首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproductive and life span traits were measured for two obligately parthenogenetic (Artemia parthenogenetica) and three sexual (two A. franciscana and one A. sinica) brine shrimp populations. For each population, clonal lineages or single mating pairs were followed through one life cycle. The relative contributions of environmental and genetic components to total phenotypic variation for 10 life-history traits in response to environmental stress (0, 10, 25 ppb Cu) were estimated. Within treatment variation (CVW) was 39% higher for sexual populations than parthenogenetic populations, with significant (p<0.05) differences in total number of offspring and number of nauplii. CVA (the change in variance due to rearing in different environments), when averaged for all traits and all populations, increased variability by 9.9%. CVA was 44.2% higher for sexual than parthenogenetic populations, with significant differences in number of broods, total number of offspring, and number of nauplii. The average genetic component of variation for the 10 traits was 23.44%, ranging from 5.26% for number of cysts to 44.87% for number of nauplii. For all traits, the environmental component of variance is greater than the genetic component measured, but every trait has a genetic component, which can potentially be acted upon by selection.  相似文献   

2.
Organisms featuring wide trait variability and occurring in a wide range of habitats, such as the ovoviviparous New Zealand freshwater snail Potamopyrgus antipodarum, are ideal models to study adaptation. Since the mid‐19th century, P. antipodarum, characterized by extremely variable shell morphology, has successfully invaded aquatic areas on four continents. Because these obligately and wholly asexual invasive populations harbor low genetic diversity compared to mixed sexual/asexual populations in the native range, we hypothesized that (1) this phenotypic variation in the invasive range might be adaptive with respect to colonization of novel habitats, and (2) that at least some of the variation might be caused by phenotypic plasticity. We surveyed 425 snails from 21 localities across northwest Europe to attempt to disentangle genetic and environmental effects on shell morphology. We analyzed brood size as proxy for fitness and shell geometric morphometrics, while controlling for genetic background. Our survey revealed 10 SNP genotypes nested into two mtDNA haplotypes and indicated that mainly lineage drove variation in shell shape but not size. Physicochemical parameters affected both shell shape and size and the interaction of these traits with brood size. In particular, stronger stream flow rates were associated with larger shells. Our measurements of brood size suggested that relatively larger slender snails with relatively large apertures were better adapted to strong flow than counterparts with broader shells and relatively small apertures. In conclusion, the apparent potential to modify shell morphology plays likely a key role in the invasive success of P. antipodarum; the two main components of shell morphology, namely shape and size, being differentially controlled, the former mainly genetically and the latter predominantly by phenotypic plasticity.  相似文献   

3.
Invasive species often exhibit either evolved or plastic adaptations in response to spatially varying environmental conditions. We investigated whether evolved or plastic adaptation was driving variation in shell morphology among invasive populations of the New Zealand mud snail (Potamopyrgus antipodarum) in the western United States. We found that invasive populations exhibit considerable shell shape variation and inhabit a variety of flow velocity habitats. We investigated the importance of evolution and plasticity by examining variation in shell morphological traits 1) between the parental and F1 generations for each population and 2) among populations of the first lab generation (F1) in a common garden, full‐sib design using Canonical Variate Analyses (CVA). We compared the F1 generation to the parental lineages and found significant differences in overall shell shape indicating a plastic response. However, when examining differences among the F1 populations, we found that they maintained among‐population shell shape differences, indicating a genetic response. The F1 generation exhibited a smaller shell morph more suited to the low‐flow common garden environment within a single generation. Our results suggest that phenotypic plasticity in conjunction with evolution may be driving variation in shell morphology of this widespread invasive snail.  相似文献   

