inhibits its further evolutionary advance. Alternatively, evolution of resource-based altruism, which requires strong local competition, weakens local competition as it evolves, also ultimately causing its own evolution to stall. When evolving independently, these altruistic strategies are intrinsically self-limiting. However, the coexistence of these two altruism types transforms the negative ecoevolutionary feedback generated by each strategy on itself into positive feedback on the other, allowing the presence of one trait to drive the evolution of the other. We call this feedback conversion "reciprocal niche construction." In the absence of constraints, this process leads to runaway coevolution of altruism types. We discuss applications to the origins and evolution of eusociality, division of labor, the inordinate ecological success of eusocial species, and the interaction between technology and demography in human evolution. Our theory suggests that the evolution of extreme sociality may often be an autocatalytic process.  相似文献   

14.
Kümmerli R  Keller L 《Molecular ecology》2007,16(21):4493-4503
The theory of inclusive fitness provides a powerful explanation for reproductive altruism in social insects, whereby workers gain inclusive fitness benefit by rearing the brood of related queens. Some ant species, however, have unicolonial population structures where multiple nests, each containing numerous queens, are interconnected and individuals move freely between nests. In such cases, nestmate relatedness values may often be indistinguishable from zero, which is problematic for inclusive fitness-based explanations of reproductive altruism. We conducted a detailed population genetic study in the polygynous ant Formica exsecta, which has been suggested to form unicolonial populations in its native habitat. Analyses based on adult workers indeed confirmed a genetic structuring consistent with a unicolonial population structure. However, at the population level the genetic structuring inferred from worker pupae was not consistent with a unicolonial population structure, but rather suggested a multicolonial population structure of extended family-based nests. These contrasting patterns suggest limited queen dispersal and free adult worker dispersal. That workers indeed disperse as adults was confirmed by mark-recapture measures showing consistent worker movement between nests. Together, these findings describe a new form of social organization, which possibly also characterizes other ant species forming unicolonial populations in their native habitats. Moreover, the genetic analyses also revealed that while worker nestmate relatedness was indistinguishable from zero at a small geographical scale, it was significantly positive at the population level. This highlights the need to consider the relevant geographical scale when investigating the role of inclusive fitness as a selective force maintaining reproductive altruism.  相似文献   

15.
One of the hallmarks of human society is the ubiquitous interactions among individuals. Indeed, a significant portion of human daily routine decision making is socially related. Normative economic theory, namely game theory, has prescribed the canonical decision strategy when "rational" social agents have full information about the decision environment. In reality, however, social decision is often influenced by the trait and state parameters of selves and others. Therefore, understanding the cognitive and neural processes of inferring the decision parameters is pivotal for social decision making. Recently, both correlational and causal non-invasive neuroimaging studies have started to reveal the critical neural computations underlying social learning and decision-making, and highlighted the unique roles of "social" brain structures such as temporal-parietal junction(TPJ) and dorsomedial prefrontal cortex(dmPFC). Here we review recent advances in social decision neuroscience and maintain the focus on how the inference about others is dynamically acquired during social learning, as well as how the prosocial(altruistic)behavior results from orchestrated interactions of different brain regions specified under the social utility framework. We conclude by emphasizing the importance of combining computational decision theory with the identification of neural mechanisms that represent, evaluate and integrate value related social information and generate decision variables guiding behavioral output in the complex social environment.  相似文献   

16.
Ethology's renewed interest in developmental context coincides with recent insights from neurobiology and psychology on early attachment. Attachment and social learning are understood as fundamental mechanisms in development that shape core processes responsible for informing behaviour throughout a lifetime. Each field uniquely contributes to the creation of an integrated model and encourages dialogue between Tinbergen's four analytical levels: ethology in its underscoring of social systems of behaviour and context, psychology in its emphasis on socio‐affective attachment transactions, and neuroscience in its explication of the coupled development of brain and behaviour. We review the relationship between developmental context and behaviour outcome as a topic shared by the three disciplines, with a specific focus on underlying neuroethological mechanisms. This interdisciplinary convergence is illustrated through the example of abnormal behaviour in wild African elephants (Loxodonta africana) that has been systematically observed in human‐caused altered social contexts. Such disruptions impair normative socially mediated neuroendocrinological development leading to psychobiological dysregulation that expresses as non‐normative behaviour. Aberrant behaviour in wild elephants provides a critical field example of what has been established in ex situ and clinical studies but has been largely absent in wild populations: a concrete link between effects of human disturbance on social context, and short‐ and long‐term neuroethology. By so doing, it brings attention to the significant change in theories of behaviour that has been occurring across disciplines – namely, the merging of psychobiological and ethological perspectives into common, cross‐species, human inclusive models.  相似文献   

