首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The rice homeobox gene OSH15 (Oryza sativa homeobox) is a member of the knotted1-type homeobox gene family. We report here on the identification and characterization of a loss-of-function mutation in OSH15 from a library of retrotransposon-tagged lines of rice. Based on the phenotype and map position, we have identified three independent deletion alleles of the locus among conventional morphological mutants. All of these recessive mutations, which are considered to be null alleles, exhibit defects in internode elongation. Introduction of a 14 kbp genomic DNA fragment that includes all exons, introns and 5'- and 3'- flanking sequences of OSH15 complemented the defects in internode elongation, confirming that they were caused by the loss-of-function of OSH15. Internodes of the mutants had abnormal-shaped epidermal and hypodermal cells and showed an unusual arrangement of small vascular bundles. These mutations demonstrate a role for OSH15 in the development of rice internodes. This is the first evidence that the knotted1-type homeobox genes have roles other than shoot apical meristem formation and/or maintenance in plant development.  相似文献   

5.
6.
Morphological and histological observations were made on eight dwarf mutants arising either as seedlings from sexual reproduction or from somatic bud mutations (witches'-brooms in the crowns of normal trees). The most predominate morphological trait contributing to the expression of dwarfism in all taxa was the reduction of final internode lengths along the shoot axis. In taxa of sexual origin, with the exception of Prunus, there was a consistent reduction in the number of preformed leaves contained in the winter buds. In addition, in two taxa (Liquidambar and Tsuga) there was an almost complete absence of neoformed leaves and sylleptic branches on current year shoots. Conversely, in mutants of somatic origin there was no apparent reduction in the number of preformed leaves. Genetic dwarfness in this group resulted solely from decreases in final internode length. Significant differences in the cellular basis of dwarfism between mutants of different genetic origins are clearly evident. In dwarf trees arising from sexual reproduction, reduction in final internode length is attributed predominately to inhibition of mitotic activity in developing internodes resulting in highly significant decreases in final cell number, and not cell length. In mutants of somatic origin, the reduction in length of mature internodes results from a decrease in final cell length, rather than a decrease in cell number. Physiological mechanisms associated with the genetic expression of these morphogenetic differences are suggested.  相似文献   

7.
Mazzella MA  Bertero D  Casal JJ 《Planta》2000,210(3):497-501
 Vegetative plants of Arabidopsis thaliana (L.) Heynh. form a compact rosette of leaves in which internode growth is virtually arrested. Rapid extension of the internodes occurs after flower buds are present in the reproductive apex. Under natural radiation, continuous light from fluorescent lamps, or short photoperiods of light from fluorescent lamps, plants of the phyB cry1 double mutant (lacking both phytochrome B and cryptochrome 1) did not form normal rosettes because all the internodes showed some degree of elongation. Internode elongation was weak in the phyB single mutant and absent in the cry1 mutant, indicating redundancy between phytochrome B and cryptochrome 1. The absence of phytochrome A caused no effects. The failure to form normal rosettes was conditional because internode elongation was arrested at low temperatures in all the mutant combinations. In contrast, the temperature dependence of phytochrome B and cryptochrome 1 effects on hypocotyl growth was weak. The elongation of the internodes in phyB cry1 was not accompanied by early flowering as showed by the lack of effects on the final number of leaves. Apex dissection indicated that in phyB cry1 double mutants internode elongation anticipated the transition from the vegetative to the reproductive stage. Thus, stem growth in Arabidopsis thaliana is not fully dependent on the program of reproductive development. Received: 2 June 1999 / Accepted: 13 August 1999  相似文献   

