首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a high-rate sequential recording technique that allowed simultaneous measurements of both auditory brain-stem response (ABR) and somatosensory evoked potential (SEP) every 10 sec. Using this method, a transient increase in amplitude of all the ABR and SEP components in response to hypoxia in dogs could be detected. The increase in amplitude preceded the prolongation of latency. Our study showed that there were succesive changes of evoked potentials in response to hypoxia. A transient increase in amplitude is the first to occur, followed by a latency prolongation and an amplitude decrease for both ABRs and SEPs.  相似文献   

2.
Short latency evoked potentials following stimulation of the upper lip were recorded intracranially during neurosurgical procedures in 14 patients. In 10 patients, a suboccipital craniectomy provided direct access to the trigeminal root and the pons at the root entry zone. Direct recordings from the trigeminal root were characterized by a large triphasic potential at 2.4–2.7 msec. The latency of this potential increased as a result of moving the recording electrode proximally towards the brain-stem. The same potential could be recorded from the brain-stem surface at a latency suggesting an intra-axial presynaptic origin. A second component, N4.7, was recorded from over the most rostral aspect of the brain-stem in 3 patients and from the tentorium free edge in 4 patients. This potential of smaller amplitude did not show significant difference in latency or polarity at various electrode locations, suggesting a deep diencephalic origin remote from the recording electrode.  相似文献   

3.
During development, the sense of hearing changes rapidly with age, especially around hearing onset. During this period, auditory structures are highly sensitive to alterations of the acoustic environment, such as hearing loss or background noise. This sensitivity includes auditory temporal processing, which is important for processing complex sounds, and for acquiring reading and language skills. Developmental changes can be observed at multiple levels of brain organization—from behavioral responses to cellular responses, and at every auditory nucleus. Neuronal properties and sound processing change dramatically in auditory cortex neurons after hearing onset. However, development of its primary source, the auditory thalamus, or medial geniculate body (MGB), has not been well studied over this critical time window. Furthermore, to understand how temporal processing develops, it is important to determine the relative maturation of temporal processing not only in the MGB, but also in its inputs. Cellular properties of rat MGB neurons were studied using in vitro whole‐cell patch‐clamp recordings, at ages postnatal day (P) 7–9; P15–17, and P22–32. Auditory evoked potentials were measured in P14–17 and P22–32 rats. MGB action potentials became about five times faster, and the ability to generate spike trains increased with age, particularly at frequencies of 50 Hz and higher. Evoked potential responses, including auditory brainstem responses (ABR), middle latency responses (MLR), and amplitude modulation following responses, showed increased amplitudes with age, and ABRs and MLRs additionally showed decreased latencies with age. Overall, temporal processing at subthalamic nuclei is concurrently maturing with MGB cellular properties. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 541–555, 2014  相似文献   

4.
Auditory brain-stem response (ABR) was measured in 40 patients (80 ears) with confirmed hydrocephalus. Eighty-eight percent of these patients showed some form of ABR abnormality. Responses indicative of brain-stem dysfunction consisted of prolonged I–V interwave latency (38%), reduced V/I amplitude ratio (33%), and abnormalities in wave-shape of components III (27%) and V (53%). In addition, 70% of the patients had elevated ABR thresholds; 45% had responses in excess of 20 dB HL and the remaining 25% had no ABR activity. The etiology of the hydrocephalus, head circumference and brain-stem symptoms were not associated with particular ABR abnormalities. Communicating hydrocephalus correlated significantly with both prolonged I–V conduction time and absence of ABR activity, compared with non-communicating hydrocephalus. Four of the 9 patients retested showed ABR improvement on follow-up; one patient showed deterioration.The results were compared to our prior studies of ABR in 60 post-meningitic patients and in 100 severely neurologically impaired institutionalized children in whom the incidence of intrinsic brain-stem abnormalities was one-third and two-thirds that of the hydrocephalic group, respectively.The results of this study suggest that ABR can be used to document clinically unsuspected brain-stem pathology that may accompany hydrocephalus. Auditory brain-stem dysfunction is likely to complicate the assessment of hearing sensitivity in hydrocephalic patients.  相似文献   

