首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
安明态  罗庆莲 《植物研究》2008,28(6):641-643
报道了中国贵州小檗科小檗属植物一新种,即平坝小檗(Berberis pingbaensis M. T. An)新种与堆花小檗(B. aggregate Schineid.)相近似,但植物较小,果具白粉。  相似文献   

2.
Three new species of Berberis from Yunnan are described and illustrated: B. dokerlaica Harber, B. yiliangensis Harber and B. brevipedicillata Harber. The remarkable diversity of this genus in the Hengduan Mountains of south central China is discussed.  相似文献   

3.
Three species of Rhytismatales on Berberis were found from Sichuan and Yunnan provinces in China. Two of them were described as new species to science, namely Hypoderma minteri and Lophodermium johnstonii. The third one was a known species, Hypoderma berberidis. The phylogenetic relationships of these species within the Rhytismatales were analyzed based on internal transcriber spacer ribosomal DNA. The results showed that the species of the Rhytismatales on Berberis, unlike most species on pines, were not closely related. Three ITS sequences from GenBank, named there as Lirula macrospora, were used in this study, but were found to be from misidentified sources. A key to species of Rhytismatales on Berberis worldwide is also given.  相似文献   

4.
The Grain for Green Program (GGP) is the largest afforestation and reforestation project in China in the early part of this century. To assess carbon sequestration in stands under the GGP in Southwest China, the carbon stocks and their annual changes in the GGP stands in the region were estimated based on the following information: (1) collected data on the annually planted area of each tree species under the GGP in Southwest China from 1999 to 2010; (2) development of empirical growth curves and corresponding carbon estimation models for each species growing in the GPP stands; and (3) parameters associated with the stands such as wood density, biomass expansion factor, carbon fraction and the change rate of soil organic carbon content. Two forest management scenarios were examined: scenario A, with no harvesting, and scenario B, with logging at the customary rotation followed by replanting. The results showed that by the years 2020, 2030, 2040, 2050 and 2060, the expected carbon storage of the GGP stands in Southwest China is 139.58 TgC, 177.50–207.55 TgC, 196.86–259.65 TgC, 240.45–290.62 TgC and 203.22–310.03 TgC (T = 1012), respectively. For the same years, the expected annual change in carbon stocks is 7.96 TgCyr−1, −7.95–5.95 TgCyr−1, −0.10–4.67 TgCyr−1, 4.31–2.24 TgCyr−1 and −0.02–1.75 TgCyr−1, respectively. This indicates that the stands significantly contribute to forest carbon sinks in this region. In 2060, the estimated carbon stocks in the seven major species of GGP stands in Southwest China are 4.16–13.01 TgC for Pinus armandii, 6.30–15.01 TgC for Pinus massoniana, 11.51–13.44 TgC for Cryptomeria fortunei, 15.94–24.13 TgC for Cunninghamia lanceolata, 28.05 TgC for Cupressus spp., 5.32–15.63 TgC for Populus deltoides and 5.87–14.09 TgC for Eucalyptus spp. The carbon stocks in these seven species account for 36.8%–41.4% of the total carbon stocks in all GGP stands over the next 50 years.  相似文献   

5.
High‐mountain areas such as the Tibeto‐Himalayan region (THR) host cold‐adapted biota expected to be sensitive to anthropogenic climate change. Meconopsis is a representative endangered genus confined to alpine meadow or subnival habitats in the THR. We used climate‐niche factor analysis to study the vulnerability of ten Meconopsis species to climate change, comparing current climate (representative of 1960–1990) to future climate scenarios (2070: average 2061–2080). For these ten Meconopsis species, we then identified potential future climate refugia and determined optimal routes for each species to disperse to the proposed refugia. Our results indicate that for the ten Meconopsis species, the regions with low vulnerability to climate change in the THR are the central Qinghai‐Tibet Plateau, the Hengduan Mountains (HDM), the eastern Himalayas, and the West Qinling Mountain (WQL), and can be considered potential future climate refugia. Under future climate change, we found for the ten Meconopsis species potential dispersal routes to three of the four identified refugia: the HDM, the eastern Himalayas, and the WQL. Our results suggest that past refugia on the THR will also be the future climate refugia for the ten Meconopsis species, and these species may potentially persist in multiple future climate refugia, likely reducing risks from climate change. Furthermore, climate change may affect the threat ranking of Red Listed Species for Meconopsis species, as Least Concern species were estimated to become more vulnerable to climate change than the only Near Threatened species.  相似文献   

