首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectivesConditioned medium (CM) from 2D cell culture can mitigate the weakened regenerative capacity of the implanted stem cells. However, the capacity of 3D CM to prime dental pulp stem cells (DPSCs) for pulp regeneration and its protein profile are still elusive. We aim to investigate the protein profile of CM derived from 3D tooth germs, and to unveil its potential for DPSCs‐based pulp regeneration.Materials and MethodsWe prepared CM of 3D ex vivo cultured tooth germ organs (3D TGO‐CM) and CM of 2D cultured tooth germ cells (2D TGC‐CM) and applied them to prime DPSCs. Influences on cell behaviours and protein profiles of CMs were compared. In vivo pulp regeneration of CMs‐primed DPSCs was explored using a tooth root fragment model on nude mice.ResultsTGO‐CM enhanced DPSCs proliferation, migration, in vitro mineralization, odontogenic differentiation, and angiogenesis performances. The TGO‐CM group generated superior pulp structures, more odontogenic cells attachment, and enhanced vasculature at 4 weeks post‐surgery, compared with the TGC‐CM group. Secretome analysis revealed that TGO‐CM contained more odontogenic and angiogenic growth factors and fewer pro‐inflammatory cytokines. Mechanisms leading to the differential CM profiles may be attributed to the cytokine–cytokine receptor interaction and PI3K‐Akt signalling pathway.ConclusionsThe unique secretome profile of 3D TGO‐CM made it a successful priming cocktail to enhance DPSCs‐based early pulp regeneration.  相似文献   

2.
ObjectivesPulp regeneration brings big challenges for clinicians, and vascularization is considered as its determining factor. We previously accomplished pulp regeneration with autologous stem cells from deciduous teeth (SHED) aggregates implantation in teenager patients, however, the underlying mechanism needs to be clarified for regenerating pulp in adults. Serving as an important effector of mesenchymal stem cells (MSCs), exosomes have been reported to promote angiogenesis and tissue regeneration effectively. Here, we aimed to investigate the role of SHED aggregate‐derived exosomes (SA‐Exo) in the angiogenesis of pulp regeneration.Materials and MethodsWe extracted exosomes from SHED aggregates and utilized them in the pulp regeneration animal model. The pro‐angiogenetic effects of SA‐Exo on SHED and human umbilical vein endothelial cells (HUVECs) were evaluated. The related mechanisms were further investigated.ResultsWe firstly found that SA‐Exo significantly improved pulp tissue regeneration and angiogenesis in vivo. Next, we found that SA‐Exo promoted SHED endothelial differentiation and enhanced the angiogenic ability of HUVECs, as indicated by the in vitro tube formation assay. Mechanistically, miR‐26a, which is enriched in SA‐Exo, improved angiogenesis both in SHED and HUVECs via regulating TGF‐β/SMAD2/3 signalling.ConclusionsIn summary, these data reveal that SA‐Exo shuttled miR‐26a promotes angiogenesis via TGF‐β/SMAD2/3 signalling contributing to SHED aggregate‐based pulp tissue regeneration. These novel insights into SA‐Exo may facilitate the development of new strategies for pulp regeneration.  相似文献   

3.
4.
5.
ObjectivesVarious factors could interfere the biological performance of DPSCs during post‐thawed process. Yet, little has been known about optimization of the recovery medium for DPSCs. Thus, our study aimed to explore the effects of adding recombinant bFGF on DPSCs after 3‐month cryopreservation as well as the underlying mechanisms.Materials and methodsDPSCs were extracted from impacted third molars and purified by MACS. The properties of CD146+ DPSCs (P3) were identified by CCK‐8 and flow cytometry. After cryopreservation for 3 months, recovered DPSCs (P4) were immediately supplied with a series of bFGF and analysed cellular proliferation by CCK‐8. Then, the optimal dosage of bFGF was determined to further identify apoptosis and TRPC1 channel through Western blot. The succeeding passage (P5) from bFGF pre‐treated DPSCs was cultivated in bFGF‐free culture medium, cellular proliferation and stemness were verified, and pluripotency was analysed by neurogenic, osteogenic and adipogenic differentiation.ResultsIt is found that adding 20 ng/mL bFGF in culture medium could significantly promote the proliferation of freshly thawed DPSCs (P4) through suppressing apoptosis, activating ERK pathway and up‐regulating TRPC1. Such proliferative superiority could be inherited to the succeeding passage (P5) from bFGF pre‐stimulated DPSCs, meanwhile, stemness and pluripotency have not been compromised.ConclusionsThis study illustrated a safe and feasible cell culture technique to rapidly amplify post‐thawed DPSCs with robust regenerative potency, which brightening the future of stem cells banking and tissue engineering.  相似文献   

