首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effect of restraint stress (3 hr) on plasma LH and testosterone levels, on the Leydig cell LH/hCG receptor, and on the activity of enzymes in the testicular steroidogenic pathway of the adult rat. Restraint stress caused a 47% reduction in plasma testosterone concentrations, but had no effect on plasma LH levels. The binding capacity and affinity of Leydig cell LH/hCG receptors were not affected by restraint. Stress did not affect the testicular activity of 20,22 desmolase or 3 beta-hydroxysteroid dehydrogenase, but testicular interstitial cells of stressed rats incubated in vitro with progesterone as a substrate produced more 17 alpha-hydroxyprogesterone but less testosterone than control cells, and when incubated with 17 alpha-hydroxypregnenolone, produced 39% less androstenedione and 40% less testosterone than control cells. These results suggest that restraint stress inhibited 17,20 desmolase but not 17 alpha-hydroxylase activity. When the delta 4 pathway was blocked with cyanoketone (3 beta-HSD inhibitor), stress did not alter the production of pregnenolone or 17 alpha-hydroxypregnenolone, but the production of dehydroepiandrosterone by cells from stressed rats was subnormal, suggesting again a reduction of 17,20 desmolase activity. The data suggest that a major site of the inhibitory action of restraint stress on testicular steroidogenesis is the 17,20 desmolase step. The disruption of androgen production by restraint appears to be LH independent since stress did not affect plasma LH levels, the binding capacity or affinity of LH/hCG receptors, or the activity of 20,22 desmolase.  相似文献   

