首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of MgSO4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth in liquid medium. The kinetics of the formation of three main cell-wall components, S-glucan (α-1,3-glucan), R-glucan (β-1,3, β-1,6-glucan) and chitin were studied from the onset of regeneration. S-glucan and chitin accumulation as well as RNA and protein synthesis started simultaneously after a short lag, but R-glucan formation was delayed. The reversion to hyphal tubes only began after several hours of rapid R-glucan synthesis. Cycloheximide (0.5 μg/ml), inhibiting protein synthesis by 98% inhibited the formation of R-glucan and the reversion to hyphal growth but the formation of chitin and S-glucan did start and continued seemingly unimpaired for several hours. This indicates that the enzymes responsible for the synthesis of S-glucan and chitin remained intact during protoplast preparation. Polyoxin D inhibited both the synthesis of chitin and R-glucan and also the reversion to hyphal growth. However, the synthesis of S-glucan was not suppressed. These inhibitor studies as well as the kinetics of R-glucan formation during normal regeneration suggest that the synthesis of R-glucan is required for the initiation of hyphal morphogenesis.  相似文献   

2.
Summary Cell-wall regeneration and reversion of protoplasts ofSchizophyllum commune were investigated using electron microscopic methods and X-ray diffraction.After 3 hours of regeneration protoplasts have formed a loosely organized wall which does not react with Thiéry's stain for periodic acid sensitive carbohydrates. This wall largely consists of chitin microfibrils which are adpressed to the plasmalemma and which are covered by loose aggregates of alkali-soluble S-glucan (-1,3-glucan). Both components are microcrystalline, at least partly. Walls formed in the presence of polyoxin D only consist of thick loose fibers of S-glucan.From 3 hours onward the inner chitin microfibrils of the wall of the primary cells become embedded in alkali-insoluble material that stains heavily with the Thiéry reagent and probably is similar to the R-glucan of the mature wall (i.e., -1,3--1,6-glucan). The outer chitin microfibrils remain free of this matrix and are covered by S-glucan only.Bud-like structures that arise have the same wall architecture as the primary cells,i.e., only the inner chitin microfibrils are embedded in R-glucan and the S-glucan forms a fluffy coat. The walls of hyphal tubes that arise are distinct, however, in that all chitin microfibrils are embedded in R-glucan and the S-glucan forms a compact coat.Cytoplasmic vesicles are sparse in primary cells except at the sites of emergence of budlike structures and hyphae. They continue to be present in the apex of growing hyphae.  相似文献   

3.
In the presence of MgSo4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth in liquid medium. The kinetics of the formation of three main cell-wall components, S-glucan (alpha-1,3-glucan), R-glucan (beta-1,3, beta-1,6-glucan) and chitin were studied from the onset of regeneration. S-glucan and chitin accumulation as well as RNA and protein synthesis started simultaneously after a short lag, but R-glucan formation was delayed. The reversion of hyphal tubes only began after several hours of rapid R-glucan synthesis. Cycloheximide (0.5 mug/ml), inhibiting protein synthesis by 98% inhibited the formation of R-glucan and the reversion to hyphal growth but the formation of chitin and S-glucan did start and continued seemingly unimpaired for several hours. This indicates that the enzymes responsible for the synthesis of S-glucan and chitin remained intact during protoplast preparation. Polyoxin D inhibited both the synthesis of chitin and R-glucan and also the reversion to hyphal growth. However, the synthesis of S-glucan was not suppressed. These inhibitor studies as well as the kinetics of R-glucan formation during normal regeneration suggest that the synthesis of R-glucan is required for the initiation of hyphal morphogenesis.  相似文献   

4.
Aspergillus awamori Nakazawa (QM873) hyphae maintained on a nitrogen-deficient medium produced an exocellular complex consisting of the wall alpha-glucan, nigeran (94%), water-soluble nigeran oligosacchrides (1 to 2%), protein (2 to 4%), and a small amount of beta-glycan (less than 1%). Nigeran was not covalently linked to protein. The complex appeared in the growth medium only under those temporal or nutritional conditions where the hyphal wall content to nigeran reached at least 30% of the cell dry weight. Rates of nigeran accumulation in the hypha cell wall, scanning electron microscopy of hyphae, and pulse-chase experiments with [14C]glucose suggested that the complex arises via displacement of a portion of the hyphal wall into the medium. The nigeran portion of the complex contained lamellar crystalline domains similar to those in the intact cell wall. Enzymic digestion of nigeran in the complex indicated that it has a degree of crystallinity lower than that observed with pure nigeran crystals grown in vitro. Therefore, polymerization in vivo resulted in somewhat less chain organization in the crystallite. Since this complex was isolated without any prior chemical or exogenous enzymatic treatment, it should be useful for studies of hyphal wall biogenesis and organization in this organism.  相似文献   