6.
The Himalaya–Hengduan Mountain region is one of the hotspots of biodiversity research. The uplift of the Qinghai–Tibetan Plateau (QTP) and the Quaternary glaciation caused great environmental changes in this region, and the responses of many species in the QTP to the Quaternary climate are still largely unknown. The genetic structure and phylogeographical history of Gentiana crassicaulis Duthie ex Burk, an endemic Chinese alpine species in this area, were investigated based on four chloroplast fragments and internal transcribed spacer region of the nuclear ribosomal DNA (nrITS) sequences of 11 populations. The populations with highly diverse chloroplast haplotypes were mainly found at the edge of the QTP. There were two main haplotypes of nrITS clones, one shared by the Yunnan and Guizhou populations, and the other by the remaining populations. The population with the highest diversity was the Gansu population, located at the edge of the plateau. Based on molecular dating, the diversification of G. crassicaulis at the edge of the plateau occurred before the Last Glacial Maximum (LGM), and the species may have completed its expansion from the edge to the platform. Ecological niche models were conducted to predict the distributional ranges of G. crassicaulis at present, during the LGM, and during the last interglacial (LIG) period. The results demonstrated that G. crassicaulis survived on the QTP platform and at the edge during the LGM but afterward retreated from the platform to the southern edge, followed by expansion to the platform.  相似文献   

7.
In India, 55 species of Berberis have been reported and 22 species are found in Uttarakhand state. Berberis rawatii (Berberidaceae), a new species from Chamoli and Pithoragarh districts of Uttarakhand state of India (western Himalaya) is here described and illustrated. In terms of leaf and inflorescence, Berberis rawatii shows affinities with B. cretica L. Both these species have entire leaves, fascicled inflorescences, conspicuous style and black berries, but B. rawatii differs in the presence of a petiole, the dorsal surface of leaf pruinose, presence of elongated‐ovate glands, presence of prophylls, three ovules and pruinose fruits.  相似文献   

8.
Peter H. Kerr 《ZooKeys》2014,(386):29-83
Megophthalmidia Dziedzicki is a small leiine genus (Mycetophilidae) with seven species described from the Neotropics and ten species from the Palearctic region. Two species of Megophthalmidia have been reported for North America. Recent collecting of Mycetophilidae in California and Arizona, however, shows current North American diversity of Megophthalmidia is at least on par to other regions of the world. Eight new species of Megophthalmidia are described here, increasing the number of Nearctic Megophthalmidia species to nine. Included is a particularly atypical member of the genus, M. saskia sp. n., which expands the genus concept of Megophthalmidia. Of the two species previously recorded for North America, only one actually belongs in the genus. Megophthalmidia occidentalis Johannsen, is fully described and illustrated. The other named species, M. marceda (Sherman) is illustrated and transferred to the genus Ectrepesthoneura Enderlein. A lectotype is designated for this species. A key to the species of Megophthalmidia of North America is provided. The biology of these flies is not yet known. Three of the new Megophthalmidia species – M. lenimenta, M. misericordia, and M. radiata – are only known to occur within small protected areas within the California State Park and UC Natural Reserve systems.  相似文献   