2.
Luteinizing hormone is the major regulator of Leydig cell differentiation and steroidogenic function. A number of hormones produced by the Leydig cell (e.g. estrogen, angiotensin, CRF, vasopressin) and the tubular compartment (inhibin, TGF beta), can influence both acute and long-term actions of LH. Conversely, hormones produced in the Leydig cells modulate tubular function (e.g. androgen, beta-endorphin, oxytocin). The LH stimulatory event can be negatively influenced by the action of angiotensin II through the guanyl nucleotide inhibitory unit of adenylate cyclase. We have recently discovered an action of corticotrophin releasing hormone through specific high-affinity low-capacity receptors in the Leydig cells which involves a pertussis toxin insensitive guanyl nucleotide regulatory unit with interaction between signalling pathways and resulting inhibition of LH induced cAMP generation and consequently of steroidogenesis. In contrast to other tissues the CRF receptor in the Leydig cells did not couple to Gs. CRF action is exerted through direct or indirect action of protein kinase C, at the level of the catalytic subunit of adenylate cyclase. Physiological increases in endogenous LH cause positive regulation of membrane receptors and steroidogenesis, while major elevations in circulating gonadotropin can induce down-regulation of LH receptors and desensitization of steroid responses in the adult cell. Gonadotropin-induced desensitization in adult rat tests include an estrogen mediated steroidogenic lesion of the microsomal enzymes 17 alpha-hydroxylase/17,20-desmolase. For further understanding of the regulation of this key enzyme of the androgen pathway the rat P450(17) alpha cDNA was cloned and sequenced. This cDNA expressed in COS-1 cells 17 alpha-hydroxylase/17,20-desmolase activities. From the deduced amino acid sequence, two transmembrane regions were identified, a signal peptide for insertion in the ER, and a 2nd transmembrane region separated from the first by 122 amino acids. The carboxy terminal non-transmembrane region possesses 4 hydrophobic clefts, of which cleft II would contain the putative steroid binding site for both hydroxylase and lyase activities. The rat cDNA was employed to evaluate the hormonal regulation of mRNA levels in adult and fetal Leydig cells. Low dose hCG treatment caused an early increase in mRNA levels followed by a return to control values at later times, while with higher desensitizing doses the initial increase in mRNA was followed by a marked reduction in mRNA at 24 h and a small recovery at 48 h. Fetal rat Leydig cells treated with E2 showed a 70% decrease in P450 mRNA levels, and testosterone production closely followed the changes in mRNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Human chorionic gonadotropin is a glycoprotein hormone that, like LH, stimulates steroidogenesis in gonadal cells. Using a desialylation process, 95 per cent of the sialic acid residues from an intact standard hCG molecule were eliminated and then the electrophoretic properties and the bioactivity of the desialylated hCG were determined. Using rat Leydig cells as a biological model, the binding affinity to LH receptors of Leydig cell membranes, steroidogenic activity and second messenger production were studied. The results indicate that the loss of sialic acid from the hCG molecule slightly increases the binding activity to LH receptors and results in steroidogenic activity with an increased ED50. Cyclic AMP production was significantly reduced however and arachidonic acid release was not observed. Several possible mechanisms that could explain these results are discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
LH controls Leydig cell steroidogenesis by interaction with specific membrane receptors initiating membrane coupling events. Stimulation of the androgen pathways occurs mainly through cAMP mediated mechanism including LH induced guanyl nucleotide binding, membrane phosphorylation and adenylate cyclase activation. cAMP dependent kinase activation presumably causes phosphorylation of key proteins of the steroidogenic pathway and consequent increase in testosterone production. The hormone also appears to facilitate the androgen stimulus by a cyclic AMP independent mechanism located at the plasma membrane or intracellular sites. The stimulatory event can be negatively influenced by the action of certain peptide hormones (i.e. angiotensin II) through the guanyl nucleotide inhibitory subunit of adenylate cyclase (Gi). In recent studies we have presented evidence for a Ca2+ sensitive kinase system present in purified cell membranes. Gpp(NH)p, GTP, and phospholipid in presence of nanomolar Ca2+ induce phosphate incorporation into Mr 44,500 substrate with marked inhibition at microM Ca2+. Similarly a biphasic pattern of activation was observed with adenylate cyclase activity. Membrane phosphorylation may be a modifier of LH-stimulated adenylate cyclase activity and possibly other LH induced actions in the activated Leydig cell membrane. Furthermore we have defined the stimulatory effects of forskolin on all Leydig cell cyclic AMP pools and have provided additional evidence of functional compartmentalization and/or cAMP independent facilitory stimulus of steroidogenesis by the trophic hormone. The demonstration of a novel high affinity inhibitory action of forskolin upon adenylate cyclase activity and cyclic AMP generation mediated by the Gi subunit of adenylate cyclase has provided a new approach for direct evaluation of functional inhibitory influence of Gi subunit in the Leydig cell. The cultured fetal Leydig cell system has provided a useful model to elucidate mechanisms involved in the development of gonadotropin induced estradiol mediated desensitization of steroidogenesis. We have isolated from the fetal testis a small population (2-5% of total) of transitional cells with morphological characteristics of cells found in 15 day postnatal testis but functional capabilities of the adult cell. We have also demonstrated after appropriate treatment (i.e. estrogen, and frequent or a high gonadotropin dose) the emergence of a functional adult-like cell type from the fetal Leydig cell population.  相似文献   

5.
To characterize Leydig cell steroidogensis, we examined the metabolism of (3H)pregnenolone (3β-hydroxy-5-pregnen-20-one) to androgens in the presence and absence of human chorionic gonadotropin (hCG) as a function of culture duration. Approximately 20–30% of the (3H)pregnenolone was converted to testosterone (17β-hydroxy-4-androsten-3-one) by purified Leydig cells at 0, 3 and 5 days (d) of culture. Androstenedione (4-androstene-3,17-dione) and dihydrotestosterone (17β-hydroxy-5α-androstan-3-one) were also produced while on day 5 of culture, significant amounts of progesterone (4-pregnene-3, 20-dione) were isolated. The Δ5 intermediates, 17-hydroxypregnenolone (3β, 17-dihydroxy-5-pregnen-20-one) and dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one), accounted for less than 1% of substrate conversion, indicating a clear preference for Leydig cells to metabolize (3H)pregnenolone via the Δ4 pathway. On day 0 of culture, unidentified metabolites consisted of predominately polar steroids while on day 5 of culture, the unidentified metabolites consisted of predominately nonpolar steroids. In the presence of hCG, (3H)pregnenolone metabolism did not differ from basal on day 0 or 3 of culture. HCG increased the conversion of pregnenolone to progesterone and 17-hydroxyprogesterone (17-hydroxy-4-pregnene-3, 20-dione) on 5d. This suggests that Leydig cells cultured for 5d have decreased C17–20 desmolase activity or that hCG acutely stimulates 3β-hydroxysteroid dehydrogenase and Δ45 isomerase activities.  相似文献   