5.
《Experimental mycology》1992,16(3):197-206
From the dikaryotic mycelium ofSchizophyllum commune ATCC 38548 several monokaryotic strains were obtained by isolating the two types of monokaryotic protoplasts and their reversion to hyphal growth. The dikaryoticS. commune ATCC 38548 produced about 10 g/liter of extracellular β-1,3-/β-1,6-glucan (schizophyllan) after 96 h of growth, while the monokaryons excreted much less of this polysaccharide. During growth of strains of both types of monokaryons indigo and β-1,3-glucanase activities were excreted. Two selected monokaryons were mated with other monokaryoticS. commune strains and some of the dikaryotic mycelia obtained produced about 12 g/liter of extracellular β-1,3-/β-1,6-glucan after 120 h of cultivation.  相似文献   

6.
The effect of lytic enzyme treatment upon protoplast formation and reversion in three species of Actinomadura has been determined. Incubation in the presence of lytic enzyme L2 generates large protoplasts (4 μm diameter) which remain intact for only 2h. In comparison, protoplasts formed by the degradative effects of the enzymes lysozyme and L1 are smaller (2 μm diameter), and remain stable for up to 18h. This results in a greater efficiency of regeneration. Lytic enzyme L2 has been shown to contain impurities, including proteolytic activity, which may affect cell wall regeneration.  相似文献   

7.
Regeneration of the cell wall and reversion of protoplasts with a completely regenerated cell wall to cells were studied by light and electron microscopy in protoplasts of the fission yeastsSchizosaccharomyces versatilis. On their surface the protoplasts regenerated a complete new wall even m liquid media The wall regeneration began with the formation of a thin irregular net of flat bundles of long microfibrils and the net was gradually filled with aggregates of short straight microfibrils and small piles of amorphous material. Osmotically resistant organisms with regenerated walls were detected after a 4–6 h cultivation Depending on the nutrient medium used 10–80 % of protoplasts with the regenerated wall were obtained that reverted subsequently to cells. The high percentage of the wall regeneration and reversion to cells was reached by combining cultivation in a poor medium with that in a rich medium Reversion to cells could only occur after the protoplasts had regenerated rigid cell walls These walled protoplasts underwent septation, and, by polar growth, produced cylindrical cells, further dividing by fission.  相似文献   

8.
The isolation and regenration of prostoplasts from Lipomyces starkeyi have been optimised. Snail enzyme (12 mg·ml−1) proved to be the most effective lytic enzyme although treatment with Novozym 234, Cellulase CP and β-glucanase also resulted in protoplast formation. Magnesium sulphate (0.55 M) was shown to be the best fro protoplast isolation. Exponential phase cells were most susceptible to the lytic enzyme, stationary phase cells appeared to be resistant. 2-Mercaptoethanol or dithiothreitol did not enahance the isolation of protoplasts in this yeast. The optimum pH for protoplast isolation was 5.8. Ultrastructural observations were made on cells during lytic digestion and revealed that the cell wall and capsule are stripped away from the protoplast.Protoplast synthesised new cell wall material when cultured on osmotically stabilised medium, regeneration was not oberved in liquid medium. Optimum regeneration occured when protoplasts were embedded in a thin layer of minimal medium osmotically stabilised with mannitol (0.6M) and solidified with 1.5–2.0% agar. A basal layer of medium was also stabilised with mannitol (0.6 M) but contained 3% agar. The lytic enzyme used for protoplast isolation did not appear to effect the regeneration of protoplasts.  相似文献   

