首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging drives progressive loss of the ability of tissues to recover from stress, partly through loss of somatic stem cell function and increased senescent burden. We demonstrate that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) rapidly senescence and become dysfunctional in culture. Injection of BM‐MSCs from young mice prolonged life span and health span, and conditioned media (CM) from young BM‐MSCs rescued the function of aged stem cells and senescent fibroblasts. Extracellular vesicles (EVs) from young BM‐MSC CM extended life span of Ercc1 −/− mice similarly to injection of young BM‐MSCs. Finally, treatment with EVs from MSCs generated from human ES cells reduced senescence in culture and in vivo, and improved health span. Thus, MSC EVs represent an effective and safe approach for conferring the therapeutic effects of adult stem cells, avoiding the risks of tumor development and donor cell rejection. These results demonstrate that MSC‐derived EVs are highly effective senotherapeutics, slowing the progression of aging, and diseases driven by cellular senescence.  相似文献   

2.
Amyloid‐beta (Aβ) oligomer is known to contribute to the pathophysiology of age‐related macular degeneration. Herein, we aimed to elucidate the in vivo and in vitro effects of Aβ1‐42 application on retinal morphology in rats. Our in vivo studies revealed that intracerebroventricular administration of Aβ1‐42 oligomer caused dysmorphological changes in both retinal ganglion cells and retinal pigment epithelium. In addition, in vitro studies revealed that ARPE‐19 cells following Aβ1‐42 oligomer application had decreased viability along with apoptosis and decreased expression of the tight junction proteins, increased expression of both phosphor‐AKT and phosphor‐GSK3β and decreased expression of both SIRT1 and β‐catenin. Application of conditioned medium (CM) obtained from mesenchymal stem cells (MSC) protected against Aβ1‐42 oligomer‐induced retinal pathology in both rats and ARPE‐19 cells. In order to explore the potential role of peptides secreted from the MSCs, we applied mass spectrometry to compare the peptidomics profiles of the MSC‐CM. Gene ontology enrichment analysis and String analysis were performed to explore the differentially expressed peptides by predicting the functions of their precursor proteins. Bioinformatics analysis showed that 3‐8 out of 155–163 proteins in the MSC‐CM maybe associated with SIRT1/pAKT/pGSK3β/β‐catenin, tight junction proteins, and apoptosis pathway. In particular, the secretomes information on the MSC‐CM may be helpful for the prevention and treatment of retinal pathology in age‐related macular degeneration.  相似文献   

3.
Mesenchymal stroma/stem‐like cells (MSCs) have antitumour activity, and MSC‐derived exosomes play a role in the growth, metastasis and invasion of tumour cells. Additionally, glycoprotein A repetition predominant (GARP) promotes oncogenesis in breast cancer. Therefore, GARP is speculated to be a target gene for cancer therapy. We aimed to explore the therapy role of MSC‐derived exosomes targeting GARP in mouse colon cancer cell MC38. We successfully established a GARP knockdown system using three kinds of siRNA‐GARP in MSC cells. Exosomes were isolated from MSC and siGARP‐MSC cells, and verified by the exosome surface protein markers CD9, CD63 and CD81. GARP expression was significantly decreased in siGARP‐MSC exosomes compared with that of MSC exosomes. We found that siGARP‐MSC exosomes inhibited cell proliferation, migration and invasion of MC38 cells, using CCK‐8, colony formation, wound‐healing and Transwell invasion assays. Furthermore, siGARP‐MSC exosomes impeded IL‐6 secretion and partly inactivated JAK1/STAT3 pathway, measured using ELISA and RT‐qPCR. In conclusion, MSC‐derived exosomes targeting GARP are a potential strategy for cancer therapy.  相似文献   