9.
Facilitation is a global phenomenon that occurs when one species promotes the growth, survival, or reproduction of another species, mostly in stressful environments. However, the importance of facilitation by shrubs in maintaining plant community diversity is not well evaluated in the Himalayas, especially for the richness and conservation of medicinal and human-valued species. Therefore, we aimed to explore the facilitative role of a dwarf shrub species, Berberis angulosa, in maintaining plant composition and richness of human-valued species in the Langtang valley of Nepal's Himalayas. We censused plant species in open patches and beneath Berberis during monsoon and post-monsoon (dry) seasons at three elevations.Total species richness and richness of human-valued species were significantly higher inside the Berberis canopy than in gaps; the former being 39% and the latter 46% greater under shrubs than in open sites. Facilitation by Berberis shrubs promoted plant community diversity irrespective of season and elevation; however, higher differences in mean species richness for both total plant species and human-valued species during the dry season and at high elevation indicated increased facilitation intensity under more stressful conditions. The facilitative effect of Berberis shrubs increased, combining both seasons, overall plant diversity by 19% (total=105), and human-valued species by 16% (total=56). Our results show the importance of facilitation by nurse shrubs in structuring plant communities and protecting medicinal and socio-ecologically important plants, thus enriching ecosystem services in the Himalayas. These results suggest nurse plant species should be incorporated into conservation policies and management strategies for effective biodiversity conservation and sustainability, especially in the face of climate change.  相似文献   

10.
Saussurea balangshanensis, based on populations from Balang Mountain in the Hengduan Mountains region, SW China, is described and illustrated as a new species of Asteraceae. It can be distinguished from other species in Saussurea by its concolorous leaves, swollen and hollow upper stems, articulate hairs and stipitate glandular hairs, laciniate margins of uppermost stem leaves, numerous and sessile capitula, and narrow involucre. Based on nucleotide sequence data from the internal transcribed spacer (ITS), phylogenetic analyses also support the recognition of these populations as representing a new species. The new species is known only from a single location in Balang Mountain, at elevations of 4500–4700 m. Its habitat can be easily disturbed or destroyed by a tourist arterial highway and the over grazing. We propose that the species should be listed as Critically Endangered based on the International Union for Conservation of Nature Red List Categories and Criteria B2a.  相似文献   

11.
Gastrodia longistyla, a new species of Orchidaceae from Yunnan Province, China, is described and illustrated. It is morphologically similar to Gastrodia peichatieniana, but can be easily distinguished from the latter by having a rhombic epichile, long column (6.0–7.5 mm long), and a needle-shaped appendage (1.8–3.2 mm in length) at the base of the stigma. Identification key and colour photographs are provided. A preliminary risk-of-extinction assessment, according to the IUCN Red List Categories and Criteria, is given for the new species. The plastome of G. longistyla is 30464 bp in length with GC content approximately 24.8%, and the plastome does not contain some housekeeping genes, such as matK, rpl16, or all photosynthesis genes. In addition, the G. longistyla plastome lacks an IR region. This indicates that the plastome is in the last stage of degradation.  相似文献   

12.
The Sino-Himalayan Mountain Region is a major center of diversity of Heracleum (Apiaceae, Tordylieae, Tordyliinae), yet the phylogenetic relationships among its rich diversity of endemic taxa are largely unknown. In this study, we (1) investigate the monophyly of Heracleum and ascertain the phylogenetic placements of those species of Heracleum from China that fall outside of the group; (2) estimate phylogenetic relationships within Heracleum sensu stricto, particularly among those species occurring in the Hengduan Mountain Region of southwestern China; and (3) reconstruct the biogeographic history of Heracleum sensu stricto. To achieve these objectives, Bayesian inference and maximum-parsimony analyses of the nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) region and five noncoding chloroplast DNA (cpDNA) loci (rps16-trnK, rps16 intron, trnQ-rps16, rpl32-trnL, and psbA-trnH), separately and in combination, were carried out. Fruit morphology of the Chinese Heracleum species was examined. Statistical dispersal-vicariance analysis (S-DIVA) was used to reconstruct the biogeographic history. In total, 114 accessions were considered, which included 88 species representing eight genera of subtribe Tordyliinae, 28 of the 29 species of Heracleum occurring in China, and 4 species of Angelica as outgroups. The genus Heracleum is monophyletic upon the exclusion of nine species of Heracleum from China and the inclusion of the Caucasian monotypic genera Mandenovia and Symphyoloma. These nine excluded species show affinities to Tetrataenium, Semenovia, and Angelica. The species of Heracleum endemic to southwestern China form a moderately to strongly supported clade; however, major discordance between the ITS- and cpDNA-derived phylogenies, lack of resolution in the trees, and polyphyly of several species preclude unequivocal hypotheses of phylogenetic relationship. The distinctly clavate vittae, shorter than the length of the mericarp, is a diagnostic feature for Heracleum sensu stricto. Heracleum originated in the West Palearctic, with three possible migration routes leading to its present-day distribution. Major topological conflicts between the ITS and cpDNA trees may be due to interspecific hybridization and/or incomplete lineage sorting. The taxonomic limits of many Chinese Heracleum species remain unclear, possibly because of recent radiation in the Hengduan Mountains.  相似文献   