5.
Previous investigators have reported that newborn auditory evoked brain-stem responses (ABRs) are 20–30 dB higher than adult psychophysical thresholds to the same stimuli. These investigators reduced the intensity of the stimulus until they no longer reported an ABR to the stimulus. We adapted 2 widely used psychophysical methods, the up-down-transformed response (UDTR) method and the method of constant stimuli, for ABR threshold determination of human newborns. Response judgments were made blindly. ABR thresholds of healthy normal newborns by both procedures were no more than 10–15 dB higher than adult psychophysical thresholds. The differences between the newborn ABR thresholds we reported and those in the literature were probably explained by different procedures including the method used to estimate adult psychophysical thresholds. The correlations between ABR thresholds and suprathreshold ABR latencies and amplitudes and latency and amplitude/intensity functions were modest at best. In normal newborns suprathreshold ABR measurements are of little value in predicting ABR thresholds.  相似文献   

6.
Auditory nerve brain-stem (ABR) and somatosensory evoked responses (SER) were recorded in cats as body temperature was uniformly lowered from 37 to 27°C. Analysis of the results showed that the alterations in the evoked responses were due to disturbances induced both in axonal propagation and synaptic transmission by the hypothermia. By studying the first wave of the SER, which is solely an axonal event, and by assuming reasonable values for the total synaptic delay and axonal propagation times along the ABR pathway, it was concluded that this lesion model induced an effect on synaptic transmission 1.3–1.7 times greater than that on axonal propagation. There was a strong inverse correlation between wave latency and body temperature, with slightly steeper slopes for the longer latency waves. Wave amplitudes were not correlated with temperature. Furthermore, the wave latencies and amplitudes were generally not dependent on stimulus rate.  相似文献   

7.

Background

Visual cross-modal re-organization is a neurophysiological process that occurs in deafness. The intact sensory modality of vision recruits cortical areas from the deprived sensory modality of audition. Such compensatory plasticity is documented in deaf adults and animals, and is related to deficits in speech perception performance in cochlear-implanted adults. However, it is unclear whether visual cross-modal re-organization takes place in cochlear-implanted children and whether it may be a source of variability contributing to speech and language outcomes. Thus, the aim of this study was to determine if visual cross-modal re-organization occurs in cochlear-implanted children, and whether it is related to deficits in speech perception performance.

Methods

Visual evoked potentials (VEPs) were recorded via high-density EEG in 41 normal hearing children and 14 cochlear-implanted children, aged 5–15 years, in response to apparent motion and form change. Comparisons of VEP amplitude and latency, as well as source localization results, were conducted between the groups in order to view evidence of visual cross-modal re-organization. Finally, speech perception in background noise performance was correlated to the visual response in the implanted children.

Results

Distinct VEP morphological patterns were observed in both the normal hearing and cochlear-implanted children. However, the cochlear-implanted children demonstrated larger VEP amplitudes and earlier latency, concurrent with activation of right temporal cortex including auditory regions, suggestive of visual cross-modal re-organization. The VEP N1 latency was negatively related to speech perception in background noise for children with cochlear implants.

Conclusion

Our results are among the first to describe cross modal re-organization of auditory cortex by the visual modality in deaf children fitted with cochlear implants. Our findings suggest that, as a group, children with cochlear implants show evidence of visual cross-modal recruitment, which may be a contributing source of variability in speech perception outcomes with their implant.  相似文献   

8.
Three-channel Lissajous' trajectories (3-CLTs) of the auditory brain-stem response (ABR) were recorded from anesthetized adult cats with 2 different orthogonal and 3 different non-orthogonal recording configurations. Click stimuli were presented monaurally at 70 dB impulse SPL. Planar analysis identified 12 planar segments regardless of electrode configurations. Boundaries, apex latencies, and durations of the planar segments were relatively unchanged by changes in recording locations, in contrast to changes in single-channel ABR peak latencies and amplitudes. The 3-CLT orientation and shape were maintained in voltage-space despite changes in electrode positions, provided that the recording axes remained orthogonal and a simple cosine correction was applied. Non-orthogonal recording axes resulted in 3-CLTs which differed in shape from 3-CLTs recorded from orthogonal recording axes, but had similar planar-segment boundaries and durations. We conclude that the 3-CLT has characteristics which are generator-dependent and unaffected by electrode position if appropriate spatial corrections are applied.  相似文献   

