首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objective: The purpose of this study was to investigate the effect of hip adduction on the activity of the Vastus Medialis Obliquus (VMO) and Vastus Lateralis Longus (VLL) muscles during semisquat exercises.

Methods: Twenty female subjects, divided into two groups comprising healthy and patellofemoral pain syndrome (PFPS) subjects (ten volunteers for each group), performed three double-leg semisquat exercise trials with maximum hip adduction isometric contraction (DLSS-HA) and three double-leg semisquat exercise trials without hip adduction (DLSS). The normalized electromyographic muscle data were analysed using Repeated Measure ANOVA (p  0.05).

Results: The electrical activity of both VMO and VLL muscles was significantly greater during DLSS-HA exercise than during DLSS (p = 0.0002) for both groups. Additionally, an independent Repeated Measure ANOVA revealed that the electric activity of the VLL muscle was significantly greater (p = 0.0149) than that of the VMO muscle during DLSS exercises only for the PFPS group. However, no differences were found during DLSS-HA exercises.

Conclusions: Although there was no preferential VMO muscle activation, the association of hip adduction with squat exercise promoted a greater balance between the medial and lateral portions of the quadriceps femoris muscle and could be indicated for the conservatory treatment of PFPS patients. The association of isometric hip adduction with isometric semisquat exercises produced a more overall quadriceps activity and could be indicated for clinical rehabilitation or muscle strengthening programs.  相似文献   


2.
We investigated the effects of four weeks of training using a knee extension with hip adduction (KEWHA) exercise in asymptomatic participants. In addition, we compared different methods of electromyographic (EMG) onset-time detection. Eighteen participants who achieved earlier activation of the vastus lateralis (VL) muscle compared to that of the vastus medialis obliquus (VMO) muscle performed the isometric KEWHA exercise in the sitting position for four weeks. A 15° hip adduction was added to the existing knee extension in the KEWHA exercise. EMG onset times were detected using a computer-analyzed system and evaluated using two methods in which the thresholds for activity onset were set at two and three standard deviations (SDs) of the mean baseline activity. No significant difference in the EMG onset-time for the VMO muscle was observed compared to that of the VL muscle between the pre- and post-tests (p > 0.05) when data at 2 SDs of the mean baseline activity were analyzed. However, a significant difference in the onset times for the VMO muscle and VL muscle was found between the pre- and post-tests (p < 0.05) when data at 3 SDs of the mean baseline activity were analyzed. In addition, less variation was observed in data analyzed at 3 SDs compared to that of the data at 2 SDs. The normalized VMO:VL muscle ratio was not significantly different between the pre- and post-tests. These findings show that the KEWHA exercise may decrease the difference between the onset times of VMO and VL muscles. In addition, we suggest that task-specific EMG onset-time detection methods are required to minimize variations in the data obtained during the recording of muscle activation.  相似文献   

3.
Concomitant hip adduction during squatting has long been advocated as a rehabilitative method to preferentially activate the VMO in persons with patellofemoral pain. This practice however has been based on research using surface electrodes which are prone to crosstalk from neighboring muscles (i.e., adductor magnus). This study sought to determine whether activation levels of the VMO relative to the VL while squatting with hip adduction would differ based on the choice of recording electrode. Ten healthy subjects performed a maneuver with hip adduction and without hip adduction. The mean VMO and VL activation levels were recorded simultaneously with surface and indwelling fine-wire electrodes. For both recording electrodes, the VMO and VL activity increased significantly with the addition of hip adduction (p < 0.05). However, the increase in VMO activation was more pronounced with surface electrodes, resulting in a significantly higher VMO:VL ratio with the incorporation of hip adduction compared to without hip adduction (p < 0.05). No difference in the VMO:VL ratio was observed between the two squat conditions for the fine-wire electrodes (p > 0.05). Our findings suggest that the VMO:VL activation ratio when squatting with hip adduction is influenced by electrode choice.  相似文献   

