首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding cardiac blood flow patterns has many applications in analysing haemodynamics and for the clinical assessment of heart function. In this study, numerical simulations of blood flow in a patient-specific anatomical model of the left ventricle (LV) and the aortic sinus are presented. The realistic 3D geometry of both LV and aortic sinus is extracted from the processing of magnetic resonance imaging (MRI). Furthermore, motion of inner walls of LV and aortic sinus is obtained from cine-MR image analysis and is used as a constraint to a numerical computational fluid dynamics (CFD) model based on the moving boundary approach. Arbitrary Lagrangian–Eulerian finite element method formulation is used for the numerical solution of the transient dynamic equations of the fluid domain. Simulation results include detailed flow characteristics such as velocity, pressure and wall shear stress for the whole domain. The aortic outflow is compared with data obtained by phase-contrast MRI. Good agreement was found between simulation results and these measurements.  相似文献   

2.
The shape of the separating surface formed by the streamlines entering the branches of microvascular bifurcations plays a major role in determining the distribution of red blood cells and other blood constituents downstream from the bifurcation. Using the finite element method, we determined the shape of the surface through numerical solution of three dimensional Navier-Stokes equations for fluid flow at low Reynolds numbers in a T-type bifurcation of circular tubes. Calculations were done for a wide range of daughter branch to parent vessel diameter ratios and flow ratios. The effect of Reynolds number was also studied. Our numerical results are in good agreement with previously reported experimental data of Rong and Carr (Microvascular Research, Vol. 39, pp. 186-202, 1990). The numerical results of this study will be used to predict the concentration of blood constituents downstream from microvascular bifurcations providing that the inlet concentration profile is known.  相似文献   

3.
K Perktold  R Peter  M Resch 《Biorheology》1989,26(6):1011-1030
Blood flow is analysed by means of computer simulation in an idealized arterial bifurcation model which is pathologically altered by a saccular aneurysm. The theoretical study of the flow pattern and the paths of fluid particles is carried out under pulsatile Newtonian and non-Newtonian flow conditions. The governing equations are solved numerically with the use of the finite element method. The results show the disturbed blood flow in the bifurcation and the relatively low intra-aneurysmal flow circulation. In addition to the study of basic flow patterns in the segment, a comparison of non-Newtonian and Newtonian results is carried out. This comparison proves that for the considered large artery model under physiological flow conditions where the yield number is relatively low there is no essential difference in the results.  相似文献   

4.
Laser Doppler anemometry experiments and finite element simulations of steady flow in a three dimensional model of the carotid bifurcation were performed to investigate the influence of non-Newtonian properties of blood on the velocity distribution. The axial velocity distribution was measured for two fluids: a non-Newtonian blood analog fluid and a Newtonian reference fluid. Striking differences between the measured flow fields were found. The axial velocity field of the non-Newtonian fluid was flattened, had lower velocity gradients at the divider wall, and higher velocity gradients at the non-divider wall. The flow separation, as found with the Newtonian fluid, was absent. In the computations, the shear thinning behavior of the analog blood fluid was incorporated through the Carreau-Yasuda model. The viscoelastic properties of the fluid were not included. A comparison between the experimental and numerical results showed good agreement, both for the Newtonian and the non-Newtonian fluid. Since only shear thinning was included, this seems to be the dominant non-Newtonian property of the blood analog fluid under steady flow conditions.  相似文献   

5.
A three-dimensional model with simplified geometry for the branched coronary artery is presented. The bifurcation is defined by an analytical intersection of two cylindrical tubes lying on a sphere that represents an idealized heart surface. The model takes into account the repetitive variation of curvature and motion to which the vessel is subject during each cardiac cycle, and also includes the phase difference between arterial motion and blood flowrate, which may be nonzero for patients with pathologies such as aortic regurgitation. An arbitrary Lagrangian Eulerian (ALE) formulation of the unsteady, incompressible, three-dimensional Navier-Stokes equations is employed to solve for the flow field, and numerical simulations are performed using the spectral/hp element method. The results indicate that the combined effect of pulsatile inflow and dynamic geometry depends strongly on the aforementioned phase difference. Specifically, the main findings of this work show that the time-variation of flowrate ratio between the two branches is minimal (less than 5%) for the simulation with phase difference angle equal to 90 degrees, and maximal (51%) for 270 degrees. In two flow pulsatile simulation cases for fixed geometry and dynamic geometry with phase angle 270 degrees, there is a local minimum of the normalized wall shear rate amplitude in the vicinity of the bifurcation, while in other simulations a local maximum is observed.  相似文献   