4.
The probability of the most sensitive genotypes being eliminated from a population due to a contaminant pulse–genetic erosion–is negatively associated to the within-genotype variation. A sensitive genotype with a small phenotypic variation would be more prone to be lost–a critically sensitive genotype. Furthermore, natural populations inhabiting contaminated sites are usually exposed to several pollutants. Such co- or sequential exposure can have severe effects if at least some tolerant clonal lineages surviving one contaminant are sensitive to the others. Such an inverse relationship coupled with a low within-genotype variation potentially enhances genetic erosion. Accordingly, this study evaluated co-tolerance and the occurrence of clonal lineages critically sensitive to 48-hours lethal exposures of copper, zinc, cobalt, and chromium among eight clonal lineages of the cladocerans Daphnia longispina. Median lethal concentrations (LC50) of each metal were found to have the potential to provoke genetic erosion. Pairwise comparisons of LC50, from the eight clonal lineages, revealed neither negative nor positive correlations (r ≤ |0.56|; p ≥ 0.18), but inversely sensitive clonal lineages were found for all pairs of metals. Therefore, besides having the potential to eliminate critically sensitive clonal lineages in a first intermediately lethal pulse, all tested metals may provoke further losses of clonal lineages in an already genetically eroded population.  相似文献   

5.
Assessing the genetic adaptive potential of populations and species is essential for better understanding evolutionary processes. However, the expression of genetic variation may depend on environmental conditions, which may speed up or slow down evolutionary responses. Thus, the same selection pressure may lead to different responses. Against this background, we here investigate the effects of thermal stress on genetic variation, mainly under controlled laboratory conditions. We estimated additive genetic variance (VA), narrow-sense heritability (h2) and the coefficient of genetic variation (CVA) under both benign control and stressful thermal conditions. We included six species spanning a diverse range of plant and animal taxa, and a total of 25 morphological and life-history traits. Our results show that (1) thermal stress reduced fitness components, (2) the majority of traits showed significant genetic variation and that (3) thermal stress affected the expression of genetic variation (VA, h2 or CVA) in only one-third of the cases (25 of 75 analyses, mostly in one clonal species). Moreover, the effects were highly species-specific, with genetic variation increasing in 11 and decreasing in 14 cases under stress. Our results hence indicate that thermal stress does not generally affect the expression of genetic variation under laboratory conditions but, nevertheless, increases or decreases genetic variation in specific cases. Consequently, predicting the rate of genetic adaptation might not be generally complicated by environmental variation, but requires a careful case-by-case consideration.Subject terms: Evolutionary genetics, Climate-change ecology, Biodiversity  相似文献   

6.
Morphological variation among natural populations is a phenomenon commonly observed in marine invertebrates and well studied, particularly, in shelled gastropods. The nassariid Buccinanops globulosus is interesting to study shell shape variation because it exhibits strong interpopulation differences in life history features, including maximum size, fecundity and growth rate. In this study, we examined the pattern of variation in size and shell shape among populations and between sexes of B. globulosus (Bahía San Antonio 40°29′S 63°01′W, Playa Villarino 40°45′S 64°40′W and Bahía Nueva 42°46′S 65°02′W). In particular, we used geometric morphometric techniques to test: (1) whether the two components of shell morphology (size and shape) are independent and (2) whether shape differences between sexes are consistently found among populations, regardless of their body sizes. Our results show shell shape variation between the populations of B. globulosus of northern Patagonia. Intra-specific shell shape variation is affected by body size, indicating allometry. Regardless of the size differences, individuals from Playa Villarino have high-spired shells, and shorter apertures and wider columellar area than individuals from the other populations. Also, sex-related shape differences were consistently found at each population, thus suggesting a common sexual dimorphism in shell morphology for this species. The functional significance of the variability found is discussed in terms of the flexibility of developmental programmes for morphology as well as the evolution of phenotypic plasticity.  相似文献   