9.
In this work, we constructed an RNAi vector for attenuation of the class III chitin synthase gene chs4, which plays a major role in hyphal growth and conidia formation. To achieve a high transformation frequency, factors affecting the preparation and regeneration of protoplasts were analyzed. The maximum numbers of protoplasts (1.41?×?107 mL?1) were released when mycelia cultured for 48 h were incubated at 30 °C for 5 h in a buffer containing 4 mg mL?1 lysing enzyme. The maximum regeneration rate (33 %) was obtained when mycelia were digested for 4 h and plated on a regeneration medium containing 1 % overlaid agar. Quantitative real-time PCR was performed to validate the transformation efficiency, and it revealed knockdown of chs4 gene in randomly selected transformants at different levels. Dramatic reductions in the formation of conidia and the hyphal growth rate were observed in most of the transformants.  相似文献   

10.
Summary The time rate of regeneration of the cell wall and reversion of protoplasts of the yeast Nadsonia elongata to cells of normal shape and size has been compared with the capability for regeneration of spheroplasts of this yeast. Nearly all protoplasts in a given culture were able to regenerate new walls and had usually reverted to cells of normal appearance by the 30th h of cultivation. Spheroplasts required only half this time to do this. These results can be interpreted as evidence that regeneration of a wall by protoplasts does not depend upon the presence of a cell wall primer, because the proportion of reverting protoplasts (which lack wall remnants) was the same as that of reverting spheroplasts (which possess them). The presence of wall remnants in spheroplasts appears to have merely an accelerating effect on the formation of a new wall and on subsequent reversion of the spheroplasts to complete cells of normal shape and size.  相似文献   

11.
Summary Protoplast yields from Sclerotium glucanicum using Novozym 234 as the lytic enzyme were affected by the osmotic stabilizers selected, the incubation conditions used for wall degradation, and culture age. Scanning electron microscopic observations revealed that protoplast release from all hyphal regions gradually followed random wall attack, and nuclear staining showed that some protoplasts contained as many as eight nuclei. Their regeneration involved germ tube production on solid media, but formation of chains of buds and possibly cytoplasmic cleavage in liquid medium. Regenerated protoplasts gave similar exopolysaccharide yields to those of the parent culture.  相似文献   

12.
Summary The cell wall regeneration on protoplasts derived from maize mesophyll cells was compared with wall regeneration on protoplasts derived from suspension cultured cells using light microscopy, transmission electron microscopy, and mass spectrometry. The time course of cell wall regeneration has shown that the mesophyll protoplasts regenerated walls much slower than the protoplasts derived from cultured cells. Moreover, cell wall materials on the mesophyll protoplasts were often unevenly distributed. Electron microscopy has further demonstrated that the mesophyll protoplasts have less organized and compact walls than the protoplasts from cultured cells. Chemical analysis revealed that the mesophyll protoplasts had a lower ratio ofβ-(1–3)-glucan toβ-(1–4)-glucan than protoplasts from cultured cells. The significance of these results for the viability and development of protoplasts in culture is discussed. National Research Council of Canada paper no. 32458.  相似文献   

13.
Ultrastructural aspects of wall regeneration byPythium protoplasts   总被引:1,自引:0,他引:1  
Electron microscope studies were made of wall regeneration byPythium protoplasts. Wall regeneration began with the formation of a loose network of fibrils on the surface of the protoplast followed by increase in density of the fibrillar mesh and deposition of granular matrix material. The majority of the protoplasts did not develop beyond the loose fibrillar network stage, however a small percentage were able to complete wall formation and to form hyphal tubes. A clear zone of demarcation was visible between the fibrillar surface of the protoplast and the smooth surface at the base of the developing hyphal tube.  相似文献   

14.
A protocol for isolating and regenerating protoplasts from Trichothecium roseum has been described. Protoplasts from T. roseum were isolated using (i) a lytic enzyme combination composed of Novozym 234, chitinase, cellulase, and pectinase at a 5-mg/mL concentration and (ii) 0.6 M KCl as an osmotic stabilizer. A maximum number of 28 x 10(4) protoplasts/mL were obtained at pH 5.5. Experiments on the regeneration and reversion of protoplasts revealed a maximum regeneration (60.8%) in complete medium (potato dextrose--yeast extract agar) amended with 0.6 M KCl. The regenerated protoplasts were similar to the original parent strain in morphology, pigmentation, growth, and sporulation.  相似文献   