4.
The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC).

Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC>70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions.  相似文献   


5.
The use of knee braces for the treatment of patellofemoral pain syndrome (PFPS) is widely documented, yet the mechanism by which such braces alleviate knee pain remains unclear. This study attempted to clarify this issue by simplifying the brace to the level of only straps. The effectiveness of an infrapatellar strap for PFPS remains controversial, and the use of a suprapatellar strap has not yet been studied. Quadriceps muscle activity and onset timing parameters were measured with surface electromyography (EMG) during a body-weight squat in 19 healthy subjects during 4 different knee-strapping conditions (infra, supra, both, and none). No differences in normalized mean or peak EMG activity in any part of the quadriceps were found. The onset timing of the vastus lateralis (VL) was significantly delayed when using an infrapatellar strap (p < 0.05) or both straps (p < 0.05) and marginally delayed when using a suprapatellar strap (p < 0.10) in comparison with the no-strap (control) condition. No differences in the vastus medialis oblique (VMO) onset timing or VMO-VL onset timing difference were found among the strapping conditions, although an improvement in timing was noted with the suprapatellar condition. The results provide novel evidence that the application of an infrapatellar strap, suprapatellar strap, or both straps improves quadriceps muscle timing imbalances by delaying VL onset. Because the largest delay in VL onset occurred when wearing both straps, the combined application of an infrapatellar and suprapatellar strap may be the most beneficial in managing patellofemoral pain. Knee straps, unlike braces, are cost effective, nonrestrictive, and can be universally fitted to any knee and based on the results deserve further study in the patellofemoral pain population.  相似文献   

6.
The purpose of this study was to measure the relative contributions of 4 hip and thigh muscles while performing squats at 3 depths. Ten experienced lifters performed randomized trials of squats at partial, parallel, and full depths, using 100-125% of body weight as resistance. Electromyographic (EMG) surface electrodes were placed on the vastus medialis (VMO), the vastus lateralis, (VL), the biceps femoris (BF), and the gluteus maximus (GM). EMG data were quantified by integration and expressed as a percentage of the total electrical activity of the 4 muscles. Analysis of variance (ANOVA) and Tukey post hoc tests indicated a significant difference (p < 0.001*, p = 0.056**) in the relative contribution of the GM during the concentric phases among the partial- (16.9%*), parallel- (28.0%**), and full-depth (35.4%*) squats. There were no significant differences between the relative contributions of the BF, the VMO, and the VL at different squatting depths during this phase. The results suggest that the GM, rather than the BF, the VMO, or the VL, becomes more active in concentric contraction as squat depth increases.  相似文献   

7.
The purpose of this study was to compare the effect of an open-stance cycling protocol (OSCP) with the traditional cycling foot position (TCFP) for preferential vastus medialis oblique (VMO) muscle activation, measured by surface electromyography (SEMG), and preferential VMO activation as defined by achieving significantly increased VMO/VL (vastus lateralis muscle) ratio values. Forty subjects of both sexes participated, 18 symptomatic with patellofemoral pain and 22 control subjects; ages ranged from 18 to 60 years (mean = 28.7 +/- 8 years). The OSCP and TCFP were ridden in randomized order while SEMG recordings were taken of the VMO and VL muscles, collecting the mean of peak amplitudes to calculate VMO/VL ratio values. The SEMG readings were taken 4 times per testing session with randomized resistance and a consistent cycling cadence of 85 rpm. The OSCP displayed preferential VMO activation for all subject groups (F = 40.47, p = 0.0001), and this study revealed a protocol that effectively treats patellofemoral pain.  相似文献   