4.
Alternative splicing of pre‐mRNAs can regulate gene expression levels by coupling with nonsense‐mediated mRNA decay (NMD). In order to elucidate a repertoire of mRNAs regulated by alternative splicing coupled with NMD (AS‐NMD) in an organism, we performed long‐read RNA sequencing of poly(A)+ RNAs from an NMD‐deficient mutant strain of Caenorhabditis elegans, and obtained full‐length sequences for mRNA isoforms from 259 high‐confidence AS‐NMD genes. Among them are the S‐adenosyl‐L‐methionine (SAM) synthetase (sams) genes sams‐3 and sams‐4. SAM synthetase activity autoregulates sams gene expression through AS‐NMD in a negative feedback loop. We furthermore find that METT‐10, the orthologue of human U6 snRNA methyltransferase METTL16, is required for the splicing regulation in␣vivo, and specifically methylates the invariant AG dinucleotide at the distal 3′ splice site (3′SS) in␣vitro. Direct RNA sequencing coupled with machine learning confirms m6A modification of endogenous sams mRNAs. Overall, these results indicate that homeostasis of SAM synthetase in C. elegans is maintained by alternative splicing regulation through m6A modification at the 3′SS of the sams genes.  相似文献   

5.
ObjectivesWhether periodic oral intake of postbiotics positively affects weight regulation and prevents obesity‐associated diseases in vivo is unclear. This study evaluated the action mechanism of Lactobacillus plantarum L‐14 (KTCT13497BP) extract and the effects of its periodic oral intake in a high‐fat‐diet (HFD) mouse model.Materials and methodsMouse pre‐adipocyte 3T3‐L1 cells and human bone marrow mesenchymal stem cells (hBM‐MSC) were treated with L‐14 extract every 2 days during adipogenic differentiation, and the mechanism underlying anti‐adipogenic effects was analysed at cellular and molecular levels. L‐14 extract was orally administrated to HFD‐feeding C57BL/6J mice every 2 days for 7 weeks. White adipose tissue was collected and weighed, and liver and blood serum were analysed. The anti‐adipogenic mechanism of exopolysaccharide (EPS) isolated from L‐14 extract was also analysed using Toll‐like receptor 2 (TLR2) inhibitor C29.ResultsL‐14 extract inhibited 3T3‐L1 and hBM‐MSC differentiation into mature adipocytes by upregulating AMPK signalling pathway in the early stage of adipogenic differentiation. The weight of the HFD + L‐14 group (31.51 ± 1.96 g) was significantly different from that of the HFD group (35.14 ± 3.18 g). L‐14 extract also significantly decreased the serum triacylglycerol/high‐density lipoprotein cholesterol ratio (an insulin resistance marker) and steatohepatitis. In addition, EPS activated the AMPK signalling pathway by interacting with TLR2, consequently inhibiting adipogenesis.ConclusionsEPS from L‐14 extract inhibits adipogenesis via TLR2 and AMPK signalling pathways, and oral intake of L‐14 extract improves obesity and obesity‐associated diseases in vivo. Therefore, EPS can be used to prevent and treat obesity and metabolic disorders.  相似文献   

6.
7.
The present paper is a commentary to ‘Identification and characterization of hADSCderived exosome proteins from different isolation methods’ (Huang et al. 2021; 10.1111/jcmm.16775). Given the enthusiasm for the potential of mesenchymal stromal cell‐derived extracellular vesicles (MSC‐EVs), some considerations deserve attention as they move through successive stages of research and application into humans. We herein remark the prerequisite of generating that evidence ensuring a high consistency in safety, composition and biological activity of the intended MSC‐EV preparations, and the suitability of disparate isolation techniques to produce efficacious EV preparations and fulfil requirements for standardized clinical‐grade biomanufacturing.  相似文献   