8.
Tsuda K  Ito Y  Sato Y  Kurata N 《The Plant cell》2011,23(12):4368-4381
Self-maintenance of the shoot apical meristem (SAM), from which aerial organs are formed throughout the life cycle, is crucial in plant development. Class I Knotted1-like homeobox (KNOX) genes restrict cell differentiation and play an indispensable role in maintaining the SAM. However, the mechanism that positively regulates their expression is unknown. Here, we show that expression of a rice (Oryza sativa) KNOX gene, Oryza sativa homeobox1 (OSH1), is positively regulated by direct autoregulation. Interestingly, loss-of-function mutants of OSH1 lose the SAM just after germination but can be rescued to grow until reproductive development when they are regenerated from callus. Double mutants of osh1 and d6, a loss-of-function mutant of OSH15, fail to establish the SAM both in embryogenesis and regeneration. Expression analyses in these mutants reveal that KNOX gene expression is positively regulated by the phytohormone cytokinin and by KNOX genes themselves. We demonstrate that OSH1 directly binds to five KNOX loci, including OSH1 and OSH15, through evolutionarily conserved cis-elements and that the positive autoregulation of OSH1 is indispensable for its own expression and SAM maintenance. Thus, the maintenance of the indeterminate state mediated by positive autoregulation of a KNOX gene is an indispensable mechanism of self-maintenance of the SAM.  相似文献   

9.
The ontogeny of peroxidase activity and isoenzyme pattern wasinvestigated in the stem of dwarf pea plants. Peroxidase activityper unit soluble protein was a given internode is highest inthe youngest growth stage, drops during elongation, remainsconstant upon cessation of growth, and increase at senescence.The lower the internode on the stem the higher is its peroxidaseactivity. These developmental differences are already apparentat the youngest growth stage of the internodes adn increaseduring elongation. Several anodic and five cathodic isoperoxidasesare apparent after starch gel electrophoresis. This patternis constant for all internodes at all growth stages, but therelative importance of particular isoenzymes changes with time. Gibberellic acid (GA3) treatment causes greatly elongated internodes,decreased soluble protein, and inhibition of the rise in peroxidaseactivity within 4–8 h. Application of GA3 to young internodesleads to a persistent depression in peroxidase activity, whiletreated older internodes suffer only a temporary depression.GA3 causes no qualitative changes in the isoenzyme pattern butproduces some quantitative alterations in internodes in whichits influence on peroxidase activity is persistent. Decapitation of untreated and GA3-treated dwarfs has littleinfluence on internode elongation, causes an increase in peroxidaseactivity, especially in the upper internodes, and alters therelative activity of particular isoenzymes. By contrast, decapitationinhibits elongation of young internodes in genetically tallpea plants.  相似文献   

10.
Excised stem sections of deepwater rice (Oryza sativa L.) containing the highest internode were used to study the induction of rapid internodal elongation by gibberellin (GA). It has been shown before that this growth response is based on enhanced cell division in the intercalary meristem and on increased cell elongation. In both GA-treated and control stem sections, the basal 5-mm region of the highest internode grows at the fastest rate. During 24 h of GA treatment, the internodal elongation zone expands from 15 to 35 mm. Gibberellin does not promote elongation of internodes from which the intercalary meristem has been excised. The orientation of cellulose microfibrils (CMFs) is a determining factor in cell growth. Elongation is favored when CMFs are oriented transversely to the direction of growth while elongation is limited when CMFs are oriented in the oblique or longitudinal direction. The orientation of CMFs in parenchymal cells of GA-treated and control internodes is transverse throughout the internode, indicating that CMFs do not restrict elongation of these cells. Changes in CMF orientation were observed in epidermal cells, however. In the basal 5-mm zone of the internode, which includes the intercalary meristem, CMFs of the epidermal cell walls are transversely oriented in both GA-treated and control stem sections. In slowly growing control internodes, CMF orientation changes to the oblique as cells are displaced from this basal 5-mm zone to the region above it. In GA-treated rapidly growing internodes, the reorientation of CMFs from the transverse to the oblique is more gradual and extends over the 35-mm length of the elongation zone. The CMFs of older epidermal cells are obliquely oriented in control and GA-treated internodes. The orientation of the CMFs parallels that of the cortical microtubules. This is consistent with the hypothesis that cortical microtubules determine the direction of CMF deposition. We conclude that GA acts on cells that have transversely oriented CMFs but does not promote growth of cells whose CMFs are already obliquely oriented at the start of GA treatment.  相似文献   