9.
BAEPs were recorded from the basal surface of the temporal lobe by subdural electrodes chronically implanted in 6 patients who were evaluated for surgical management of intractable partial seizures. Near-field recordings were obtained by recording between the subdural electrode closet and most distant to the brain-stem. Far-field recordings were obtained by recording between the subdural electrodes and an indifferent electrode over the spinal process of the seventh cervical vertebrae. The recordings were compared with standard ear-vertex recordings.After ipsilateral ear stimulation, the subdural electrode closet to the brain-stem recorded large amplitude waves I and II, followed by less well-defined waves of longer latencies. Recordings to contralateral stimulation showed no clearly defined waves I and II and a large amplitude wave Vn. Waves III, IV, V, Vn and VI were of opposite polarity after ipsi- and contralateral stimulation. These findings indicate that waves I and II are generated ipsilaterally to the stimulation side, whereas wave Vn has a contralateral origin. Wave Vn may be generated in the brachium of the inferior colliculus, as suggested from latency and from dipole configuration studies. This conclusion is consistent with the classical anatomical observations that the supracollicular auditory pathways are predominantly crossed.  相似文献   

10.
Auditory brain-stem responses (ABRs) were studied in 66 subjects with severe head trauma. Middle latency responses (MLRs) were also recorded in 22 of them. Patients were carefully selected to avoid conditions such as pre-existing or acute deafness, hypothermia or ethanol intoxication. In order to evaluate the usefulness of potentials in predicting recorery, patients were classified according to the Glasgow Coma Scale (GCS). ABR tracings were classified into 5 groups and MLR into 2 groups. The recovery was good in the presence of a type 1 ABR, poor in the presence of types 3,4 and 5. Concerning type 2 ABR, the outcome is related to the MLR type, and to the presence of an electrophysiological improvement within the first 3 months following trauma. The reliability of ABR and MLR in predicting the outcome of severe head injury appears to be greater than other usually considered clinical and instrumental data (age, GCS, CT scan, EEG).  相似文献   

11.
Temporal auditory mechanisms were measured in killer whales ( Orcinus orca ) by recording auditory evoked potentials (AEPs) to clicks. Clicks were presented at rates from 10/sec to 1,600/sec. At low rates, clicks evoked an AEP similar to the auditory brainstem response (ABR) of other odontocetes; however, peak latencies of the main waves were 3–3.7 msec longer than in bottlenose dolphins. Fourier analysis of the ABR showed a prominent peak at 300–400 Hz and a smaller one at 800–1,200 Hz. High-rate click presentation (more than 100/sec) evoked a rate-following response (RFR). The RFR amplitude depended little on rate up to 400/sec, decreased at higher rates and became undetectable at 1,120/sec. Fourier analysis showed that RFR fundamental amplitude dependence on frequency closely resembled the ABR spectrum. The fundamental could follow clicks to around 1,000/sec, although higher harmonics of lower rates could arise at frequencies as high as 1,200 Hz. Both RFR fundamental phase dependence on frequency and the response lag after a click train indicated an RFR group delay of around 7.5 msec. This corresponds to the latency of ABR waves PIII-NIV, which indicates the RFR originates as a rhythmic, overlapping ABR sequence. The data suggest the killer whale auditory system can follow high click rates, an ability that may have been selected for as a function of high-frequency hearing and the use of rapid clicks in echolocation.  相似文献   

12.
We compare the click-evoked compound action potentials from the exposed intracranial portion of the eight nerve using bipolar and monopolar recording electrodes in patients undergoing vestibular nerve section. It is assumed that a bipolar recording electrode will only record propagated neural activity in the auditory nerve, whereas a monopolar recording electrode may in addition record electrical activity that is conducted passively to the recording site. The results of the present study confirm that the earliest detectable propagated neural activity in the intracranial portion of the auditory nerve occurs with a latency that is close to that of peak II of the brain-stem auditory evoked potentials, and the results also confirm that the late components in the click-evoked compound action potentials that have been demonstrated previously using the monopolar recording technique represent propagated neural activity in the auditory nerve. The results also indicate that the responses that are recorded by a bipolar recording electrode, when the small tips of which are placed on the eight nerve when it is relatively dry, represent only small populations of nerve fibers. Even when an attempt is made to align the two tips of a bipolar electrode with the course of the auditory nerve, this type of electrode may record from different populations of nerve fibers.  相似文献   