7.
Buccinum undatum is a subtidal gastropod that exhibits clear spatial variation in several phenotypic shell traits (color, shape, and thickness) across its North Atlantic distribution. Studies of spatial phenotypic variation exist for the species; however, population genetic studies have thus far relied on a limited set of mitochondrial and microsatellite markers. Here, we greatly expand on previous work by characterizing population genetic structure in B. undatum across the North Atlantic from SNP variation obtained by RAD sequencing. There was a high degree of genetic differentiation between Canadian and European populations (Iceland, Faroe Islands, and England) consistent with the divergence of populations in allopatry (F ST > 0.57 for all pairwise comparisons). In addition, B. undatum populations within Iceland, the Faroe Islands, and England are typified by weak but significant genetic structuring following an isolation‐by‐distance model. Finally, we established a significant correlation between genetic structuring in Iceland and two phenotypic traits: shell shape and color frequency. The works detailed here enhance our understanding of genetic structuring in B. undatum and establish the species as an intriguing model for future genome‐wide association studies.  相似文献   

8.
Evolutionary and ecological situations in a species’ native and invasive ranges can be drastically different. This is the case for Potamopyrgus antipodarum Gray (1843) a morphologically highly variable freshwater snail native to New Zealand, where sexual and asexual individuals coexist and experience selective pressure by sterilizing endoparasites. By contrast, only a few asexual lineages have been established in invaded regions around the globe, where parasite infection is extremely rare. We analyzed the ecomorphology of 996 native P. antipodarum in a geometric morphometric framework, using brood size as proxy for fecundity, and mtDNA and nuclear SNPs to account for relatedness and identify reproductive mode. As expected, we found genetic and morphological diversity to be higher in native than in invasive snails investigated previously, but surprisingly no higher morphological diversity in sexual versus asexual individuals. The relationships between shell morphology, habitat, and fecundity were complex. Shape variation was primarily linked to genetic relatedness but specific environmental factors including flow rate induced similar shell shapes. By contrast, shell size was largely explained by environmental factors. Fecundity was correlated with size but showed trade-offs with shape in increasingly extreme conditions. With increasing flow and toward small springs, the trend of shell shape becoming wider was reversed, i.e., snails with narrower shells were brooding more embryos. We concluded that both genetic and environmental contributions to variation in shell morphology in P. antipodarum likely play an important role in the ability of this species to adapt to a wide spectrum of habitats.  相似文献   

9.
Characters which are closely linked to fitness often have low heritabilities (VA/VP). Low heritabilities could be because of low additive genetic variation (VA), that had been depleted by directional selection. Alternatively, low heritabilities may be caused by large residual variation (VR=VPVA) compounded at a disproportionately higher rate than VA across integrated characters. Both hypotheses assume that each component of quantitative variation has an independent effect on heritability. However, VA and VR may also covary, in which case differences in heritability cannot be fully explained by the independent effects of elimination‐selection or compounded residual variation. We compared the central tendency of published behavioural heritabilities (mean=0.31, median=0.23) with morphological and life history data collected by 26 ). Average behavioural heritability was not significantly different from average life history heritability, but both were smaller than average morphological heritability. We cross‐classified behavioural traits to test whether variation in heritability was related to selection (dominance, domestic/wild) or variance compounding (integration level). There was a significant three‐way interaction between indices of selection and variance compounding, related to the absence of either effect at the highest integration level. At lower integration levels, high dominance variance indicated effects of selection. It was also indicated by the low CVA of domestic species. At the same time CVR increased disproportionately faster than CVA across integration levels, demonstrating variance compounding. However, neither CVR nor CVA had a predominant effect on heritability. The partial regression coefficients of CVR and CVA on heritability were similar and a path analysis indicated that their (positive) correlation was also necessary to explain variation in heritability. These results suggest that relationships between additive genetic and residual components of quantitative genetic variation can constrain their independent direct effects on behavioural heritability.  相似文献   