6.
ObjectivesLarge bone defects are a common, debilitating clinical condition that have substantial global health and economic burden. Bone tissue engineering technology has become one of the most promising approaches for regenerating defective bones. In this study, we fabricated a naringin‐inlaid composite silk fibroin/hydroxyapatite (NG/SF/HAp) scaffold to repair bone defects.Materials and MethodsThe salt‐leaching technology was used to fabricate the NG/SF/HAp scaffold. The cytocompatibility of the NG/SF/HAp scaffold was assessed using scanning electron microscopy, live/dead cell staining and phalloidin staining. The osteogenic and angiogenic properties were assessed in vitro and in vivo.ResultsThe porous NG/SF/HAp scaffold had a well‐designed biomimetic porous structure with osteoinductive and angiogenic activities. A gene microarray identified 854 differentially expressed genes between human umbilical cord‐derived mesenchymal stem cells (hUCMSCs) cultured on SF‐nHAp scaffolds and cells cultured on NG/SF/HAp scaffolds. The underlying osteoblastic mechanism was investigated using hUCMSCs in vitro. Naringin facilitated hUCMSC ingrowth into the SF/HAp scaffold and promoted osteogenic differentiation. The osteogenic and angiogenic capabilities of cells cultured in the NG/SF/HAp scaffold were superior to those of cells cultured in the SF/HAp scaffold.ConclusionsThe data indicate the potential of the SF/HAp composite scaffold incorporating naringin for bone regeneration.  相似文献   

7.
8.
Objectives3D‐printing scaffold with specifically customized and biomimetic structures gained significant recent attention in tissue engineering for the regeneration of damaged bone tissues. However, constructed scaffolds that simultaneously promote bone regeneration and in situ inhibit bacterial proliferation remains a great challenge. This study aimed to design a bone repair scaffold with in situ antibacterial functions.Materials and MethodsHerein, a general strategy is developed by using epigallocatechin‐3‐gallate (EGCG), a major green tea polyphenol, firmly anchored in the nano‐hydroxyapatite (HA) and coating the 3D printed polymerization of caprolactone and lactide (PCLA) scaffold. Then, we evaluated the stability, mechanical properties, water absorption, biocompatibility, and in vitro antibacterial and osteocyte inductive ability of the scaffolds.ResultsThe coated scaffold exhibit excellent activity in simultaneously stimulating osteogenic differentiation and in situ resisting methicillin‐resistant Staphylococcus aureus colonization in a bone repair environment without antibiotics. Meanwhile, the prepared 3D scaffold has certain mechanical properties (39.3 ± 3.2 MPa), and the applied coating provides the scaffold with remarkable cell adhesion and osteogenic conductivity.ConclusionThis study demonstrates that EGCG self‐assembled HA coating on PCLA surface could effectively enhance the scaffold''s water absorption, osteogenic induction, and antibacterial properties in situ. It provides a new strategy to construct superior performance 3D printed scaffold to promote bone tissue regeneration and combat postoperative infection in situ.

Schematic diagram of the 3D polymerization of caprolactone and lactide (PCLA) coated scaffold containing epigallocatechin‐3‐gallate (EGCG)‐modified nano‐HA as an artificial bone matrix with biphasic function to efficiently promote the growth of osteoblasts and inhibit methicillin‐resistant Staphylococcus aureus colonization in the bone repair microenvironment. PCLA/KH‐HA‐EGCG exhibited satisfactory antibacterial properties and leads to significant osteoinduction and osteogenic differentiation in osteoblasts cells, achieving a high‐efficient bone repair effect.  相似文献   