8.
Patellofemoral pain is a common knee disorder with a multi-factorial etiology related to abnormal patellar tracking. Our hypothesis was that the pattern of three-dimensional rotation and translation of the patella induced by selective activation of individual quadriceps components would differ between subjects with patellofemoral pain and healthy subjects. Nine female subjects with patellofemoral pain and seven healthy female subjects underwent electrical stimulation to selectively activate individual quadriceps components (vastus medialis obliquus, VMO; vastus medialis lateralis, VML; vastus lateralis, VL) with the knee at 0° and 20° flexion, while three-dimensional patellar tracking was recorded. Normalized direction of rotation and direction of translation characterized the relative amplitudes of each component of patellar movement. VMO activation in patellofemoral pain caused greater medial patellar rotation (distal patellar pole rotates medially in frontal plane) at both knee positions (p<0.01), and both VMO and VML activation caused increased anterior patellar translation (p<0.001) in patellofemoral pain compared to healthy subjects at 20° knee flexion. VL activation caused more lateral patellar translation (p<0.001) in patellofemoral pain compared to healthy subjects. In healthy subjects the 3-D mechanical action of the VMO is actively modulated with knee flexion angle while such modulation was not observed in PFP subjects. This could be due to anatomical differences in the VMO insertion on the patella and medial quadriceps weakness. Quantitative evaluation of the influence of individual quadriceps components on patellar tracking will aid understanding of the knee extensor mechanism and provide insight into the etiology of patellofemoral pain.  相似文献   

9.
The purpose of this study was to determine test-retest reliability for median frequency (MDF) and amplitude of surface EMG during sustained fatiguing contractions of the quadriceps. Twenty-two healthy subjects (11 males and 11 females) were tested on two days held one week apart. Surface EMG was recorded from rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM) during sustained isometric contractions at 80% and 20% of maximal voluntary contraction (MVC) held to exhaustion. Quadriceps fatigue was described using four measures for both MDF and amplitude of EMG: initial, final, normalized final and slope. For both MDF and amplitude, the initial, final and normalized EMG showed moderate to high reliability for all three muscle groups at both contraction levels (ICC=0.59-0.88 for MDF; ICC=0.58-0.99 for amplitude). Slope of MDF and amplitude was associated with a large degree of variability and low ICCs for the 80% but not the 20% MVC. MDF and amplitude of EMG during sustained contractions of the quadriceps are reproducible; normalized final values of MDF and amplitude show better reliability than slope.  相似文献   

10.
Patellofemoral pain syndrome (PFPS) is usually due to weakness of vastus medialis obliquus (VMO) resulting in abnormal patellar tracking. One of the objectives of rehabilitation is to strengthen the VMO so as to counterbalance the vastus lateralis (VL) action during normal activities. This study compared the effects of an 8-week exercise program with and without EMG biofeedback on the relative activations of VMO and VL. Twenty-six subjects with PFPS were randomly allocated into an "exercise" group (Group 1) and a "biofeedback+exercise" group (Group 2). Both groups performed the same exercise program but subjects in Group 2 received real time EMG biofeedback information on the relative activations of VMO and VL during the exercises. After 8 weeks of training, Group 1 had insignificant changes in their VMO/VL EMG ratio (p=0.355), whereas Group 2 had significantly greater VMO/VL EMG ratio (p=0.017) when performing normal activities throughout a 6-h assessment period. The present result reveals that the incorporation of an EMG biofeedback into a physiotherapy exercise program could facilitate the activation of VMO muscle such that the muscle could be preferentially recruited during daily activities.  相似文献   