10.
A high degree of intraspecific variation, both genetic and in shell morphology, of the operculate land snail Cyclophorus fulguratus (Pfeiffer, 1854) suggests that its classification as a single species warrants reconsideration. We sequenced two nuclear (18S and 28S) and two mitochondrial (16S and COI) genes of 46 C. fulguratus specimens and used them to estimate the phylogeny and to determine the validity of species boundaries. Molecular phylogenetic analyses revealed the presence of three lineages corresponding to three geographically disjunctive populations of C. fulguratus in Thailand. Likelihood tests of topologies significantly supported the non-monophyly of the C. fulguratus–complex and Bayesian species delimitation analysis significantly supported the potential representation as distinct species of these three lineages. Discriminant function analysis based on geometric-morphometrics of shell shape allowed for significant distinction of these three candidate species, although they revealed a considerable degree of overlap of shell shape reflecting their crypsis morphologically. The diagnostic characters are provided by color pattern, pattern of protoconch and pattern of jaw. In conclusion, the results support that the C. fulguratus s.l., as currently recognized, consists of three distinct species in Thailand: C. fulguratus s.s., C. rangunensis and C. abditus sp.nov., which are described herein.  相似文献   

11.
Parasite‐mediated selection may contribute to the maintenance of genetic variation at host immune genes over long time scales. To date, the best evidence for the long‐term maintenance of immunogenetic variation in natural populations comes from studies on the major histocompatibility complex (MHC) genes, whereas evidence for such processes from other immune genes remains scarce. In the present study, we show that, despite pronounced population differentiation and the occurrence of numerous private alleles within populations, the innate immune gene Toll‐like receptor 2 (TLR2) displays a distinct haplotype structure in 21 bank vole (Myodes glareolus) populations across Europe. Haplotypes from all populations grouped in four clearly differentiated clusters, with the three main clusters co‐occurring in at least three previously described mitochondrial lineages. This pattern indicates that the distinct TLR2 haplotype structure may precede the split of the mitochondrial lineages 0.19–0.56 Mya and suggests that haplotype clusters at this innate immune receptor are maintained over prolonged time in wild bank vole populations.  相似文献   

12.
A phenotypic response, either plastic or evolved, is often required for successful invasion of novel environments. Populations of the invasive snail Potamopyrgus antipodarum have colonized a wide range of environments in the western U. S. since 1985, but the extent of plastic adjustment and evolved adaptation to local environments is largely unknown. We examined variation in shell morphology among four sites in the Snake River, Idaho, including both still-water and free-flowing river habitats and compared the variation to that of a native snail (Pyrgulopsis robusta) using geometric morphometric techniques. Using Generalized Procrustes analysis, we tested for phenotypic responses by determining (1) whether Po. antipodarum from the four locations differed in shell morphology, and (2) whether these snails exhibited corresponding shell shape variation with sympatric populations of a native snail. Both native and invasive snails exhibited similar variation in shell morphology across three of the four sites. The Canonical Variate assignment test grouped 85 % of both snail species to their rightful sample site. In addition, the Principal Component Analysis displayed similar patterns of shell variation across the four sites, indicating parallel variation in shell shape. For three of the four sites, both the native and invasive snails exhibited differences in shell shape consistent with water flow variation (still-water versus fast free-flowing river). Taken together, these results suggest that the shell shape of the invasive snail has changed either through plasticity or evolution, and that both native and invasive snail populations responded to local environmental conditions in a similar manner.  相似文献   

13.
14.
Developmental stability, canalization, and phenotypic plasticity are the most common sources of phenotypic variation, yet comparative studies investigating the relationships between these sources, specifically in plants, are lacking. To investigate the relationships among developmental stability or instability, developmental variability, canalization, and plasticity in plants, we conducted a field experiment with Abutilon theophrasti, by subjecting plants to three densities under infertile vs. fertile soil conditions. We measured the leaf width (leaf size) and calculated fluctuating asymmetry (FA), coefficient of variation within and among individuals (CVintra and CVinter), and plasticity (PIrel) in leaf size at days 30, 50, and 70 of plant growth, to analyze the correlations among these variables in response to density and soil conditions, at each of or across all growth stages. Results showed increased density led to lower leaf FA, CVintra, and PIrel and higher CVinter in fertile soil. A positive correlation between FA and PIrel occurred in infertile soil, while correlations between CVinter and PIrel and between CVinter and CVintra were negative at high density and/or in fertile soil, with nonsignificant correlations among them in other cases. Results suggested the complexity of responses of developmental instability, variability, and canalization in leaf size, as well as their relationships, which depend on the strength of stresses. Intense aboveground competition that accelerates the decrease in leaf size (leading to lower plasticity) will be more likely to reduce developmental instability, variability, and canalization in leaf size. Increased developmental instability and intra‐ and interindividual variability should be advantageous and facilitate adaptive plasticity in less stressful conditions; thus, they are more likely to positively correlate with plasticity, whereas developmental stability and canalization with lower developmental variability should be beneficial for stabilizing plant performance in more stressful conditions, where they tend to have more negative correlations with plasticity.  相似文献   

15.