6.
Reactive gas uptake is predicted and compared in a single bifurcation at steady expiratory flow in terms of Sherwood number using an axisymmetric single-path model (ASPM) and a three-dimensional computational fluid dynamics model (CFDM). ASPM is validated in a two-generation geometry by comparing the average gas-phase mass transfer coefficients with the experimental values. ASPM predicted mass transfer coefficients within 20% of the experimental values. The flow and concentration variables in the ASPM were solved using Galerkin finite element method and in the CFDM using commercial finite element software FIDAP. The simulations were performed for reactive gas flowing at Reynolds numbers ranging from 60 to 350 in both symmetric bifurcation for three bifurcation angles, 30 deg, 70 deg, and 90 deg, and in an asymmetric bifurcation. The numerical models compared with each other qualitatively but quantitatively they were within 0.4-8% due to nonfully developed flow in the parent branch predicted by the CFDM. The radially averaged concentration variation along the axial location matched qualitatively between the CFDM and ASPM but quantitatively they were within 32% due to differences in the flow field. ASPM predictions compared well with the CFDM predictions for an asymmetric bifurcation. These results validate the simplified ASPM and the complex CFDM. ASPM predicts higher Sherwood number with a flat velocity inlet profile compared to a parabolic inlet velocity profile. Sherwood number increases with the inlet average velocity, wall mass transfer coefficient, and bifurcation angle since the boundary layer grows slower in the parent and daughter branches.  相似文献   

7.
The governing equations of steady flow of an incompressible viscous fluid through a 3-D model of the aortic bifurcation are solved with the finite element method. The effect of Reynolds number on the flow was studied for a range including the physiological values (200 < or = Re < or = 1600). The symmetrical bifurcation, with a branch angle of 70 degrees and an area ratio of 0.8, includes a tapered transition zone. Secondary flows induced by the tube curvature are observed in the daughter tubes. Transverse currents in the transition zone are generated by the combined effect of diverging and converging walls. Flow separation depends on both the Reynolds number and the inlet wall shear.  相似文献   

8.
A finite element approximation of steady flow in a rigid three-dimensional model of the carotid artery bifurcation is presented. A Reynolds number of 640 and a flow division ratio of about 50/50, simulating systolic flow, was used. To limit the CPU- and I/O-times needed for solving the systems of equations, a mesh-generator was developed, which gives full control over the number of elements into which the bifurcation is divided. A mini-supercomputer, based on parallel and vector processing techniques, was used to solve the system of equations. The numerical results of axial and secondary flow compare favorably with those obtained from previously performed laser-Doppler velocity measurements. Also, the influence of the Reynolds number, the flow division ratio, and the bifurcation angle on axial and secondary flow in the carotid sinus were studied in the three-dimensional model. The influence of the interventions is limited to a relatively small variation in the region with reversed axial flow, more or less pronounced C-shaped axial velocity contours, and increasing or decreasing axial velocity maxima.  相似文献   

9.
In this paper, first we consider the global dynamics of a ratio-dependent predator–prey model with density dependent death rate for the predator species. Analytical conditions for local bifurcation and numerical investigations to identify the global bifurcations help us to prepare a complete bifurcation diagram for the concerned model. All possible phase portraits related to the stability and instability of the coexisting equilibria are also presented which are helpful to understand the global behaviour of the system around the coexisting steady-states. Next we extend the temporal model to a spatiotemporal model by incorporating diffusion terms in order to investigate the varieties of stationary and non-stationary spatial patterns generated to understand the effect of random movement of both the species within their two-dimensional habitat. We present the analytical results for the existence of globally stable homogeneous steady-state and non-existence of non-constant stationary states. Turing bifurcation diagram is prepared in two dimensional parametric space along with the identification of various spatial patterns produced by the model for parameter values inside the Turing domain. Extensive numerical simulations are performed for better understanding of the spatiotemporal dynamics. This work is an attempt to make a bridge between the theoretical results for the spatiotemporal model of interacting population and the spatial patterns obtained through numerical simulations for parameters within Turing and Turing–Hopf domain.  相似文献   