9.
ObjectivesPreviously, our investigations demonstrated robust pro‐angiogenic potentials of extracellular vesicles secreted by periodontitis‐compromised dental pulp stem cells (P‐EVs) when compared to those from healthy DPSCs (H‐EVs), but the underlying mechanism remains unknown.Materials and methodsHere, circulating microRNAs (miRNAs) specifically found in P‐EVs (compared with H‐EVs) were identified by Agilent miRNA microarray analysis, and the roles of the candidate miRNA in P‐EV‐enhanced cell angiogenesis were confirmed by cell transfection and RNA interference methods. Next, the direct binding affinity between the candidate miRNA and its target gene was evaluated by luciferase reporter assay. CCK‐8, transwell/scratch wound healing and tube formation assays were established to investigate the proliferation, migration, and tube formation abilities of endothelial cells (ECs). Western blot was employed to measure the protein levels of Hedgehog/Gli1 signalling pathway components and angiogenesis‐related factors.ResultsThe angiogenesis‐related miRNA miR‐378a was found to be enriched in P‐EVs, and its role in P‐EV‐enhanced cell angiogenesis was confirmed, wherein Sufu was identified as a downstream target gene of miR‐378a. Functionally, silencing of Sufu stimulated EC proliferation, migration and tube formation by activating Hedgehog/Gli1 signalling. Further, we found that incubation with P‐EVs enabled the transmission of P‐EV‐contained miR‐378a to ECs. Subsequently, the expressions of Sufu, Gli1 and vascular endothelial growth factor in ECs were significantly influenced by P‐EV‐mediated miR‐378a transmission.ConclusionsThese data suggest that P‐EVs carrying miR‐378a promote EC angiogenesis by downregulating Sufu to activate the Hedgehog/Gli1 signalling pathway. Our findings reveal a crucial role for EV‐derived miR‐378a in cell angiogenesis and hence offer a new target for modifying stem cells and their secreted EVs to enhance vessel regenerative potential.  相似文献   

10.
11.
Inducing of dental pulp stem cells (DPSCs) into endothelial cells (ECs) to prevascularize pulp tissue constructs may offer a novel and viable approach for enhancing pulp regeneration. However, there are numerous challenges in current methods for the acquisition of sufficient translational ECs. It was known that Sema4D/PlexinB1 signaling exerts profound effects on enhancing vascular endothelial growth factor (VEGF) secretion and angiogenesis. Whether Sema4D/PlexinB1 could regulate endothelial differentiation of DPSCs is not yet investigated. In this study, when DPSCs were treated with Sema4D (2 μg/mL), ECs-specific (VEGFR1, VEGFR2, CD31, and vWF), and angiogenic genes and proteins were significantly upregulated. The induced ECs exhibited similar endothelial vessel formation ability to that of human umbilical vein endothelial cells (HUVECs). Furthermore, phosphorylation of AKT increased dramatically within 5 minutes (from 0.93 to 21.8), while p-ERK1/2 was moderately elevated (from 0.94 to 2.65). In summary, our results demonstrated that Sema4D/PlexinB1 signaling induces endothelial differentiation of DPSCs. The interactions of Sema4D, VEGF, ANGPTL4, ANG1, and HIF-1α may play a crucial role in mediating the differentiation process.  相似文献   

12.
ObjectivesStromal cell‐derived factor‐1 (SDF‐1) actively directs endogenous cell homing. Exendin‐4 (EX‐4) promotes stem cell osteogenic differentiation. Studies revealed that EX‐4 strengthened SDF‐1‐mediated stem cell migration. However, the effects of SDF‐1 and EX‐4 on periodontal ligament stem cells (PDLSCs) and bone regeneration have not been investigated. In this study, we aimed to evaluate the effects of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro and periodontal bone regeneration in vivo.MethodsCell‐counting kit‐8 (CCK8), transwell assay, qRT‐PCR and western blot were used to determine the effects and mechanism of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro. A rat periodontal bone defect model was developed to evaluate the effects of topical application of SDF‐1 and systemic injection of EX‐4 on endogenous cell recruitment, osteoclastogenesis and bone regeneration in vivo.ResultsSDF‐1/EX‐4 cotherapy had additive effects on PDLSC proliferation, migration, alkaline phosphatase (ALP) activity, mineral deposition and osteogenesis‐related gene expression compared to SDF‐1 or EX‐4 in vitro. Pretreatment with ERK inhibitor U0126 blocked SDF‐1/EX‐4 cotherapy induced ERK signal activation and PDLSC proliferation. SDF‐1/EX‐4 cotherapy significantly promoted new bone formation, recruited more CXCR4+ cells and CD90+/CD34 stromal cells to the defects, enhanced early‐stage osteoclastogenesis and osteogenesis‐related markers expression in regenerated bone compared to control, SDF‐1 or EX‐4 in vivo.ConclusionsSDF‐1/EX‐4 cotherapy synergistically regulated PDLSC activities, promoted periodontal bone formation, thereby providing a new strategy for periodontal bone regeneration.  相似文献   