6.
By using a model of immature porcine Leydig and Sertoli cells cultured in serum free defined medium, we evidenced a paracrine control of Leydig cell steroidogenic activity by Sertoli cells via a secreted inhibiting protein(s). This protein(s), partially purified using gel filtration (M.W. 20,000-30,000) suppresses the steroidogenic responsiveness to LH/hCG by decreasing the specific LH/hCG binding (52% decrease) and hormone steroid biosynthesis (73% decrease) at a level(s) located between cAMP production and pregnenolone formation. The suppression of this inhibitor(s) by FSH, in a dose dependent manner, is one mechanism by which FSH "sensitizes" Leydig cell response to LH/hCG stimulation.  相似文献   

7.
The mouse Y1 adrenal cell line was fused with mouse Leydig cells in primary culture. The selected hybrids were examined for their response to gonadotropin (hCG) and ACTH. None of them bound specifically [125I]hCG, nor did they augment their cAMP production in response to gonadotropin or ACTH stimulation, whereas their adenylate cyclase remained responsive to forskolin and cholera toxin, thus indicating a repression of hCG receptor synthesis and probably a loss of ACTH receptors, rather than a lesion of the coupling between the hormone receptor complex and the adenylate cyclase. Basal pregnenolone production in 17 hybrids was close to that of Leydig and Y1 cells and was enhanced after 8-bromo adenosine 3',5'-monophosphate (8-Br-cAMP) stimulation in 11 of them. Therefore, the negative control leading to the extinction of both parental functions acts preferentially at the first step of steroidogenesis, i.e., the gene(s) coding for the hormone receptors.  相似文献   

8.
Preparations of small and large steroidogenic cells from enzymatically dispersed ovine corpora lutea were utilized to study the invitro effects of luteinizing hormone (LH) and prostaglandins (PG) E1, E2 and I2. Cells were allowed to attach to culture dishes overnight and were incubated with either LH (100 ng/ml), PGE2, PGE2, or PGI2 (250 ng/ml each). The secretion of progesterone by large cells was stimulated by all prostaglandins tested (P < 0.05) while the moderate stimulation observed after LH treatment was attributable to contamination of the large cell population with small cells. Prostaglandins E1 and E2 had no effect on progesterone secretion by small cells, while LH was stimulatory at all times (0.5 to 4 hr) and PGI2 was stimulatory by 4 hr. Additional studies were conducted to determine if the effects of PGE2 upon steroidogenesis in large cells were correlated with stimulated activity of adenylate cyclase. In both plated and suspended cells PGE2 caused an increase (P < 0.05) in the rate of progesterone secretion but had no effect upon the activity of adenylate cyclase or cAMP concentrations within cells or in the incubation media. Exposure of luteal cells to forskolin, a nonhormonal stimulator of adenylate cyclase, resulted in marked increases in all parameters of cyclase activity but had no effect on progesterone secretion. These data suggest that the actions of prostaglandins E1, E2 and I2 are directed primarily toward the large cells of the ovine corpus luteum and cast doubt upon the role of adenylate cyclase as the sole intermediary in regulation of progesterone secretion in this cell type.  相似文献   