Background

Population genetic theory holds that oceanic island populations are expected to have lower levels of genetic variation than their mainland counterparts, due to founder effect after island colonization from the continent. Cistus monspeliensis (Cistaceae) is distributed in both the Canary Islands and the Mediterranean region. Numerous phylogenetic results obtained in the last years allow performing further phylogeographic analyses in Cistus.

Methodology/Principal Findings

We analyzed sequences from multiple plastid DNA regions in 47 populations of Cistus monspeliensis from the Canary Islands (21 populations) and the Mediterranean basin (26 populations). The time-calibrated phylogeny and phylogeographic analyses yielded the following results: (1) a single, ancestral haplotype is distributed across the Mediterranean, whereas 10 haplotypes in the Canary Islands; (2) four haplotype lineages are present in the Canarian Islands; (3) multiple colonization events across the archipelago are inferred; (4) the earliest split of intraspecific lineages occurred in the Early to Middle Pleistocene (<930,000 years BP).

Conclusions/Significance

The contrasting pattern of cpDNA variation is best explained by genetic bottlenecks in the Mediterranean during Quaternary glaciations, while the Canarian archipelago acted as a refugium of high levels of genetic diversity. Active colonization across the Canarian islands is supported not only by the distribution of C. monspeliensis in five of the seven islands, but also by our phylogeographic reconstruction in which unrelated haplotypes are present on the same island. Widespread distribution of thermophilous habitats on every island, as those found throughout the Mediterranean, has likely been responsible for the successful colonization of C. monspeliensis, despite the absence of a long-distance dispersal mechanism. This is the first example of a plant species with higher genetic variation among oceanic island populations than among those of the continent.  相似文献   

16.
Parent-offspring comparisons were used to investigate the effects of temperature extremes on genetic variances for two life history traits and one morphological trait in Drosophila melanogaster. We considered three temperatures (14 °C, 25 °C and 28 °C) for culturing and testing flies, and considered heritabilities, coefficients of additive variation (CVA) and evolvabilities (IA) for fecundity, development time and wing length. For fecundity, heritabilities and evolvabilities were higher when parents were exposed to 14 °C compared to 28 °C. Parent-offspring comparisons suggested that genetic correlations among environments were close to 1, although lower correlations were obtained in comparisons of family means. Parent-offspring correlations across environments seemed to depend on parental temperature. For development time, heritabilities and evolvabilities were low at 14 °C compared to 28 °C. However, parent-offspring correlations were relatively high when the progeny of parents tested at 14 °C were raised at the opposite extreme, suggesting that genetic variation can be enhanced when parents and offspring experience different conditions. CVAs and IAs for development time were lower than for fecundity, even when heritability estimates were similar in magnitude. Genetic variation for wing length was generally not affected by the temperature extremes, and genetic correlations across the extremes estimated from the parent-offspring comparison were close to 1. There was no evidence for tradeoffs between traits; rapid development time was associated with high fecundity at both the phenotypic and genetic levels. The findings highlight inherent difficulties of estimating genetic parameters from parent-offspring comparisons when two generations experience different environmental extremes and also show how parent-offspring comparisons can lead to unexpected findings about the expression of genetic variation.  相似文献   