13.
Dental pulp stem cells (DPSCs) were the most widely used seed cells in the field of neural regeneration and bone tissue engineering, due to their easily isolation, lack of ethical controversy, low immunogenicity and low rates of transplantation rejection. The purpose of this study was to investigate the role of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on neural differentiation of DPSCs in vitro. DPSCs were cultured in neural differentiation medium containing NGF and bFGF alone or combination for 7 days. Then neural genes and protein markers were analyzed using western blot and RT-PCR. Our study revealed that bFGF and NGF increased neural differentiation of DPSCs synergistically, compared with bFGF and NGF alone. The levels of Nestin, MAP-2, βIII-tubulin and GFAP were the most highest in the DPSCs?+?bFGF?+?NGF group. Our results suggested that bFGF and NGF signifiantly up-regulated the levels of Sirt1. After treatment with Sirt1 inhibitor, western blot, RT-PCR and immunofluorescence staining showed that neural genes and protein markers had markedly decreased. Additionally, the ERK and AKT signaling pathway played a key role in the neural differentiation of DPSCs stimulated with bFGF?+?NGF. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of bFGF and NGF treated DPSCs. Our date provided theoretical basis for DPSCs to treat neurological diseases and repair neuronal damage.  相似文献   

14.
ObjectivesAdiponectin signalling has been considered to be a promising target to treat diabetes‐related osteoporosis. However, contradictory results regarding bone formation were observed due to the various isoforms of adiponectin. Therefore, it would be necessary to investigate the effect of adiponectin receptor signals in regulating bone‐fat balance.Materials and MethodsWe primarily applied a newly found specific activator for adiponectin receptor, AdipoRon, to treat bone metabolism‐related cells to investigate the role of Adiponectin receptor signals on bone‐fat balance. We then established femur defect mouse model and treated them with AdipoRon to see whether adiponectin receptor activation could promote bone regeneration.ResultsWe found that AdipoRon could slightly inhibit the proliferation of pre‐osteoblast and pre‐osteoclast, but AdipoRon showed no effect on the viability of mesenchymal stromal cells. AdipoRon could remarkably promote cell migration of mesenchymal stromal cells. Additionally, AdipoRon promoted osteogenesis in both pre‐osteoblasts and mesenchymal cells. Besides, AdipoRon significantly inhibited osteoclastogenesis via its direct impact on pre‐osteoclast and its indirect inhibition of RANKL in osteoblast. Moreover, mesenchymal stromal stems cells showed obviously decreased adipogenesis when treated with AdipoRon. Consistently, AdipoRon‐treated mice showed faster bone regeneration and repressed adipogenesis.ConclusionsOur study demonstrated a pro‐osteogenic, anti‐adipogenic and anti‐osteoclastogenic effect of adiponectin receptor activation in young mice, which suggested adiponectin receptor signalling was involved in bone regeneration and bone‐fat balance regulation.  相似文献   

15.
16.
Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cell (MSC) characterized by multi-lineage differentiation making it an attractive choice for tissue regeneration. However, before DPSCs can be used for cell-based therapy, we have to understand their biological properties in response to intrinsic and extrinsic stimuli such as lipopolysaccharide (LPS). DPSCs were therefore stimulated with LPS and senescence was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining, with cell number and cell-cycle arrest being examined by BrdU assay and flow cytometry, respectively. The morphology of DPSCs was characterized by their flat shape, increased size and increased SA-β-gal activity after repeated stimulation (3 or 6 times) with LPS. Reactive oxygen species (ROS) staining showed that the number of ROS-stained cells and the DCFH fluorescent level were higher in the LPS-treated DPSCs compared with those in the untreated DPSCs. Protein and mRNA expression levels of γ-H2A.X and p16INK4A were also increased in DPSCs with repeated LPS stimulation. We found that the LPS bound with Toll-like receptor 4 (TLR4) and that TLR4 signaling accounted for p16INK4A expression. Further results indicated that the senescence of DPSCs stimulated repeatedly with LPS was reversed by p16INK4A short interfering RNA. The DNA damage response and p16INK4A pathways might be the main mediators of DPSC senescence induced by repeated LPS stimulation. Thus, DPSCs tend to undergo senescence after repeated activation, implying that DPSC senescence starts after many inflammatory challenges. Ultimately, these findings should lead to a better understanding of DPSC-based clinical therapy.  相似文献   