11.
A common rehabilitation strategy for patellofemoral pain syndrome (PFPS), which lacks scientific evidence, includes pulling the patella medially with tape to reduce pain and increase the vastus medialis oblique (VMO) muscle activity. The purpose of this study was to examine the effect of various patellar taping procedures on force production, EMG activity of the VMO and vastus lateralis (VL) muscles, and perceived pain experienced by 30 women (27.3 +/- 1.53), half diagnosed with PFPS. The perceived pain, force, and EMG of the VMO and VL, were recorded while subjects performed maximal isokinetic leg presses at 30 degrees /s for each of the following patellar taping conditions: no tape (control), no glide (placebo), medial and lateral glide (experimental). The medial and placebo procedures significantly (P < 0.01) reduced perceived pain (70-80%) in PFPS subjects. Although patellar taping did not influence leg press force (P > 0.05), it increased the VMO activity and decreased the VL activity in PFPS subjects but had the opposite effect in healthy subjects. The findings suggest that taping the patella medially can contribute positively to PFPS rehabilitation. Because the medial glide and placebo taping conditions had similar effects, it is proposed that the benefits of patellar taping are not due to a change in patellar position but rather due to enhanced support of the patellofemoral ligaments and/or pain modulation via cutaneous stimulation.  相似文献   

12.
The purpose of this study was to evaluate the effect of patella taping in normal subjects. Previous work has established positive effects of patella taping on patellofemoral pain syndrome patients, but the mode of action remains unclear. It has been hypothesized that taping brings about subtle changes in the internal physiological environment of the joint. It could be expected that in normal joints taping would bring about a measurable change in function, as the joint is no longer operating in an optimal physiological environment. 10 normal female subject’s (21.4 ± 1.2 years) vastus medialis oblique (VMO) and vastus laterialis (VL) EMG activity and knee kinematics (peak stance flexion angle and angular velocity) were assessed during a step descent, with and without a taped patella. The effect of taping was to significantly decrease VMO and VL EMG activity. Taping also significantly reduced peak stance phase knee flexion and peak stance phase knee flexion angular velocity. In normal asymptomatic subjects patella taping created a situation in which their performance was changed to one similar to that of the pathological patellofemoral pain syndrome population. It would appear that taping caused the joint to function sub-optimally supporting the hypothesis that taping could change the functioning of the patellofemoral joint.  相似文献   

13.
The aim of the study was to evaluate maximal isometric (dynamometer based {MVC-NORM} and isometric squat {MIS-NORM}) and sub-maximal EMG normalisation methods (60%-NORM, 70%-NORM, 80%-NORM) for dynamic back squat exercise (DSQ-EX). The absolute reliability (limits of agreement {LOA}, coefficient of variation {CV%}), relative reliability (intra-class correlation coefficient {ICC}) and sensitivity of each method was assessed. Ten resistance-trained males attended four sessions. Session one assessed maximum back squat strength (three repetition maximum {3RM}). In the remaining three sessions Vastus lateralis (VL) and Bicep femoris (BF) EMG were measured whilst participants completed normalisation tasks and DSQ-EX sets at 65%, 75%, 85% and 95% of 3RM. MIS-NORM produced lower intra-participant CV% compared to MVC-NORM. 80%-NORM produced lower intra-participant CV% than other sub-maximal methods for VL and BF during eccentric and concentric phases. 80%-NORM also produced narrower 95% LOA results than all other normalisation methods. The MIS-NORM method displayed higher ICC values for both muscles during eccentric and concentric phases. The 60%-NORM and 70%-NORM methods were the most sensitive for VL and BF during eccentric and concentric phases. Only normalisation methods for the concentric action of the VL enhanced sensitivity compared to unnormalised EMG. Overall, dynamic normalisation methods demonstrated better absolute reliability and sensitivity for reporting VL and BF EMG within the current study compared to maximal isometric methods.  相似文献   

14.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

15.
The objective of this study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during fatiguing knee extensions. Thirty young adults were evaluated for their one-repetition maximum (1RM) during a seated, right-leg, inertial knee extension. All subjects then completed a single set of repeated knee extensions at 50% 1RM, to failure. Subjects performed a knee extension (concentric phase), held the weight with the knee extended for 2s (isometric phase), and lowered the weight in a controlled manner (eccentric phase). Raw EMG of the vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscles were full-wave rectified, integrated and normalized to the 1RM EMG, for each respective phase and repetition. The EMG median frequency (f(med)) was computed during the isometric phase. An increase in QF muscle EMG was observed during the concentric phase across the exercise duration. VL EMG was greater than the VM and RF muscles during the isometric phase, in which no significant changes occurred in any of the muscles across the exercise duration. A significant decrease in EMG across the exercise duration was observed during the eccentric phase, with the VL EMG greater than the VM and RF muscles. A greater decrease in VL and RF muscle f(med) during the isometric phase, than the VM muscle, was observed with no gender differences. The findings demonstrated differential recruitment of the superficial QF muscle, depending on the contraction mode during dynamic knee extension exercise, where VL muscle dominance appears to manifest across the concentric-isometric-eccentric transition.  相似文献   