9.
Preparations of small and large steroidogenic cells from enzymatically dispersed ovine corpora lutea were utilized to study the effects of luteinizing hormone (LH) and prostaglandins (PG) E1, E2 and I2. Cells were allowed to attach to culture dishes overnight and were incubated with either LH (100 ng/ml), PGE2, PGE2, or PGI2 (250 ng/ml each). The secretion of progesterone by large cells was stimulated by all prostaglandins tested (P < 0.05) while the moderate stimulation observed after LH treatment was attributable to contamination of the large cell population with small cells. Prostaglandins E1 and E2 had no effect on progesterone secretion by small cells, while LH was stimulatory at all times (0.5 to 4 hr) and PGI2 was stimulatory by 4 hr. Additional studies were conducted to determine if the effects of PGE2 upon steroidogenesis in large cells were correlated with stimulated activity of adenylate cyclase. In both plated and suspended cells PGE2 caused an increase (P < 0.05) in the rate of progesterone secretion but had no effect upon the activity of adenylate cyclase or cAMP concentrations within cells or in the incubation media. Exposure of luteal cells to forskolin, a nonhormonal stimulator of adenylate cyclase, resulted in marked increases in all parameters of cyclase activity but had no effect on progesterone secretion. These data suggest that the actions of prostaglandins E1, E2 and I2 are directed primarily toward the large cells of the ovine corpus luteum and cast doubt upon the role of adenylate cyclase as the sole intermediary in regulation of progesterone secretion in this cell type.  相似文献   

10.
Corticotropin-releasing factor receptors and actions in rat Leydig cells   总被引:5,自引:0,他引:5  
Rat Leydig cells possess functional high affinity receptors for corticotropin-releasing factor (CRF). CRF inhibited human chorionic gonadotropin (hCG)-induced androgen production in cultured fetal and adult Leydig cells in a dose-dependent manner, but it had no effect on basal testosterone secretion. Comparable inhibitory effects of CRF were observed in the presence or absence of 3-isobutyl-1-methylxanthine. CRF treatment caused a marked reduction of steroid precursors of the androgen pathway (from pregnenolone to testosterone) during gonadotropin stimulation, but it did not influence their basal levels. The inhibitory action of CRF on hCG-induced steroidogenesis was fully reversed by 8-bromo-cAMP but was not affected by pertussis toxin. The action of CRF was rapid; and it was blocked by coincubation with anti-CRF antibody. CRF caused no changes in hCG binding to Leydig cells, and in contrast to other target tissues, CRF did not stimulate cAMP production, indicating that CRF receptors are not coupled to Gs in Leydig cells. These studies have demonstrated that CRF-induced inhibition of the acute steroidogenic action of hCG is exerted at sites related to receptor/cyclase coupling or cAMP formation. The inhibitory effects of CRF in the Leydig cell do not occur through the Gi unit of adenylate cyclase, but could involve pertussis toxin-insensitive G protein(s). These observations demonstrate that CRF has a novel and potent antireproductive effect at the testicular level. Since CRF is synthesized in the testis and is present in Leydig cells, it is likely that locally produced CRF could exert negative autocrine modulation on the stimulatory action of luteinizing hormone on Leydig cell function.  相似文献   

11.
Several clonal Leydig tumor cell lines have been established by adapting the transplantable Leydig tumor, M548OP, to culture. One of these cell line, MLTC-1, has been characterized with regard to the gonadotropin-responsive adenylate cyclase system. The binding of 125I-labeled human chorionic gonadotropin (hCG) was blocked by excess unlabeled hCG and lutropin (LH) but not by follitropin, thyrotropin, or insulin, indicating the presence of specific receptors for hCG and LH. Based on the specific binding of hCG to isolated MLTC-1 membranes, the calculated dissociation constant was 1.0 +/- 0.2 X 10(-10) M. The receptors appeared identical to those from normal murine Leydig cells when analyzed by SDS PAGE and sucrose density gradient centrifugation. The molecular weight and sedimentation coefficient were 95,000 daltons and 8.5 S, respectively. MLTC-1 cells responded to hCG by accumulating cyclic AMP and producing progesterone. Cyclic AMP accumulation was time- and dose-dependent with a maximal accumulation occurring at approximately 0.2 nM hCG. At saturating levels of hCG, cAMP levels reached a maximum by 30 min and then declined very slowly. Adenylate cyclase activity in membranes prepared from MLTC-1 cells was stimulated by hCG, LH, NaF, cholera toxin, and guanyl-5'-ylimidodiphosphate, Additionally, choleragen was found to ADP-ribosylate a membrane protein of 54,000 daltons. This protein resembles the proposed guanine nucleotide regulatory component in both size and choleragen-dependent reactivity. These data suggest that MLTC-1 cells possess a gonadotropin-responsive adenylate cyclase system consisting of a specific hormone receptor, a regulatory component, and a catalytic subunit.  相似文献   