8.
Animals possess conserved mechanisms to detect pathogens and to improve survival in their presence by altering their own behavior and physiology. Here, we utilize Caenorhabditis elegans as a model host to ask whether bacterial volatiles constitute microbe‐associated molecular patterns. Using gas chromatography–mass spectrometry, we identify six prominent volatiles released by the bacterium Pseudomonas aeruginosa. We show that a specific volatile, 1‐undecene, activates nematode odor sensory neurons inducing both flight and fight responses in worms. Using behavioral assays, we show that worms are repelled by 1‐undecene and that this aversion response is driven by the detection of this volatile through AWB odor sensory neurons. Furthermore, we find that 1‐undecene odor can induce immune effectors specific to P. aeruginosa via AWB neurons and that brief pre‐exposure of worms to the odor enhances their survival upon subsequent bacterial infection. These results show that 1‐undecene derived from P. aeruginosa serves as a pathogen‐associated molecular pattern for the induction of protective responses in C. elegans.  相似文献   

9.
The aphid Schlechtendalia chinensis is an economically important insect that can induce horned galls, which are valuable for the medicinal and chemical industries. Up to now, more than twenty aphid genomes have been reported. Most of the sequenced genomes are derived from free‐living aphids. Here, we generated a high‐quality genome assembly from a galling aphid. The final genome assembly is 271.52 Mb, representing one of the smallest sequenced genomes of aphids. The genome assembly is based on contig and scaffold N50 values of the genome sequence are 3.77 Mb and 20.41 Mb, respectively. Nine‐seven percent of the assembled sequences was anchored onto 13 chromosomes. Based on BUSCO analysis, the assembly involved 96.9% of conserved arthropod and 98.5% of the conserved Hemiptera single‐copy orthologous genes. A total of 14,089 protein‐coding genes were predicted. Phylogenetic analysis revealed that S. chinensis diverged from the common ancestor of Eriosoma lanigerum approximately 57 million years ago (MYA). In addition, 35 genes encoding salivary gland proteins showed differentially when S. chinensis forms a gall, suggesting they have potential roles in gall formation and plant defense suppression. Taken together, this high‐quality S. chinensis genome assembly and annotation provide a solid genetic foundation for future research to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.  相似文献   

10.
Exosomes were found to exert a therapeutic effect in the treatment of osteonecrosis of the femoral head (ONFH), while miR‐135b was shown to play an important role in the development of ONFH. In this study, we investigated the effects of concomitant administration of exosomes and miR‐135b on the treatment of ONFH. A rat mode of ONFH was established. TEM, Western blotting and nanoparticle analysis were used to characterize the exosomes collected from human‐induced pluripotent stem cell–derived mesenchymal stem cells (hiPS‐MSC‐Exos). Micro‐CT was used to observe the trabecular bone structure of the femoral head. Real‐time PCR, Western blot analysis, IHC assay, TUNEL assay, MTT assay and flow cytometry were performed to detect the effect of hiPS‐MSC‐Exos and miR‐135b on cell apoptosis and the expression of PDCD4/caspase‐3/OCN. Moreover, computational analysis and luciferase assay were conducted to identify the regulatory relationship between PDCD4 mRNA and miR‐135b. The hiPS‐MSC‐Exos collected in this study displayed a spheroidal morphology with sizes ranging from 20 to 100 nm and a mean concentration of 1 × 1012 particles/mL. During the treatment of ONFH, the administration of hiPS‐MSC‐Exos and miR‐135b alleviated the magnitude of bone loss. Furthermore, the treatment of MG‐63 and U‐2 cells with hiPS‐MSC‐Exos and miR‐135b could promote cell proliferation and inhibit cell apoptosis. Moreover, PDCD4 mRNA was identified as a virtual target gene of miR‐135b. HiPS‐MSC‐Exos exerted positive effects during the treatment of ONFH, and the administration of miR‐135b could reinforce the effect of hiPS‐MSC‐Exos by inhibiting the expression of PDCD4.  相似文献   