13.
Auditory middle latency and steady-state responses (MLR/SSRs) were recorded in normal infants (aged 3 weeks to 28 months) and adults. SSR amplitudes were maximum using stimulus presentation rates near 40 Hz in adults. By contrast, the infant data showed no consistent amplitude maximum across the rates tested (9–59 Hz). With the exception of the brain-stem response wave V to MLR Na deflection, MLR components in infant's responses to 10.85 Hz clicks did not show any consistent pattern. To investigate the hypothesis that the 40 Hz SSR is derived from overlapping of the 10 Hz MLR components, 43.4 Hz SSRs were synthesized from the responses recorded at 10.85 Hz and compared with those recorded at 43.4 Hz. The predictive accuracy of the synthesized 43.4 Hz SSRs was significantly better in adults than in infants. The results of these studies indicate the presence of large age-related differences in the auditory MLR and SSR, and in the relationship between the two responses.  相似文献   

14.
Middle latency responses (MLRs) in the 10–100 msec latency range, evoked by click stimuli, were studied in 14 adult volunteer subjects during sleep-wakefulness to determine whether such changes in state were reflected by any MLR component. Evoked potentials were collected in 500 trial averages during continuos presentation of 1/sec clicks during initial awake recordings and thereafter during a 2 h afternoon nap or all-night sleep session. Continuously recorded EEG, EOG and EMG were scored for wakefulness, stages 2–4 of slow wave sleep (SWS), and rapid eye movement (REM) sleep during each evoked potential epoch. The major components included in this study and their latency ranges, as determined by peak latency measurements from the awake records, were: ABR V, 5–8 msec, Pa, 30–40 msec, Nb, 45–55 msec, and P1, 55–80 msec. In agreement with previous reports, ABR V and Pa showed no amplitude changes from wakefulness to either SWS or REM. Not previously reported, however, was the dramatic decrease and disappearance of P1 during SWS and its reappearance during REM to an amplitude similar to that during wakefulness. This unique linkage between a particular evoked potential component and sleep-wakefulness indicates that its generator system must be functionally related to states of arousal. Relevant data from the cat model suggest that the generator substrate for P1 may be within the ascending reticular activating system.  相似文献   

15.
Brain-stem auditory evoked responses (BAERs) were recorded both to rarefaction and condensation click stimulation in 92 normal hearers and 78 patients with varying degrees of cochlear hearing loss (N = 340 ears). Frequency distributions of rarefaction minus condensation (R - C) latency and amplitude differences revealed clinically significant polarity effects in a substantial percentage of the patients studied. Bivariate plots of R - C latency and amplitude differences versus average high frequency hearing loss (PTA 3) demonstrated that the magnitude of the R - C latency and amplitude differences also seemed to be influenced by degree of high frequency hearing loss. Results are discussed relative to the phase-locking properties of the afferent auditory nerve fibers and the possible electrodiagnostic consequences of recording the BAER either to alternating or condensation clicks.  相似文献   

16.
Recordings from the vicinity of the cochlear nucleus in 9 patients undergoing microvascular decompression operations to relieve hemifacial spasm, trigeminal neuralgia, tinnitus, and disabling positional vertigo were conducted by placing a monopolar electrode in the lateral recess of the fourth ventricle (through the foramen of Luschka), the floor of which is the dorsolateral surface of the dorsal cochlear nucleus. The click-evoked potentials recorded by such an electrode display a slow negative wave with a peak latency of about 6–7 msec on which several sharp peaks are superimposed. None of the peaks in the recordings from the vicinity of the cochlear nucleus coincided with any vertex-positive peaks of the brain-stem auditory evoked potentials. In recordings from the lateral aspect of the floor of the fourth ventricle near the cochlear nucleus 1 patient showed 2 positive peaks, the earliest of which had a latency close to that of peak II and the second of which had a latency close to the negative peak between peaks III and IV of the brain-stem auditory evoked potentials. There is a distinct negative peak in the responses recorded from the midline of the floor of the fourth ventricle, the latency of which is only slightly shorter than that of peak V of the brain-stem auditory evoked potentials, supporting earlier findings that the sharp tip of peak V of the brain-stem auditory evoked potentials is generated by the termination of the lateral lemniscus in the inferior colliculus.  相似文献   