11.
The two varieties—Bourbon (B) and its natural mutant Bourbon pointu (BP)—of Arabica coffee (Coffea arabica L.) differ by an epigenetic, monolocus, and recessive laurina mutation that results in pleiotropic effects, such as tree dwarfism and tree-shape modification. The objective of the study was to search for the origin of the differences in size and shape of the tree both at the macroscopic (length and number of internodes, branching angle) and at the microscopic levels (size and number of cells within the internode pith). At the macroscopic level, the laurina mutation acted only by decreasing the internode size. Neither the angle of branching nor the number of internodes was influenced by the mutation. At the microscopic level, the mutation lowered mainly the number of cells present along the longitudinal axis of the internode, and, at a lesser extent, the cell height. Especially, the internode size decreasing explained both the tree dwarfism and the tree-shape modification. In fact, the laurina mutation strengthened the dwarfism of plagiotropic internodes when compared to that of the orthotropic ones, and such an impact was mainly due to a strong cell number decrease. To summarize, two major pleiotropic effects of the laurina mutation can be explained only by a modification of the trade-off between meresis and auxesis during the internode growth. This opens new perspectives for the characterization of the other effects at the hormonal level, and then, for the identification of the gene at the molecular level.  相似文献   

12.
In vascular plants, the regulation of stem cell niche determines development of aerial shoot which consists of stems and lateral organs. Intercalary meristem (IM) controls internode elongation in rice and other grasses, however little attention has been paid to the underlying mechanism of stem cell maintenance. Here, we investigated the stem development in rice and showed that the Shortened Uppermost Internode 1 (SUI1) family of genes are pivotal for development of rice stems. We demonstrated that SUI-family genes regulate the development of IM for internode elongation and also the cell expansion of the panicle stem rachis in rice. The SUI-family genes encoded base-exchange types of phosphatidylserine synthases (PSSs), which possessed enzymatic activity in a yeast complementary assay. Overexpression of SUI1 and SUI2 caused outgrowths of internodes during vegetative development, and we showed that expression patterns of Oryza Sativa Homeobox 15 (OSH15) and Histone4 were impaired. Furthermore, genome-wide gene expression analysis revealed that overexpression and RNA knockdown of SUI-family genes affected downstream gene expression related to phospholipid metabolic pathways. Moreover, using Ultra-performance liquid chromatography–quadrupole time of flight-mass spectrometry, we analyzed PS contents in different genetic backgrounds of rice and showed that the quantity of very long chain fatty acids PS is affected by transgene of SUI-family genes. Our study reveals a new mechanism conveyed by the SUI1 pathway and provides evidence to link lipid metabolism with plant stem cell maintenance.  相似文献   

13.
A spontaneous rice mutant, erect leaf1 (elf1–1), produced a dwarf phenotype with erect leaves and short grains. Physiological analyses suggested that elf1–1 is brassinosteroid-insensitive, so we hypothesized that ELF1 encodes a positive regulator of brassinosteroid signaling. ELF1, identified by means of positional cloning, encodes a protein with both a U-box domain and ARMADILLO (ARM) repeats. U-box proteins have been shown to function as E3 ubiquitin ligases; in fact, ELF1 possessed E3 ubiquitin ligase activity in vitro. However, ELF1 itself does not appear to be polyubiquitinated. Mutant phenotypes of 2 more elf1 alleles indicate that the entire ARM repeats is indispensable for ELF1 activity. These results suggest that ELF1 ubiquitinates target proteins through an interaction mediated by ARM repeats. Similarities in the phenotypes of elf1 and d61 mutants (mutants of brassinosteroid receptor gene OsBRI1), and in the regulation of ELF1 and OsBRI1 expression, imply that ELF1 functions as a positive regulator of brassinosteroid signaling in rice.  相似文献   