13.
Bioactive fractionation, based on multi-drug resistance (MDR) pump inhibition in Staphylococcus aureus, resulted in the isolation of the active inhibitors 5′-methoxyhydnocarpin-D from leaves of Berberis (formerly Mahonia) trifoliolata and pheophorbide a from Berberis fendleri. The hydnocarpin derivative was not found in the latter species. Pheophytin a (the phytol derivative of pheophorbide a) was identified from both species, but it proved to have no MDR pump inhibitory activity. The somewhat uncommon, and inactive, flavonoid tricin was identified from B. trifoliolata. The occurrence of a flavonolignan in Mahonia-tpe species and its absence in Berberis sensu strictu may provide a chemical differentiation between the two groups which are now recombined on the basis of DNA studies. The strong bacterial efflux pump inhibition of pheophorbide a could be of importance as a plant defense against natural pathogens.  相似文献   

14.
15.
Taibai Mountain is the highest peak of Qinling Mountain Ridge, a climate and geographical demarcation of the southern and northern China. Collembolan species of family Entomobryidae are reported from this region for the first time in this paper. Two new species, Homidia taibaiensis sp. n. and Sinella triseta sp. n. of Entomobryinae are described. Illustrations and differences with similar species are provided.  相似文献   

16.
A new species of Carex sect. Rhomboidales, C. jianfengensis, is described and illustrated from Hainan, China. The new species is similar to C. zunyiensis but differs in having involucral bracts sparsely hispid and with ca.1 cm long sheaths; inflorescence with 4 spikes, terminal spike ca. 2.5 cm long, lateral spikes 2–3.5 × 0.7–1 cm; staminate glumes narrowly ovate, ca. 5 mm; pistillate glumes triangular-lanceolate, 5–7 mm; perigynia 6–8 × 3 mm and pubescent on veins; nutlet 4–5 mm long, rhombic-ovoid, trigonous, base with shortly stipitate, apex abruptly contracted into a erect short beak, and not expanding into an annulate orifice.  相似文献   

17.
An unknown species belonging to the genusCalcaridorylaimus Andrássy, 1986 was collected from the litter of broadleaf forests dominated by Castanea sativa Mill. and mixed with Quercus daleshampii Ten. and Fagus sylvatica L. on Belasitsa Mountain, south-western Bulgaria. Calcaridorylaimus castaneae sp. n. is characterised by its long body (1.4–2.1 mm), lip region practically not offset, vulva transverse, short odontostyle (14.5–16 μm) and tail (75.5–110.5 μm, c=14.7–23.6; c’=2.9–4.4) in females and 38–46 μm long spicules with small spur before their distant end in males. It is most similar to C. andrassyi Ahmad & Shaheen, 2004, but differs in having transverse vs pore-like vulva and shorter spicules (38–46 μm vs 52–57 μm). An identification key to the species of the genus Calcaridorylaimus is proposed. Phylogenetic analyses were performed on 18S and D2-D3 expansion domains of 28S rRNA genes by Neighbor-Joining, Maximum Likelihood and Bayesian Inference methods. The phylograms inferred from 18S sequences showed closest relationships of the new species with some species belonging to the genus Mesodorylaimus. However, insufficient molecular data for members of both genera do not allow the phylogenetic relationships of Calcaridorylaimus and the new species described herein to be elucidated.  相似文献   