15.
The presence of chitin in hyphal cell walls and regenerating protoplast walls ofSaprolegnia monoi¨ca was demonstrated by biochemical and biophysical analyses. α-Chitin was characterized by X-ray diffraction, electron diffraction, and infrared spectroscopy. In hyphal cell walls, chitin appeared as small globular particles while cellulose, the other crystalline cell wall component, had a microfibrillar structure. Chitin synthesis was demonstrated in regenerating protoplasts by the incorporation of radioactiveN-acetylglucosamine into a KOH-insoluble product. Chitin synthase activity of cell-free extracts was particulate. This activity was stimulated by trypsin and inhibited by the competitive inhibitor polyoxin D (Ki 20 μM). The reaction product was insoluble in 1M KOH or 1M acetic acid and was hydrolyzed by chitinase into diacetylchitobiose. Fungal growth and cell wall chitin content were reduced when mycelia were grown in the presence of polyoxin D. However, hyphal morphology was not altered by the presence of the antibiotic indicating that chitin does not seem to play an important role in the morphogenesis ofSaprolegnia.  相似文献   

16.
Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes β-glucan in the fungal cell wall. C. albicans β-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how β-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates β-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated β-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated β-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.  相似文献   

17.
The hemiascomycete Ashbya gossypii develops a mycelium. Nutritional stress leads to its differentiation into sporangia. These generate spores. In parallel, the yellow pigment riboflavin is produced. Intracellularly accumulated riboflavin, made visible as a bright green fluorescence, was observed in only 60 % of the hyphal cells. For the remaining 40 %, it was unclear whether these cells simply export riboflavin or its biosynthesis remains down-regulated in contrast to the accumulating cells. The approach followed in this work was to convert the hyphae into protoplasts by enzymatic degradation of the cell wall. Afterwards, the protoplasts were sorted by fluorescence-activated cell sorting on the basis of riboflavin accumulation. When a reporter strain expressing lacZ under the control of the most important riboflavin biosynthesis promoter, RIB3, was used, green protoplasts were found to have more than tenfold greater reporter activity than hyaline protoplasts. This was true on the basis of total protein as well as on the basis of hexokinase specific activity, a marker for constitutive expression. These results allow the conclusion that hyphal cells of A. gossypii differ in phenotype regarding riboflavin overproduction and accumulation.  相似文献   

18.
The optimal conditions necessary for a large yield and a high frequency of regeneration of protoplasts isolated from the biocontrol agentsTrichoderma koningii andT. harzianum were investigated. Protoplast yields were 1.2×108/ml fromT. koningii and 6×107/ml fromT. harzianum when 20-h mycelial culture was treated with a lytic enzyme solution containing Novozym 234 (15 mg/ml), sucrose (0.6 M) and citrate phosphate buffer (0.02 M), pH 5.6 at 31°C. When the protoplasts were grown in the regeneration medium containing yeast extract (1.5%), 1 I of Mandel's salts, pH 5.6, and glucose (0.8 M), a high frequency of regeneration of the protoplast was obseved: 66% forT. koningii and 45% forT. harzianum. Two patterns of regeneration were observed. First, the hyphae arose directly from the regenerated protoplast mother cell. Second, a chain of bud cells developed from the protoplast and subsequently generating hyphae generally protruded from the terminal bud cells.  相似文献   

19.
Summary The growth, cell wall regeneration, and the reversion of the protoplasts ofNadsonia elongata andSchizosaccbaromyces pombe cultivated in nutrient media containing snail enzyme was studied by light and electron microscopy. The protoplasts grew in the presence of snail enzyme and an incomplete cell wall composed of fibrils was formed on their surface. Thus, the presence of snail enzyme inhibited the completion of cell wall structure and, consequently, the reversion of the protoplasts to normal cells. The transfer of these protoplasts to medium free from snail enzyme led first to the completion of the cell wall and then to the reversion of the protoplasts to normal cells. The reported experiments confirmed that the regeneration of the complete cell wall preceded the protoplast reversion.  相似文献   

20.
The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. 1H NMR data analysis revealed that, when compared with reference (1→3,1→6) β-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or “closed chain” structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast β-glucan. In addition to the expected (1→3), (1→6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1β processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号