11.
Bacterial lung infections lead to greater than 4 million deaths per year with antibiotic treatments driving an increase in antibiotic resistance and a need to establish new therapeutic approaches. Recently, we have generated mouse and rat stem cell‐derived alveolar‐like macrophages (ALMs), which like primary alveolar macrophages (1''AMs), phagocytose bacteria and promote airway repair. Our aim was to further characterize ALMs and determine their bactericidal capabilities. The characterization of ALMs showed that they share known 1''AM cell surface markers, but unlike 1''AMs are highly proliferative in vitro. ALMs effectively phagocytose and kill laboratory strains of P. aeruginosa (P.A.), E. coli (E.C.) and S. aureus, and clinical strains of P.A. In vivo, ALMs remain viable, adapt additional features of native 1''AMs, but proliferation is reduced. Mouse ALMs phagocytose P.A. and E.C. and rat ALMs phagocytose and kill P.A. within the lung 24 h post‐instillation. In a pre‐clinical model of P.A.‐induced lung injury, rat ALM administration mitigated weight loss and resolved lung injury observed seven days post‐instillation. Collectively, ALMs attenuate pulmonary bacterial infections and promote airway repair. ALMs could be utilized as an alternative or adjuvant therapy where current treatments are ineffective against antibiotic‐resistant bacteria or to enhance routine antibiotic delivery.  相似文献   

12.
ObjectivesBone marrow‐derived cells (BMDCs), especially mesenchymal stem cells (MSCs), may be involved in the development of Helicobacter pylori‐associated gastric cancer (GC) in mice, but the specific mechanism remains unclear, and evidence from human studies is lacking.Materials and MethodsTo verify the role of BM‐MSCs in H pylori‐associated GC, green fluorescent protein (GFP)‐labelled BM‐MSCs were transplanted into the subserosal layers of the stomach in a mouse model of chronic H pylori infection. Three months post‐transplantation, the mice were sacrificed, and the gastric tissues were subjected to histopathological and immunofluorescence analyses. In addition, we performed fluorescence in situ hybridization (FISH) and immunofluorescence analyses of gastric tissue from a female patient with H pylori infection and a history of acute myeloid leukaemia who received a BM transplant from a male donor.ResultsIn mice with chronic H pylori infection, GFP‐labelled BM‐MSCs migrated from the serous layer to the mucosal layer and promoted GC progression. The BM‐MSCs differentiated into pan‐cytokeratin‐positive epithelial cells and α‐smooth muscle actin‐positive cancer‐associated fibroblasts (CAFs) by secreting the protein thrombospondin‐2. FISH analysis of gastric tissue from the female patient revealed Y‐chromosome‐positive cells. Immunofluorescence analyses further confirmed that Y‐chromosome‐positive cells showed positive BM‐MSCs marker. These results suggested that allogeneic BMDCs, including BM‐MSCs, can migrate to the stomach under chronic H pylori infection.ConclusionsTaken together, these findings imply that BM‐MSCs participate in the development of chronic H pylori‐associated GC by differentiating into both gastric epithelial cells and CAFs.  相似文献   

13.
ObjectivesMouse incisor mesenchymal stem cells (MSCs) have self‐renewal ability and osteo/odontogenic differentiation potential. However, the mechanism controlling the continuous self‐renewal and osteo/odontogenic differentiation of mouse incisor MSCs remains unclear. Special AT‐rich sequence‐binding protein 2 (SATB2) positively regulates craniofacial patterning, bone development and regeneration, whereas SATB2 deletion or mutation leads to craniomaxillofacial dysplasia and delayed tooth and root development, similar to bone morphogenetic protein (BMP) loss‐of‐function phenotypes. However, the detailed mechanism underlying the SATB2 role in odontogenic MSCs is poorly understood. The aim of this study was to investigate whether SATB2 can regulate self‐renewal and osteo/odontogenic differentiation of odontogenic MSCs.Materials and methods Satb2 expression was detected in the rapidly renewing mouse incisor mesenchyme by immunofluorescence staining, quantitative RT‐PCR and Western blot analysis. Ad‐Satb2 and Ad‐siSatb2 were constructed to evaluate the effect of Satb2 on odontogenic MSCs self‐renewal and osteo/odontogenic differentiation properties and the potential role of Satb2 with the osteogenic factor bone morphogenetic protein 9 (Bmp 9) in vitro and in vivo.Results Satb2 was found to be expressed in mesenchymal cells and pre‐odontoblasts/odontoblasts. We further discovered that Satb2 effectively enhances mouse incisor MSCs self‐renewal. Satb2 acted synergistically with the potent osteogenic factor Bmp9 in inducing osteo/odontogenic differentiation of mouse incisor MSCs in vitro and in vivo.Conclusions Satb2 promotes self‐renewal and osteo/odontogenic differentiation of mouse incisor MSCs. Thus, Satb2 can cooperate with Bmp9 as a new efficacious bio‐factor for osteogenic regeneration and tooth engineering.  相似文献   