18.
19.
A new species of the genus Boleodorus, recovered from southern Iran, is described and illustrated based upon morphological and molecular data. B. bushehrensis n. sp. is mainly characterized by having a wide and low cephalic region (which is continuous with the adjacent body), the oral aperture in a depression in side view under a light microscope, four lines in the lateral field, weak metacorpus with a vestigial-to-invisible valve, and short (26–38 mm long) hooked tail with rounded tip. The females are 334–464 mm long and have a spherical spermatheca filled with spheroid sperm; males have 11.5- to 12.0-mm-long spicules and weakly developed bursa. The new species has an annulated low cephalic region, four large cephalic papillae, and small crescent-shaped amphidial openings when observed by scanning electron microscopy (SEM). Its morphological and morphometric differences with seven known species are discussed. The phylogenetic relationships of the new species with other relevant genera and species have been studied using partial sequences of small and large subunit ribosomal DNA (SSU and LSU rDNA). In both the SSU and LSU phylogenies, the sequences of B. bushehrensis n. sp. and other Boleodorus spp. formed a clade. A second species, B. thylactus, when studied under SEM, has a raised, smooth cephalic region, four large cephalic papillae, and oblique amphidial slits, with the oral opening in a depression.  相似文献   

20.
The Hengduan Mountain Region on the south-eastern fringe of the Qinghai- Xizang (Tibet) Plateau is located in W. Sichuan, N. W. Yunnan and E. Xizang, with a wide area of juxtaposition from the east to the west, the mountains extending and the rivers flowing from the north to the south. In this paper it covers an area from Daojie, Wayao, Yingping, Yangbi, Dali of Yunnan and Dukou of Sichuan in the south, to Banbar, Dengqeu, Shenda of Tibet and Serxu, Dainkog, Shuajingsi and Nanping (Jiuzhaigou) of Sichuan in the north, and from Lharong, Baxoi and Zayü of Tibet in the west, to Maowen, Wenchuan, Mt. Erlang, Mt. Emei and Xichang of Sichuan in the east (Fig. 1.). The Gongga Mountain is the highest in the region, its summit being at an altitude of 7556m, whereas the Dadu River Valley in the eastern part of the area is only 1150 m above sea level. Therefore, the relative height is about 6400 m in the region. The Hengduan Mountain Region is well-known for its various topography, complex natural conditions and rich flora. The floristic composition and features of orchids in Hengduan Mountain Region. 1. The species of orchids are abundant in the region. As we know so far, orchids in the Hengduan Mountain Region comprise 91 genera and 363 species with 9 varieties, and thus it is one of concentration centres of orchids in China, making up 56.17% of the total number of orchids genera in China, only less than in Yunnan and Taiwan, and 34.87% of the total number of orchids species in China, only less than in Yunnan and Sichuan. 2. The orchids genera in the Hengduan Mountain Region are complex in geographical components as indicated below: (1) Four geneva are endemic to China and one of them is endemic to the region. (2) Fourteen genera are of the north temperate distribution pattern, 2 of the Old World temperate one, 18 of the East-Asian one (including Sino-Himalayan and Sino-Japanese) and 3 of the East-Asian-North American one. (3) Twenty one genera belong to the tropical Asian distribution pattern, 3 to the tropical Asian-tropical African one, 13 to the tropical Asian-tropical Australian one, 1 to the tropical Asian-tropical South American one, 8 to the Old World tropical one and 2 to the pantropical one. (4) Two genera are cosmopolitan. The analysis of genera: Fourty eight genera (containing 151 species with 4 varieties) of the tropical distribution occur in the region, among which Calanthe and Cymbidium distributed in the temperate region, and Bulbophyllum and Peristylus in the subtropical part of China are comparatively abundant (with over 10 species), but the other 25 genera are monospecific and 11 genera each contain only 2-3 species. Some epiphytic genera mainly distributed in tropical Asia and belonging to tropical florestic elements, such as Vanda, Luisia, Schoenorchis, Flickingeria, Monomeria, Kingidium, Acampe, Phalaenopsis, Thrixspermum, Eria, Taeniophyllum, and terrestrial genera, such as Aphyllorchis, Collabium, Mischobulbum, Paphiopedilum, Thunia, Brachycarythis, Satyrium, Corybas, Geodorum, Zeuxine, Tropidia, have