10.
Chen J  Lu XY 《Journal of biomechanics》2004,37(12):1899-1911
The non-Newtonian fluid flow in a bifurcation model with a non-planar daughter branch is investigated by using finite element method to solve the three-dimensional Navier–Stokes equations coupled with a non-Newtonian constitutive model, in which the shear thinning behavior of the blood fluid is incorporated by the Carreau–Yasuda model. The objective of this study is to investigate the influence of the non-Newtonian property of fluid as well as of curvature and out-of-plane geometry in the non-planar daughter vessel on wall shear stress (WSS) and flow phenomena. In the non-planar daughter vessel, the flows are typified by the skewing of the velocity profile towards the outer wall, creating a relatively low WSS at the inner wall. In the downstream of the bifurcation, the velocity profiles are shifted towards the flow divider. The low WSS is found at the inner walls of the curvature and the lateral walls of the bifurcation. Secondary flow patterns that swirl fluid from the inner wall of curvature to the outer wall in the middle of the vessel are also well documented for the curved and bifurcating vessels. The numerical results for the non-Newtonian fluid and the Newtonian fluid with original Reynolds number and the corresponding rescaled Reynolds number are presented. Significant difference between the non-Newtonian flow and the Newtonian flow is revealed; however, reasonable agreement between the non-Newtonian flow and the rescaled Newtonian flow is found. Results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

11.
This paper will treat the bifurcation and numerical simulation of rotating wave (RW) solutions of the FitzHugh-Nagumo (FHN) equations. These equations are often used as a simple mathematical model of excitable media. The dependence of the solutions on a uniformly applied current, and also on the diffusion coefficients or domain size will be studied. Ranges of applied current and/or diffusion coefficients in which RW solutions are observed will be described using bifurcation theory and continuation methods. The bifurcation of time-periodic solutions of these FHN equations without diffusion is described first. Similar methods are then used to find RW solutions on a circular ring and numerical simulations are described. These results are then extended to investigate RW solutions on annular rings of finite cross-section. Scaling arguments are used to show how the existence of solutions depends on either the diffusion coefficient or on the size of the region.  相似文献   

12.
Hemodynamic conditions in large arteries are significantly affected by the interaction of the pulsatile blood flow with the distensible arterial wall. A numerical procedure for solving the fluid–structure interaction problem encountered in cardiovascular flows is presented. We consider a patient-specific carotid bifurcation geometry, obtained from 3D reconstruction of in vivo acquired tomography images, which yields a geometrical representation of the artery corresponding to its pressurized state. To recover the geometry of the artery in its zero-pressure state which is required for a fluid–structure interaction simulation we utilize inverse finite elastostatics. Time-dependent flow simulations with in vivo measured inflow volume flow rate in the 3D undeformed artery are performed through the finite element method. The coupled-momentum method for fluid–structure interaction is adopted to incorporate the influence of wall compliance in the numerical computation of the time varying flow domain. To demonstrate the importance in recovering the zero-pressure state of the artery in hemodynamic simulations we compute the time varying flow field with compliant walls for the original and the zero-pressure state corrected geometric configurations of the carotid bifurcation. The most important resulting effects in the hemodynamic environment are evaluated. Our results show a significant change in the wall shear stress distribution and the spatiotemporal extent of the recirculation regions.  相似文献   

13.
Arterial walls are characterised by nearly incompressible, anisotropic, hyperelastic material behaviour. Several polyconvex material functions representing such materials are considered and adjusted to experimental data. For all of these functions and for different parameter sets numerical simulations using a three-dimensional model of a diseased artery are performed. A finite element tearing and interconnecting-dual primal domain decomposition algorithm is used to solve the linearised systems of equations. The numerical performance of the different models is discussed with respect to convergence of the linear and nonlinear solvers.  相似文献   

14.
A numerical model of the coupled motion of a flexing surface in a high Reynolds number flow is presented for the simulation of flexible polyurethane heart valves in the aortic position. This is achieved by matching a Lagrangian dynamic leaflet model with a panel method based flow solver. The two models are coupled via the time-dependent pressure field using the unsteady Bernoulli equation. Incorporation of sub-cycling in the dynamic model equations and fast pre conditioning techniques in the panel method solver yields efficient convergence and near real-time simulations of valve motion. The generality of dynamic model allows different material properties and/or geometries to be studied easily and interactively. This interactivity is realized by embedding the models within a design environment created using the software IRIS Explorer. Two flow domains are developed, an infinite domain and an internal domain using conformal mapping theory. In addition bending stress on the valve is computed using a simple stress model based on spline and circle equation techniques.  相似文献   