14.
15.
16.
Mesenchymal stem cells (MSCs) are promising source of cell‐based regenerative therapy. In consideration of the risk of allosensitization, autologous MSC‐based therapy is preferred over allogenic transplantation in patients with chronic kidney disease (CKD). However, it remains uncertain whether adequate cell functionality is maintained under uremic conditions. As chronic inflammation and oxidative stress in CKD may lead to the accumulation of senescent cells, we investigated cellular senescence of CKD MSCs and determined the effects of metformin on CKD‐associated cellular senescence in bone marrow MSCs from sham‐operated and subtotal nephrectomized mice and further explored in adipose tissue‐derived MSCs from healthy kidney donors and patients with CKD. CKD MSCs showed reduced proliferation, accelerated senescence, and increased DNA damage as compared to control MSCs. These changes were significantly attenuated following metformin treatment. Lipopolysaccharide and transforming growth factor β1‐treated HK2 cells showed lower tubular expression of proinflammatory and fibrogenesis markers upon co‐culture with metformin‐treated CKD MSCs than with untreated CKD MSCs, suggestive of enhanced paracrine action of CKD MSCs mediated by metformin. In unilateral ureteral obstruction kidneys, metformin‐treated CKD MSCs more effectively attenuated inflammation and fibrosis as compared to untreated CKD MSCs. Thus, metformin preconditioning may exhibit a therapeutic benefit by targeting accelerated senescence of CKD MSCs.  相似文献   

17.
ObjectiveAcute liver failure is usually associated with inflammation and oxidation of hepatocytes and has high mortality and resource costs. Mesenchymal stem cell (MSCs) has occasionally been reported to have no beneficial effect due to poor transplantation and the survival of implanted cells. Recent studies showed that embryonic stem cell (ESC)‐derived MSCs are an alternative for regenerative medicine. On the other hand, graphene‐based nanostructures have proven useful in biomedicine. In this study, we investigated whether magnetic graphene oxide (MGO) improved the effects of ESC‐MSC conditioned medium (CM) on protecting hepatocytes and stimulating the regeneration of damaged liver cells.Materials and methodsTo provide a rat model of acute liver failure, male rats were injected intraperitoneally with carbon tetrachloride (CCl4). The rats were randomly divided into six groups, namely control, sham, CCl4, ESC‐MSC‐CM, MGO and ESC‐MSC‐CM + MGO. In the experimental groups, the rats received, depending on the group, 2 ml/kg body weight CCl4 and either ESC‐MSC‐CM with 5 × 106 MSCs or 300 μg/kg body weight MGO or both. Symptoms of acute liver failure appeared 4 days after the injection. All groups were compared and analysed both histologically and biochemically 4 days after the injection. Finally, the results of ESC‐MSC‐CM and MSC‐CM were compared.ResultsThe results indicated that the use of MGO enhanced the effect of ESC‐MSC‐CM on reducing necrosis, inflammation, aspartate transaminase, alanine aminotransferase and alkaline phosphatase in the CCl4‐induced liver failure of the rat model. Also, the expression of vascular endothelial growth factor and matrix metalloproteinase‐9 (MMP‐9) was significantly upregulated after treatment with MGO. Also, the results showed that the ESC‐MSC‐CM has more efficient effective compared to MSC‐CM.ConclusionMagnetic graphene oxide improved the hepatoprotective effects of ESC‐MSC‐CM on acute liver damage, probably by suppressing necrosis, apoptosis and inflammation of hepatocytes.  相似文献   