the Hengduan Mountain Region as the northern limit of distribution. Of 151 species with 4 varieties, 41 species with 4 varieties are endemic to China, and 14 species with 3 varieties of them are endemic to the area, making up 3.86% of the total in the region under discussion. There are 41 genera (containing 189 species with 5 varieties) of the temperate distribution, which occur in the region. Among them Platanthera (22 species with 1 variety), Cypripedium (17 species), Herminium (16 species), Amitostigma (15 species with 1 variety), Orchis (12 species), Hemipilia (8 species with 1 variety), Neottianthe (4 species), Gymnadenia (4 species), Diphylax (3 species), Bletilla (3 species), have the Hengduan Mountain Region as the distribution centre and differentiation centre. Among the 189 species with 5 varieties, 111 species with 5 varieties are endemic to China, and 54 species with 5 varieties are endemic to the area, making up 14.88% of the total of orchids in the Hengduan Mountain Region. Although the number of temperate distribution genera is smaller than that of tropical distribution ones, several points may be mentioned: (1) The Hengduan Mountain Region is distribution centre and differentiation centre of a number of temperate genera in China, and is the northern limit of many genera mainly distributed in the tropics. (2) The number in the former category is obviously larger than that in the latter. (3) Endemic species in the former category in the area are over three times as many as those in the latter. The differentiation of species of the temperate distribution genera is obviously stronger than the tropical ones, which characterizes the orchid flora in the area as the temperate one. The life forms of genera. The orchid flora in the Hengduan Mountain Region so far known comprises 91 genera, among which 51 are terrestrial, 32 epiphytic and 8 saprophytic, thus with the terrestrial one dominant. The analysis of species: The orchid flora in the Hengduan Mountain Region so far known comprises 363 species with 9 varieties. Their distribution patterns and floristic components, to which they belong, are indicated as follows: (1) Fifty four species, belonging to 33 genera, are widespread, covering the whole East Asian Region, but 6 of them are endemic to China. (2) Forty four species, belonging to 27 genera, are the elements of the Sino-Japanese Subregion, but 22 species of them are endemic to China. (3) One hundred and ninety five species with nine varieties, belonging to 53 genera, are the elements of the Sino-Himalayan Subregion under discussion: (A) Four species (i.e. Aphyllorchis alpine, Listera divaricata, L. pinetorum and Oreorchis micrantha) are distributed in the Himalayan Region and S. E. Xizang (Tibet), western part of this region. (B) Twenty five species, belonging to 17 genera, are distributed in N. W. Yunnan and the Himalayan Region (Appendix, 1.). (C) Sixteen species, belonging to 11 genera, are distributed in the Himalayan region and W. Sichuan. Among them 6 species occur only with Mt. Emei as the easternmost limit and 10 species occur in the region west of Mt. Emei. (D) Ten species, belonging to 9 genera, are distributed in the Himalayan region, this region and S. Shaanxi, S. Gansu or S. E. Qinghai. (E) Eight species, belonging to 6 genera, are distributed in the Himalayan region and this region. Among them 6 species have their range extending eastwards to Guizhou and 2 species eastwards to Guangxi. (F) Five species, belonging to 5 genera, having their range extending from this region southwards to N. Burma. (G) One handred and twenty seven species with nine varieties are endemic to China behind discussion. (4) (A) Three species (i.e. Anoectochilus moulmeinensis, Bulbophyllum forrestii and Liparis chapaensis) are distributed in Indo-China, Burma and the region. (B) Nine species, belonging to 7 genera, are distributed in Indo-China, N. E. India and this region. (C) Forty six species, belonging to 21 genera, are distributed in Indo-China, the Himalayan Region and this region (Appendix, 2.). (D) Twelve species, belonging to 11 genera, are distributed in Indo-China and this region (Appendix, 3.) 3. The vicarism is obvious in the orchid flora of the Hengduan Mountain Region. There are 10 species-pairs (in genera Calanthe, Tropidia, Anoectochilus, Mischobulbum, Bulbophyllum, Gymnadenia, Pogonia, Tipularia, Tulotis, Orchis, etc.) of the horizontal vicarism and 7 species-pairs (in genera Epigeneium, Epipogium, Platanthera, Pogonia, etc.) of the vertical vicarism in the region. 