12.
It is well known that estrogens and estrogen-like endocrine disruptors can suppress steroidogenic gene expression, attenuate androgen production and decrease differentiation of adult Leydig cell lineage. However, there is no information about the possible link between the potency of Leydig cells to produce androgens and their sensitivity to estrogenic stimuli. Thus, the present study explored the relationship between androgen production potential of Leydig cells and their responsiveness to estrogenic compounds. To investigate this relationship we selected mouse genotypes contrasting in sex hormone levels and differing in testosterone/estradiol (T/E2) ratio. We found that two mouse genotypes, CBA/Lac and C57BL/6j have the highest and the lowest serum T/E2 ratio associated with increased serum LH level in C57BL/6j compared to CBA/Lac. Analysis of steroidogenic gene expression demonstrated significant upregulation of Cyp19 gene expression but coordinated suppression of LHR, StAR, 3βHSDI and Cyp17a1 in Leydig cells from C57BL/6j that was associated with attenuated androgen production in basal and hCG-stimulated conditions compared to CBA/Lac mice. These genotype-dependent differences in steroidogenesis were not linked to changes in the expression of estrogen receptors ERα and Gpr30, while ERβ expression was attenuated in Leydig cells from C57BL/6j compared to CBA/Lac. No effects of estrogenic agonists on steroidogenesis in Leydig cells from both genotypes were found. In contrast, xenoestrogen bisphenol A significantly potentiated hCG-activated androgen production by Leydig cells from C57BL/6j and CBA/Lac mice by suppressing conversion of testosterone into corresponding metabolite 5α-androstane-3α,17β-diol. All together our data indicate that developing mouse Leydig cells with different androgen production potential are resistant to estrogenic stimuli, while xenoestrogen BPA facilitates hCG-induced steroidogenesis in mouse Leydig cells via attenuation of testosterone metabolism. This cellular event can cause premature maturation of Leydig cells that may create abnormal intratesticular paracrine milieu and disturb proper development of germ cells.  相似文献   

13.
The differential mechanisms reducing androgen secretion by LHRH agonists are discussed with relevance to clinical therapy. LH secretion can be desensitised by exposure to agonists using high doses, frequent injections or sustained release/constant infusion. The desensitized pituitary is refractory to hypothalamic stimulation. Pituitary receptor suppression is associated with depletion of pituitary gonadotrophin content, and a decline of LH and FSH secretion to a basal rate. Recovery of LH responsiveness to endogenous LHRH stimulation requires restitution of gonadotrophin content (about 7 days in rats). After long-term infusions in normal men, testosterone secretion recovers within 7-10 days. The binding capacity of testicular LH/hCG receptors is reduced in rats after supraphysiological gonadotrophin stimulation, by agonists or directly by hCG, concomitantly the steroidogenic capacity of the testis in vitro is impaired. Qualitative changes in androgen biosynthesis are a marked fall in testosterone production and dose-dependent enhancement of progesterone production. After 12 months of buserelin injections, the changes in hCG-stimulated rat testes are an increased ratio of progesterone/17-OH-progesterone (inhibition of 17-hydroxylase), a reduced capacity for secretion of androstenedione and testosterone (block of 17,20-desmolase), and increased 5 alpha-pregnane-3,20-dione (this steroid inhibits the 17,20-desmolase, similarly to progesterone). After treatment, Leydig cell function recovers completely. Leydig cell hyperplasia is observed as a result of the steroidogenic changes. These findings in rats have not been observed in dogs, monkeys or in humans.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
One single injection of ethylene dimethane sulfonate (EDS) to mature rats causes specific degeneration of testicular Leydig cells which is complete after 3 days. At this time no steroidogenic activities can be detected, indicating that Leydig cells are the source of steroids. The mechanism of this cytotoxic effect of EDS has been investigated with isolated cells. Extensive protein alkylation has been shown to occur in Leydig cells, Sertoli cells and hepatocytes. Steroid production by Leydig cells is always inhibited by EDS, but cytotoxic effects of EDS could only be demonstrated in Leydig cells from mature rats or tumour tissue and not in Leydig cells from immature rats. A new population of Leydig cells develops during the next 2-5 weeks after EDS treatment. In hypophysectomized rats this repopulation only occurs when hCG is given daily. FSH has no effects. The proliferative activity in the interstitial tissue increases within 2 days after administration of hCG or EDS and there are indications that LH and locally produced factors are involved in the proliferation of Leydig cells or Leydig cell precursor cells. Inhibition of cAMP production with inhibitors of adenylate cyclase results in an enhancement of the LH-stimulated steroid production similar to that observed with an LHRH agonist and phospholipase C (PLC). Since the effects of LHRH and PLC on protein phosphorylation and steroid production are similar and different from LH or active phorbol esters, it is proposed that LHRH and PLC may stimulate steroid production via liberation of calcium from a specific intracellular pool. Sterol carrier protein2 (SCP2) which is specifically localized in Leydig cells and regulated by LH probably plays a role in the delivery of cholesterol to the mitochondria although the mechanism of this carrier function is not clear. The results indicate that regulation of Leydig cell development and the steroidogenic activities by gonadotrophins and locally produced factors occur via different transducing systems and regulatory pathways.  相似文献   