15.
We have previously described a new approach to planning treatments for cardiovascular disease, Simulation-Based Medical Planning, whereby a physician utilizes computational tools to construct and evaluate a combined anatomic/physiologic model to predict the outcome of alternative treatment plans for an individual patient. Current systems for Simulation-Based Medical Planning utilize finite element methods to solve the time-dependent, three-dimensional equations governing blood flow and provide detailed data on blood flow distribution, pressure gradients and locations of flow recirculation, low wall shear stress and high particle residence. However, these methods are computationally expensive and often require hours of time on parallel computers. This level of computation is necessary for obtaining detailed information about blood flow, but likely is unnecessary for obtaining information about mean flow rates and pressure losses. We describe, herein, a space-time finite element method for solving the one-dimensional equations of blood flow. This method is applied to compute flow rate and pressure in a single segment model, a bifurcation, an idealized model of the abdominal aorta, in three alternate treatment plans for a case of aorto-iliac occlusive disease and in a vascular bypass graft. All of these solutions were obtained in less than 5 min of computation time on a personal computer.  相似文献   

16.
Flow and stress patterns in human carotid artery bifurcation models, which differ in the bifurcation angle, are analysed numerically under physiologically relevant flow conditions. The governing Navier-Stokes equations describing pulsatile, three-dimensional flow of an incompressible non-Newtonian fluid are approximated using a pressure correction finite element method, which has been developed recently. The non-Newtonian behaviour of blood is modelled using Casson's relation, based on measured dynamic viscosity. The study concentrates on flow and stress characteristics in the carotid sinus. The results show that the complex flow in the sinus is affected by the angle variation. The magnitude of reversed flow, the extension of the recirculation zone in the outer sinus region and the duration of flow separation during the pulse cycle as well as the resulting wall shear stress are clearly different in the small angle and in the large angle bifurcation. The haemodynamic phenomena, which are important in atherogenesis, are more pronounced in the large angle bifurcation.  相似文献   

17.
To analyse the pulsatile flow field and the mechanical stresses in a three-dimensional carotid artery bifurcation model, computer simulation is applied. The approximation of the Navier-Stokes equations uses a pressure correction finite element method. Numerical results are presented for axial and secondary flow velocity and wall shear stresses with special emphasis on the fluid dynamics in the carotid sinus. This region is of major interest because it is affected preferentially by lesions. Detailed local flow studies as carried out here should lead to a further insight into the mechanisms of atherogenesis. The flow conditions used in the study were chosen according to Ku et al. (Arteriosclerosis 5, 293-302, 1985). The results of this numerical analysis agree in the essential features with their experimental results.  相似文献   

18.
本文主要研究了延迟遗传调控网络的局部稳定性和该网络的Hopf分支存在条件.延迟遗传调控网络是无穷维系统,此类系统在平衡点线性化后的特征方程为超越方程。通过对此超越方程进行研究,得到了系统系数不同时的系统稳定的条件及相关结论,又进一步说明了此系统的Hopf分支存在条件.最后,举一个例子进行了数值仿真验证了所得到的结论.  相似文献   

19.
A numerical dye method for the visualization of unsteady three-dimensional flow calculations is introduced by coupling the unsteady convection-diffusion equation to the Navier-Stokes equation for mass and momentum. This system of equations is descretized using a finite volume projection-like algorithm with generalized coordinates and overset grids. A powerful pressure prediction method is used to accelerate the convergence of the Pressure Poisson equation. To demonstrate the visualization technique, blood flow through the aortic arch region and the three main arterial branches is computed using various Womersley numbers. In this technique, parcels of fluid are followed in time as a function of the cardiac cycle without having to track individual particles, which in turn aids us to better understand some important aspects of the three-dimensionality of the developing unsteady flow. Using this numerical dye method we analyze the strength of the cross flow during the cardiac cycle, the relationship between the penetration of blood into the aortic branches from its relative position in the ascending aortic region and the effects of the Womersley parameter. This technique can be very useful in the design and development of stents where the topology of the device would require understanding where the blood emanating from the heart ends up at the end of the cardiac cycle. Moreover, this method could be useful in investigating the influence of flow and geometry on the local introduction of medication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号