14.
Rice internodes must have the proper shape to support high-yielding panicles. The shape of internodes is controlled by various factors involved in their formation, such as developmental patterns, cell division, cell elongation, and cell wall biosynthesis. To understand the regulation of internode development, we screened dwarf mutants to identify those with a phenotype of ectopic deposits of phenolic components in parenchyma cell walls of internodes. We named these mutants ectopic deposition of phenolic components1 (edp1). Two alleles were identified, edp1-1 and edp1-2. Furthermore, these mutants showed disordered cell files in internode parenchyma. These abnormal phenotypes were very similar to that of a previously reported dwarf50 (d50) mutant. Genetic analyses of edp1 mutants revealed that the edp1 loci are distinct from d50. Our results indicate that analyses of edp1 mutants as well as the d50 mutant will be useful for understanding the molecular mechanisms behind ectopic deposition of cell wall phenolic components in internode parenchyma cells and the regulation of internode development.  相似文献   

15.
16.
17.
In the stem of Phaseolus vulgaris L. the specific activity ofacid invertase was highest in the most rapidly elongating internode.Activity of the enzyme was very low in internodes which hadcompleted their elongation, in young internodes before the onsetof rapid elongation, and in the apical bud. From shortly afterits emergence from the apical bud the elongation of internode3 was attributable mainly to cell expansion. Total and specificactivities of acid invertase in this internode rose to a maximumat the time of most rapid elongation and then declined. Transferof plants to complete darkness, or treatment of plants withgibberellic acid (GA3), increased the rate of internode elongationand final internode length by stimulating cell expansion. Bothtreatments rapidly increased the total and specific activitiesof acid invertase in the responding internodes; peak activitiesof the enzyme occurred at the time of most rapid cell expansion. In light-grown plants, including those treated with GA3, rapidcell and internode elongation and high specific activities ofacid invertase were associated with high concentrations of hexosesugar and low concentrations of sucrose. As cell growth ratesand invertase activities declined, the concentration of hexosefell and that of sucrose rose. In plants transferred to darkness,stimulated cell elongation was accompanied by a rapid decreasein hexose concentration and the disappearance of sucrose, indicatingrapid utilization of hexose. No sucrose was detected in theapical tissues of light-grown plants. The results are discussed in relation to the role of acid invertasein the provision of carbon substrates for cell growth. Key words: Cell expansion, Acid invertase, Hexose, Sucrose, Phaseolus  相似文献   

18.
Partial submergence induces rapid internodal elongation in deepwater rice (Oryza sativa L., cv Habiganj Aman II). We measured in vivo extensibility, tissue tension, hydraulic conductance and osmotic potential in the region of cell elongation in the uppermost internode. The in vivo extensibility of the internode, measured by stretching of living tissue with a custom-made constant stress extensiometer, rose rapidly following submergence of the plant. Both the elastic (Eel) and plastic (Epl) extensibility increased when growth of the internode was induced. The submerged internode displayed tissue tension (elastic outward bending of longitudinally split internode sections); in air-grown control internodes, no such bending occurred. The hydraulic conductance, estimated from the kinetics of tissue shrinkage in 0.5 molar mannitol and subsequent swelling in distilled water, was not changed by submergence. The osmotic potential, measured with a dew-point hygrometer using frozen-thawed tissue, was only 18% less negative in the submerged internode than in the air-grown control. This indicates that osmoregulation takes place in rapidly elongating rice internodes. We suggest that the rapid expansion of the newly formed internodal cells of submerged plants is controlled by the yielding properties (Epl) of the cell walls. Experiments with excised stem sections indicate that gibberellin is involved in increasing the Epl of the elongating cell walls.  相似文献   

19.
The internodes of Merremia emarginata plant showed exceptionally high stretchability throughout the development period. Therefore, it provides excellent material to study the changes undergoing during cell elongation. In this study, the influence of the hormone treatments (GA3, PAA and NAA) on the wall component synthesis was analyzed in relation to elongation growth during internode development. A clear increasing trend of wall components was observed with increase in internode length. The non-esterified pectic substances were markedly correlated with internode length while esterified pectic substances showed correlation only in hormone treated internodes. Low molecular weight xyloglucans content showed correlation only in GA3 and NAA treated internodes, while high molecular weight xyloglucans were significantly correlated with length of internodes treated with PAA and NAA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号