16.
Unilaterally cryptorchid rats were examined at 3, 8, 15, 22 and 28 days after operation. There was a selective decrease in the adenylate cyclase (ATP pyrophosphate--lyase (cyclizing), EC 4.6.1.1) responses to gonadotrophin stimulation in the abdominal testis. This was associated with a parallel decrease in specific FSH and LH binding. There was no reduction in the response of testicular adenylate cyclases to prostaglandin (PG) E-1 or fluoride stimulation, indicating that both the GTP binding protein (N-component) and the catalytic subunit of the adenylate cyclase complexes were intact. The reduction in FSH-responsive adenylate cyclase activity in the abdominal testis was not due to a change in the Km for adenylate cyclase activation, but was due to a reduction in maximal velocities. Unilateral cryptorchidism was also associated with a rapid decline in soluble Mn2+-dependent adenylate cyclase activity in germ cells (spermatids). By 3 days after operation there was an 82% decrease in germ cell adenylate cyclase activity. The loss of soluble Mn2+-dependent adenylate cyclase activity was associated with a parallel decrease in Sertoli cell secretion of androgen binding protein, indicating that Sertoli cell factors may be important for the maintenance of germ cell adenylate cyclase activity. The desensitization of the gonadotrophin--responsive adenylate cyclases and the loss of gonadotrophin receptors in Leydig and Sertoli cells were not due to changes in plasma gonadotrophin values because LH concentrations were within normal limits and plasma FSH was only marginally elevated in the cryptorchid rats. No significant alterations of any of these parameters were seen in the scrotal testis of unilaterally cryptorchid rats when compared to values for intact controls.  相似文献   

17.
Abstract

Pituitary LH is a key factor in controlling Leydig cell activity. In order to verify how steroids produced by the male gonads could influence testicular insulin binding, different steroids at varying doses were administered. Testosterone propionate (Tp) as well as estradiol-17β (E2-17β) and 5α-dihydrotestosterone (DHT) led to a 50% decrease of insulin binding in testis while no effect was noted when HCG was administered concomitantly with DHT. LH receptors were parallely measured: DHT and E2 -17β significantly depressed testis LH binding. It is concluded that steroids play a role in the regulation of testis membrane insulin receptor via their feedback mechanism on pituitary LH.  相似文献   