17.
The worldwide spread of diseases is considered a major threat to biodiversity and a possible driver of the decline of pollinator populations, particularly when novel species or strains of parasites emerge. Previous studies have suggested that populations of introduced European honeybee (Apis mellifera) and bumblebee species (Bombus terrestris and Bombus ruderatus) in Argentina share the neogregarine parasite Apicystis bombi with the native bumblebee (Bombus dahlbomii). In this study we investigated whether A. bombi is acting as an emergent parasite in the non-native populations. Specifically, we asked whether A. bombi, recently identified in Argentina, was introduced by European, non-native bees. Using ITS1 and ITS2 to assess the parasite’s intraspecific genetic variation in bees from Argentina and Europe, we found a largely unstructured parasite population, with only 15% of the genetic variation being explained by geographic location. The most abundant haplotype in Argentina (found in all 9 specimens of non-native species) was identical to the most abundant haplotype in Europe (found in 6 out of 8 specimens). Similarly, there was no evidence of structuring by host species, with this factor explaining only 17% of the genetic variation. Interestingly, parasites in native Bombus ephippiatus from Mexico were genetically distant from the Argentine and European samples, suggesting that sufficient variability does exist in the ITS region to identify continent-level genetic structure in the parasite. Thus, the data suggest that A. bombi from Argentina and Europe share a common, relatively recent origin. Although our data did not provide information on the direction of transfer, the absence of genetic structure across space and host species suggests that A. bombi may be acting as an emergent infectious disease across bee taxa and continents.  相似文献   

18.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   

19.
Response to selection depends on heritable genetic variation, which is affected by environmental conditions. The present study experimentally assessed whether the effect of light-related stress and the attenuating effect of shade as a facilitator of seedling germination, survival and growth affect the expression of heritable variation and the potential for a response to selection in the columnar cactus Pilosocereus leucocephalus. A reciprocal transplant experiment combined with the artificial manipulation of light/shade conditions within greenhouses was performed using seeds from controlled crosses of two natural populations (demes PN and SI). Additive genetic variance (VA), heritability (h2) and the coefficient of variation of additive variance (CVA) were estimated for per cent of germination, per cent of seedling survival and growth (biomass) under each treatment combination. Although all three recruitment traits showed evidence of different from zero heritability, this result was highly dependent upon the particular transplant site, deme and light treatment combination. The deme that is still not locally adapted (SI) showed significant heritability for all traits and much more potential for a response selection as indicated by a higher CVA than the locally adapted deme PN. The effect of light conditions on the expression of VA, h2 and CVA depended on whether the deme was grown in its native or an alien site, but this interaction was only detected for the less adapted deme of SI. Shade conditions promoted by facilitation reduced the evolutionary potential for germination of both demes through an attenuation of genetic differences among genotypes.  相似文献   

20.
Many species of fungal plant pathogens coexist as multiple lineages on the same host, but the factors underlying the origin and maintenance of population structure remain largely unknown. The rice blast fungus Pyricularia oryzae is a widespread model plant pathogen displaying population subdivision. However, most studies of natural variation in P. oryzae have been limited in genomic or geographic resolution, and host adaptation is the only factor that has been investigated extensively as a contributor to population subdivision. In an effort to complement previous studies, we analyzed genetic and phenotypic diversity in isolates of the rice blast fungus covering a broad geographical range. Using single-nucleotide polymorphism genotyping data for 886 isolates sampled from 152 sites in 51 countries, we showed that population subdivision of P. oryzae in one recombining and three clonal lineages with broad distributions persisted with deeper sampling. We also extended previous findings by showing further population subdivision of the recombining lineage into one international and three Asian clusters, and by providing evidence that the three clonal lineages of P. oryzae were found in areas with different prevailing environmental conditions, indicating niche separation. Pathogenicity tests and bioinformatic analyses using an extended set of isolates and rice varieties indicated that partial specialization to rice subgroups contributed to niche separation between lineages, and differences in repertoires of putative virulence effectors were consistent with differences in host range. Experimental crosses revealed that female sterility and early post-mating genetic incompatibilities acted as strong additional barriers to gene flow between clonal lineages. Our results demonstrate that the spread of a fungal pathogen across heterogeneous habitats and divergent populations of a crop species can lead to niche separation and reproductive isolation between distinct, widely distributed, lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号