18.
Studies in ecology, evolution, and conservation often rely on noninvasive samples, making it challenging to generate large amounts of high‐quality genetic data for many elusive and at‐risk species. We developed and optimized a Genotyping‐in‐Thousands by sequencing (GT‐seq) panel using noninvasive samples to inform the management of invasive Sitka black‐tailed deer (Odocoileus hemionus sitkensis) in Haida Gwaii (Canada). We validated our panel using paired high‐quality tissue and noninvasive fecal and hair samples to simultaneously distinguish individuals, identify sex, and reconstruct kinship among deer sampled across the archipelago, then provided a proof‐of‐concept application using field‐collected feces on SGang Gwaay, an island of high ecological and cultural value. Genotyping success across 244 loci was high (90.3%) and comparable to that of high‐quality tissue samples genotyped using restriction‐site associated DNA sequencing (92.4%), while genotyping discordance between paired high‐quality tissue and noninvasive samples was low (0.50%). The panel will be used to inform future invasive species operations in Haida Gwaii by providing individual and population information to inform management. More broadly, our GT‐seq workflow that includes quality control analyses for targeted SNP selection and a modified protocol may be of wider utility for other studies and systems where noninvasive genetic sampling is employed.  相似文献   

19.
The high‐altitude environment may drive vertebrate evolution in a certain way, and vertebrates living in different altitude environments might have different energy requirements. We hypothesized that the high‐altitude environment might impose different influences on vertebrate mitochondrial genomes (mtDNA). We used selection pressure analyses and PIC (phylogenetic independent contrasts) analysis to detect the evolutionary rate of vertebrate mtDNA protein‐coding genes (PCGs) from different altitudes. The results showed that the ratio of nonsynonymous/synonymous substitutions (dN/dS) in the mtDNA PCGs was significantly higher in high‐altitude vertebrates than in low‐altitude vertebrates. The seven rapidly evolving genes were shared by the high‐altitude vertebrates, and only one positive selection gene (ND5 gene) was detected in the high‐altitude vertebrates. Our results suggest the mtDNA evolutionary rate in high‐altitude vertebrates was higher than in low‐altitude vertebrates as their evolution requires more energy in a high‐altitude environment. Our study demonstrates the high‐altitude environment (low atmospheric O2 levels) drives vertebrate evolution in mtDNA PCGs.  相似文献   

20.
ObjectivesThe derivation of neural crest stem cells (NCSCs) from human pluripotent stem cells (hPSCs) has been commonly induced by WNT activation in combination with dual‐SMAD inhibition.In this study, by fine‐tuning BMP signalling in the conventional dual‐SMAD inhibition, we sought to generate large numbers of NCSCs without WNT activation.Materials and methodsIn the absence of WNT activation, we modulated the level of BMP signalling in the dual‐SMAD inhibition system to identify conditions that efficiently drove the differentiation of hPSCs into NCSCs. We isolated two NCSC populations separately and characterized them in terms of global gene expression profiles and differentiation ability.ResultsOur modified dual‐SMAD inhibition containing a lower dose of BMP inhibitor than that of the conventional dual‐SMAD inhibition drove hPSCs into mainly NCSCs, which consisted of HNK+p75high and HNK+p75low cell populations. We showed that the p75high population formed spherical cell clumps, while the p75low cell population generated a 2D monolayer.We detected substantial differences in gene expression profiles between the two cell groups and showed that both p75high and p75low cells differentiated into mesenchymal stem cells (MSCs), while only p75high cells had the ability to become peripheral neurons.ConclusionsThis study will provide a framework for the generation and isolation of NCSC populations for effective cell therapy for peripheral neuropathies and MSC‐based cell therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号