17.
Dental stem cells for dental pulp regeneration have become a new strategy for pulpitis treatment. Angiogenesis and neurogenesis play a vital role in the pulp-dentin complex regeneration, and appropriate growth factors will promote the process of angiogenesis and neurogenesis. Insulin-like growth factor-binding protein 5 (IGFBP5) is involved in the regulation of tooth growth and development. A previous study showed that IGFBP5 enhanced osteo/odontogenic differentiation of dental stem cells. Our research intends to reveal the function of IGFBP5 in the angiogenic and neurogenic differentiation of human dental stem cells. Human dental pulp stem cells (DPSCs) were used in the present study. Lentiviral IGFBP5 shRNA was used to silence the IGFBP5. Retroviruses expressing Wild-type IGFBP5 were used to over-express IGFBP5. Angiogenic and neurogenic differentiation were carried out by in vitro study. Real-time RT-PCR and western blot results showed that over-expression of IGFBP5 upregulated the expressions of angiogenic markers, including VEGF, PDGFA and ANG-1, and neurogenic markers, including NCAM, TH, Nestin, βIII-tubulin, and TH, in DPSCs. Moreover, microscope observation confirmed that over-expression of IGFBP5 enhanced neurosphere formation in DPSCs in size and amount. Immunofluorescence staining results showed that over-expression of IGFBP5 also prompted the percentage of Nestin and βIII-tubulin positive neurospheres in DPSCs. While depletion of IGFBP5 downregulated the expressions of VEGF, PDGFA, ANG-1, NCAM, TH, Nestin, βIII-tubulin, and TH, it decreased the neurosphere formation and percentage of Nestin and βIII-tubulin positive neurospheres in DPSCs. In conclusion, our results revealed that IGFBP5 promoted angiogenic and neurogenic differentiation potential of DPSCs in vitro and provided the possible potential target for enhancing directed differentiation of dental stem cells and dental pulp-dentin functional regeneration.  相似文献   

18.
ObjectivesSalivary gland regeneration is closely related to the parasympathetic nerve; however, the mechanism behind this relationship is still unclear. The aim of this study was to evaluate the relationship between the parasympathetic nerve and morphological differences during salivary gland regeneration.Materials and MethodsWe used a duct ligation/deligation‐induced submandibular gland regeneration model of Sprague‐Dawley (SD) rats. The regenerated submandibular gland with or without chorda lingual (CL) innervation was detected by haematoxylin–eosin staining, real‐time PCR (RT‐PCR), immunohistochemistry and Western blotting. We counted the number of Ki67‐positive cells to reveal the proliferation process that occurs during gland regeneration. Finally, we examined the expression of the following markers: aquaporin 5, cytokeratin 7, neural cell adhesion molecule (NCAM) and polysialyltransferases.ResultsIntact parasympathetic innervation promoted submandibular gland regeneration. The process of gland regeneration was significantly repressed by cutting off the CL nerve. During gland regeneration, Ki67‐positive cells were mainly found in the ductal structures. Moreover, the expression of NCAM and polysialyltransferases‐1 (PST) expression in the innervation group was significantly increased during early regeneration and decreased in the late stages. In the denervated submandibular glands, the expression of NCAM decreased during regeneration.ConclusionsOur findings revealed that the regeneration of submandibular glands with intact parasympathetic innervation was associated with duct cell proliferation and the increased expression of PST and NCAM.  相似文献   

19.
荣靖  周向荣  刘秋英  王一飞 《生命科学》2010,(10):1031-1034
牙髓干细胞是来源于牙髓组织中的一种成体干细胞,该种细胞具有高度增殖、自我更新的能力和多向分化潜能。牙髓干细胞的研究对牙髓再生、牙体修复等牙组织工程将产生重要的意义。该文就牙髓干细胞的研究现状作一综述,并对其应用前景进行探讨。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号