17.
Our knowledge of the hearing abilities of frogs and toads is largely defined by work with a few well-studied species. One way to further advance comparative work on anuran hearing would be greater use of minimally invasive electrophysiological measures, such as the auditory brainstem response (ABR). This study used the ABR evoked by tones and clicks to investigate hearing in Cope’s gray treefrog (Hyla chrysoscelis). The objectives were to characterize the effects of sound frequency, sound pressure level, and subject sex and body size on ABRs. The ABR in gray treefrogs bore striking resemblance to ABRs measured in other animals. As stimulus level increased, ABR amplitude increased and latency decreased, and for responses to tones, these effects depended on stimulus frequency. Frequency-dependent differences in ABRs were correlated with expected differences in the tuning of two sensory end organs in the anuran inner ear (the amphibian and basilar papillae). The ABR audiogram indicated two frequency regions of increased sensitivity corresponding to the expected tuning of the two papillae. Overall, there was no effect of subject size and only small effects related to subject sex. Together, these results indicate the ABR is an effective method to study audition in anurans.  相似文献   

18.
The brain-stem auditory evoked potential (BAEP), a sensitive test of the functional status of the neonatal brain, has not been studied in utero since no practical technique for human fetal recording is available. We have developed a simple recording technique which allows continuous monitoring of the fetal AEP during labor. Waves I, III and V of the fetal brain-stem AEP have been consistently identified. Wave form morphology, interpeak latencies, and latency-intensity relations are similar to postnatal recordings. Middle latency potentials have also been recorded, with wave forms that correspond to the neonatal middle latency AEP.  相似文献   

19.
Effects of stimulus repetition rate on the slow and fast components of the auditory brain-stem response (ABR) were investigated in 10 adult subjects with normal hearing. The ABRs were recorded with click stimuli at repetition rates of 8, 13.3, 23.8, 40 and 90.9/sec and at an intensity level of 55 dB nHL. Power spectral analysis of the averaged responses was performed. Then the responses were divided into a slow component (0–400Hz) and a fast component (400–1500 Hz) by using digital filtering technique. The magnitude of the slow component was little affected with increasing stimulus rate from 8/sec to 90.9/sec, while successive waves of the fast component, including wave V, decreased in amplitude as stimulus rate was increased. The latency of the slow component and each wave of the fast component was prolonged with increasing click rates. The shift of latency became longer in the later waves than in the earlier waves.  相似文献   

20.
Simultaneous epidural and cortical depth recordings of the auditory middle latency reponse (MLR) were obtained from 18 anesthetized guinea pigs. Microelectrodes were advanced at a right angle to the cortical surface at sites shown to be optimal for recording surface MLRs.Transcortical polarity reversals of waves A (14 msec) and B (24 msec) of the MLR were recorded in depth penetrations initiated at sites on the temporal lobe with large amplitude surface potentials. In 6 of 18 penetrations yielding phase inversions, wave polarities changed abruptly as microelectrodes were advanced into the cortex. In the remaining penetrations, the reversals were preceded by gradual decreases in wave latencies at progressively deep sites. As electrodes were advanced beyond the depth at which polarity reversals were encountered, decreases in amplitude and only minor changes in latency were observed.Surface and depth MLR activity were temporarily eliminated immediately after electrolytic lesions were made at polarity reversal sites. Recovery of responses occurred within 30–60 min. Lesions produced in penetrations initiated at sites with no surface MLR activity had no effect. Histologic examination confirmed the location of the phase reversal sites as being within grey matter of the temporal lobe.These results are consistent with previous investigations in experimental animals which demonstrated transcortical polarity reversals, and provide evidence for dipolar generating systems of the early components of the MLR at the cortical level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号