17.
The last two decades have seen an explosion in research analysing cultural change as a Darwinian evolutionary process. Here I provide an overview of the theory of cultural evolution, including its intellectual history, major theoretical tenets and methods, key findings, and prominent criticisms and controversies. ‘Culture’ is defined as socially transmitted information. Cultural evolution is the theory that this socially transmitted information evolves in the manner laid out by Darwin in The Origin of Species, i.e. it comprises a system of variation, differential fitness and inheritance. Cultural evolution is not, however, neo-Darwinian, in that many of the details of genetic evolution may not apply, such as particulate inheritance and random mutation. Following a brief history of this idea, I review theoretical and empirical studies of cultural microevolution, which entails both selection-like processes wherein some cultural variants are more likely to be acquired and transmitted than others, plus transformative processes that alter cultural information during transmission. I also review how phylogenetic methods have been used to reconstruct cultural macroevolution, including the evolution of languages, technology and social organisation. Finally, I discuss recent controversies and debates, including the extent to which culture is proximate or ultimate, the relative role of selective and transformative processes in cultural evolution, the basis of cumulative cultural evolution, the evolution of large-scale human cooperation, and whether social learning is learned or innate. I conclude by highlighting the value of using evolutionary methods to study culture for both the social and biological sciences.  相似文献   

18.
The evolution of groups into adaptive units, similar to single organisms in the coordination of their parts, is one major theme of multilevel selection theory. Another major theme is the evolution of altruistic behaviors that benefit others at the expense of self. These themes are often assumed to be strongly linked, such that altruism is required for group-level adaptation. Multilevel selection theory reveals a more complex relationship between the themes of altruism and organism. Adaptation at every level of the biological hierarchy requires a corresponding process of natural selection, which includes the fundamental ingredients of phenotypic variation, heritability, and fitness consequences. These ingredients can exist for many kinds of groups and do not require the extreme genetic variation among groups that is usually associated with the evolution of altruism. Thus, it is reasonable to expect higher-level units to evolve into adaptive units with respect to specific traits, even when their members are not genealogically related and do not behave in ways that are obviously altruistic. As one example, the concept of a group mind, which has been well documented in the social insects, may be applicable to other species.  相似文献   

19.
Incorporating culture into an expanded theory of evolution will provide the foundation for a universal account of human diversity. Two requirements must be met. The first is to see learning as an extension of the processes of evolution. The second is to understand that there are specific components of human culture, viz. higher order knowledge structures and social constructions, which give rise to culture as invented knowledge. These components, which are products of psychological processes and mechanisms, make human culture different from the forms of shared knowledge observed in other species. One serious difficulty for such an expanded theory is that social constructions may not add to the fitness of all humans exposed to them. This may be because human culture has existed for only a relatively short time in evolutionary terms. Or it may be that, as some maintain, adaptation is a limited, even a flawed, aspect of evolutionary theory.  相似文献   

20.
Many species are known to acquire valuable life skills and information from others, but until recently it was widely believed that animals did not actively facilitate learning in others. Teaching was regarded as a uniquely human faculty. However, recent studies suggest that teaching might be more common in animals than previously thought. Teaching is present in bees, ants, babblers, meerkats and other carnivores but is absent in chimpanzees, a bizarre taxonomic distribution that makes sense if teaching is treated as a form of altruism. Drawing on both mechanistic and functional arguments, we integrate teaching with the broader field of animal social learning, and show how this aids understanding of how and why teaching evolved, and the diversity of teaching mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号