16.
The purpose of this study was to compare different normalization methods of electromyographic (EMG) activity of antagonists during isokinetic eccentric and concentric knee movements. Twelve women performed three maximum knee extensions and flexions isometrically and at isokinetic concentric and eccentric angular velocities of 30 °·s−1, 90 °·s−1, 120 °·s−1 and 150 °·s−1. The EMG activity of the vastus lateralis, rectus femoris, vastus medialis and hamstrings was recorded. The antagonist integrated IEMG values were normalized relative to the EMG of the same muscle during an isometric maximal action (static method). The values were also expressed as a percentage of the EMG activity of the same muscle, at the same angle, angular velocity and muscle action (dynamic method) when the muscle was acting as an agonist. Three-way analysis of variance (ANOVA) designs indicated significantly greater IEMG normalized with the dynamic method compared to the EMG derived using the static method (P < 0.05). These differences were more evident at concentric angular velocities and at the first and last 20 ° of the movement. The present findings demonstrate that the method of normalization significantly influences the conclusions on antagonistic activity during isokinetic maximum voluntary efforts. The dynamic method of normalization is more appropriate because it considers the effects of muscle action, muscle length and angular velocity on antagonist IEMG.  相似文献   

17.
The purpose of this study was to evaluate gender and muscle differences in electromyographic (EMG) amplitude and median frequency mean and standard deviation during maximal voluntary contractions of the quadriceps femoris. Thirty recreationally active volunteers were assessed for isometric EMG activity of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles during three 5-s maximal isometric voluntary contractions (MVCs). Median frequency of the three muscles was assessed through a power spectral analysis (fast Fourier transformation, Hanning window processing, 512 points). The power spectral analysis was performed during the middle 3 s of each contraction over 11 consecutive, 512 ms epochs overlapping each other by half their length (256 ms). The median frequency (F(med)) for each of the 11 windows was determined for each muscle. The mean and standard deviation of the F(med) across the 11 overlapping windows were then calculated for each contraction and muscle. EMG amplitude was determined by calculating the root mean square (RMS-50 ms time constant) over the same contraction period for each muscle. The mean amplitude and standard deviation about the mean value were then determined. A three-factor ANOVA with repeated measures was performed on the calculated F(med) mean and standard deviation values, and RMS standard deviations, to assess any gender, muscle, or trial differences, or interactions. A two-factor (gender by muscle) ANOVA with repeated measures was performed on the RMS mean amplitude for each muscle. Intraclass correlation coefficients (ICCs-2,1), standard errors of measurement (SEMs), and associated 95% confidence intervals were then calculated for maximal quadriceps torque and F(med) for each muscle. The results from this study demonstrated that the VL muscle displayed significantly higher F(med) values than the RF and VM muscles. The RF muscle showed significantly higher F(med) values (mean of 11 overlapping windows) than the VM muscle. Intrasession reliability was found to be high for the calculated mean values (ICC=0.85-0.96), but was shown to be low for variability (ICC=0.13-0.45). The major findings of this study support the notion that the EMG signal is "quasi-random" in nature, as demonstrated by the reproducible F(med) means and unreliable variability.  相似文献   