4. The endemic species are prolific in the region. In the orchid flora of the Hengduan Mountain Region there are 155 species and 9 varieties endemic to China: (1) Six species are widespread in the whole East-Asian Region. (2) Twenty two species are the elements of the Sino-Japanese Subregion. (3) One hundred and twenty seven species with nine varieties are the elements of the Sino-Himalayan Subregion. Among them 69 species with 5 varieties are endemic to the region (Appendix, 4.), making up 19% of the total in the region; other 58 species with 4 varieties are distributed in the region and neighbouring regions or provinces of it (Appendix, 5.). 5. Remarkable differentiation of the orchid flora in the Hengduan Mountain Region is shown by evident vicarism and abundance of endemic elements, exampled by Amitostigma, Herminium, Orchis, Cypripedium, Platanthera, etc. and one group of Platanthera, which is confined to the south fringe of the Xizang (Tibet) Plateau-Hengduan Mountain Region. The group consists of 12 species, of which one (P. edgeworthii) is distributed in the Western Himalayas from Hazara in Pakistan to Kumaun in India, and all the other 11 species (i.e.P. stenantha, P. bakeriana, P. roseotincta, P. deflexilabella, P. longiglandula, P. exilliana, P. chiloglossa, P. leptocaulon, P. platantheroides, P. clavigera and P. latilabris) occur in China, with 3 of them (i.e.P. deflexilabella, P. longiglandula and P. chiloglossa) endemic to China. According to their structure of gynostemum and form of labellum they belong to Platanthera without question, although they are different from the other members of Platanthera in stigma convex (not concave) and sepals mammillary-ciliate, stigma exhibits a series of evolutionary trends in part of species, from stigma single, convex, elliptic and located near rear of spur mouth (in P. stenantha) to stigma single, suddle, and located near front of spur mouth (in P. bakeriana) and to stigma double, separate and located at front of spur mouth in the other ten species. The group in Platanthera is only confined to the area from the south fringe of the Xizang (Tibet) Plateau to the Hengduan Mountain Region. It seems that the genus has been affected by intense lift of the area, causing variation and differentiation and giving rise to the group due to the long-term natural selection. Mt. Emei in Sichuan Province is the eastern limit of distribution of the group, where there are three spcies, among which two (P. deflexilabella and P. longiglandula) are endemic to the mountains. In addition, among Risleya (1 species), Diphylax (3 species) and Diplomeris (2 species), three genera typical of distribution in the Sino-Himalayan Subregion, Risleya and Diphylax have Mt. Emei as their eastern limit. Eleven species, belonging to elements of the SinoJapanese Subregion, occur only from Japan to Western Sichuan with Mt. Emei as the western limit. Among nine species, belonging to elements of the Sino-Himalayan Subregion, six occur from the Himalayas to W. Sichuan and three of them are endemic to the Hengduan Mountain Region, with Mt. Emei as their eastern limit of distribution. There are eight endemic species and one variety of orchids in Mt. Emei, making up about 11.59% of the total endemic species in the Hengduan Mountain Region. Orchid floristic elements in Mt. Emei are obviously different from those in Mt. Jinfo, the former being mainly of the Sino-Himalayan Subregion, while the latter being mainly of the Sino-Japanese Subregion. From the distribution patterns of the orchid floristic elements in the Hengduan Mountain Region and Eastern China, the Emei Mountain is considered important for drawing a boundary line between the Sino-Japanese Subregion and the Sino-Himalayan Subregion. The discussion may be summarized as follows: the floristic features of the orchid flora in the Hengduan Mountain Region are: (1) rich in species, complex in geographical components, eminent vicarism and differentiation, and prolific in endemic species; (2) terrestrial life form is dominant one; (3) mainly consisting of temperate and subtropical East-Asian elements, es pecially, elements of Sino-Himalayan Subregion, though with some tropical elements and elem-ents of other regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号