18.
Depriving rats of luteinizing hormone (LH) causes Leydig cells to lose smooth endoplasmic reticulum and diminishes their P450 C17-hydroxylase/C17,20-lyase activity (Wing et al., 1984). LH administration to hypophysectomized rats prevents these changes in Leydig cell structure and function (Ewing and Zirkin, 1983). We adopted a multistep procedure of rat Leydig cell isolation to study the trophic effects of LH on steroidogenesis in the Leydig cell. Our method employs vascular perfusion, enzymatic dissociation, centrifugal elutriation, and Percoll gradient centrifugation. The purified Leydig cell fraction obtained after Percoll density-gradient centrifugation contains 95% well-preserved 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD)-staining cells with ultrastructural characteristics of Leydig cells. These Leydig cells produced 248 and 29 ng of testosterone/10(6) Leydig cells when incubated for 3 h with and without a maximally stimulating concentration of ovine LH. Purified Leydig cells obtained from control rats and rats treated with testosterone-estradiol (T-E) implants for 4 days to inhibit LH production were incubated with a saturating concentration (2 microns) of pregnenolone. Leydig cells from control and T-E-implanted rats produced 537 and 200 ng of testosterone/10(6) Leydig cells X 3 h, respectively, suggesting a defect in the steroidogenic reactions converting pregnenolone to testosterone in Leydig cells from T-E-implanted rats. By using rabbit antibodies to the P450 C17-hydroxylase/C17,20-lyase pig microsomal enzyme, immunoblots of one-dimensional sodium dodecyl sulfate polyacrylamide gels of Leydig cell microsomal protein from control and 4- and 12-day T-E implanted rats revealed a continued loss of enzyme as the period of LH withdrawal continues. These results show that Leydig cells from animals deprived of LH had diminished capacity to convert pregnenolone to testosterone and reduced P450 C17-hydroxylase/C17,20-lyase content.  相似文献   

19.
The cellular localization of beta-adrenergic and prostaglandin (PG) receptors and their effects on adenylate cyclase activity (AC) and testosterone production in vitro were investigated in a transplantable rat Leydig cell tumor (H-540). Separation of the tumor cells in Percoll gradients revealed that the specific binding of [3H]PGE1 and [125I]Cyanopindolol was found in the same fraction as that of [125I]LH. This fraction--judged by light microscopy of smears--consisted of tumor Leydig cells. In addition, [125I]cyanopindolol was found specifically bound in the red blood cell fraction. In the Leydig tumor cells, approx 25% of the beta-adrenergic receptors was identified as beta 1-receptors, whereas approx 75% of the receptors were of the beta 2-subtype. The AC in Percoll purified Leydig tumor cells was stimulated by hCG (6-fold), PGE1 (2-fold), PGE2 (1.5-fold), PGI1 (2-fold) and isoproterenol (2-fold). The AC in the red blood cell fraction was stimulated by isoproterenol whereas the PGs and hCG had little or no effect. hCG, isoproterenol and PGE1 were able to stimulate testosterone production in vitro. At 44 h incubation, PGE1 was the most potent stimulator of testosterone production. In conclusion, tumor Leydig cells possess hCG, PGE1, PGI2 and beta-adrenergic receptors coupled to the AC. PGE1 and beta-adrenergic agonists stimulate testosterone production after prolonged incubation in vitro.  相似文献   

20.
In purified rat Leydig cells, the methyl donor S-adenosyl-methionine (SAM), increases significantly in a dose dependent manner the [125I]hCG binding as well as the productions of cAMP and of testosterone; the competitive inhibitor of methylations S-adenosyl-homocysteine (SAH), has an opposite effect. Associated to oLH, SAM further enhances the cAMP synthesis while SAH inhibits significantly the adenylate cyclase activity. With regard to testosterone synthesis, SAM potentiates the stimulating roles of oLH and dbcAMP (27 and 38% increases, respectively) although SAH diminishes testosterone productions (48 and 35%, respectively under oLH and dbcAMP stimulations). Scatchard analysis has shown that SAM (1.4 mM) increases the number of LH/hCG binding sites on Leydig cells while SAH (1.4 mM) decreases it; LH/hCG Ka values are not modified neither by SAM nor by SAH. These data suggest that the in vitro regulation of steroidogenesis in purified rat Leydig cells may involve methylation processes (presumably phospholipids are the potential substrates of these reactions) which modulates the transmission of the hormonal signal through the membrane and affects the testosterone synthesis at a step beyond the adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号