18.
This study’s aim was to determine the between days reliability of surface EMG recordings from the superficial quadriceps during a multi joint sub-maximal fatiguing protocol. Three subject groups (healthy n = 29; patellofemoral pain syndrome n = 74; knee osteoarthritis n = 55) performed the task at 60 maximum voluntary isometric contraction on three separate days. Spectral and amplitude EMG parameters were recorded from vastus medialis oblique, vastus lateralis and rectus femoris and were analysed for between days reliability using intraclass correlation coefficient (ICC(2,1)), the standard errors of measure and smallest detectable differences. For frequency results, initial and final frequency values had ‘good’ or ‘excellent’ reliability in all groups for all muscles. ICCs for median frequency slopes for vastus medialis oblique, vastus lateralis, and rectus femoris respectively, in the osteoarthritis group were 0.04, 0.55, and 0.72; in the patellofemoral pain group were 0.41, 0.17, and 0.33; in the healthy group were 0.68, 0.64, and 0.31. The standard errors of measurement and smallest detectable differences for all groups and for all muscles were unacceptably high. For amplitude results, ICC root mean squared initial and final values were ‘good’ to ‘excellent’ for all groups and all muscles, albeit with high measurement error. The ICCs for root mean squared slopes in all tests were ‘poor’ with extremely high measurement error. The poor between days reliability and high measurement error suggests that surface EMG should not be adopted to assess fatigue during multi joint sub-maximal isometric quadriceps testing.  相似文献   

19.
To determine the non-uniform surface mechanical activity of human quadriceps muscle during fatiguing activity, surface mechanomyogram (MMG), or muscle sound, and surface electromyogram (EMG) were recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles of seven subjects during unilateral isometric knee extension exercise. Time- and frequency-domain analyses of MMG and of EMG fatigued by 50 repeated maximal voluntary contractions (MVC) for 3 s, with 3-s relaxation in between, were compared among the muscles. The mean MVC force fell to 49.5 (SEM 2.0)% at the end of the repeated MVC. Integrated EMG decreased in a similar manner in each muscle head, but a marked non-uniformity was found for the decline in integrated MMG (iMMG). The fall in iMMG was most prominent for RF, followed by VM and VL. Moreover, the median frequency of MMG and the relative decrease in that of EMG in RF were significantly greater (P < 0.05) than those recorded for VL and VM. These results would suggest a divergence of mechanical activity within the quadriceps muscle during fatiguing activity by repeated MVC. Accepted: 19 January 1999  相似文献   

20.
The purpose of this study was to compare the electromyographic (EMG) amplitudes of the quadriceps femoris (QF) muscles during a maximum voluntary isometric contraction (MVIC) to submaximal and maximal dynamic concentric contractions during active exercises. A secondary purpose was to provide information about the type of contraction that may be most appropriate for normalization of EMG data if one wants to determine if a lower extremity closed chain exercise is of sufficient intensity to produce a strengthening response for the QF muscles. Sixty-eight young healthy volunteers (39 female, 29 male) with no lower extremity pain or injury participated in the study. Surface electrodes recorded EMG amplitudes from the vastus medialis obliquus (VMO), rectus femoris (RF), and vastus lateralis (VL) muscles during 5 different isometric and dynamic concentric exercises. The last 27 subjects performed an additional 4 exercises from which a second data set could be analyzed. Maximum isokinetic knee extension and moderate to maximum closed chain exercises activated the QF significantly more than a MVIC. A 40-cm. lateral step-up exercise produced EMG amplitudes of the QF muscles of similar magnitude as the maximum isokinetic knee extension exercises and would be an exercise that could be considered for strengthening the QF muscles. Most published EMG studies of exercises for the QF have been performed by comparing EMG amplitudes during dynamic exercises to a MVIC. This procedure can lead one to overestimate the value of a dynamic exercise for strengthening the QF muscles. We suggest that when studying the efficacy of a dynamic closed chain exercise for strengthening the QF muscles, the exercise be normalized to a dynamic maximum muscle contraction such as that obtained with knee extension during isokinetic testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号