首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
Arabinopyranosyltransferase (ArapT) activity that results in the transfer of a single arabinopyranose (Arap) residue from UDP-beta-L-arabinopyranose (UDP-Arap) to exogenous (1-->5)-linked alpha-L-arabino-oligosaccharides labeled with 2-aminobenzamide (2-AB) at their reducing ends was identified in a particulate preparation obtained from 3-day-old mung bean (Vigna radiate L. Wilezek) hypocotyls. The transferred Ara residue was shown to be beta-(1-->3)-linked to O-3 of the non-reducing terminal Araf residues of the oligosaccharide using nuclear magnetic resonance spectroscopy together with glycosyl composition and glycosyl linkage composition analyses. The 2AB-labeled arabino-octasaccharide was the most effective acceptor substrate analyzed, although arabino-oligosaccharides with a degree of polymerization between 4 and 7 were also acceptor substrates. Maximum ArapT activity was obtained at pH 6.5-7.0, and 20 degrees C in the presence of 25 mM Mn(2+) and 0.5% Triton X-100.  相似文献   

2.
Employing a modified technique of acetolysis, which allows almost a complete recovery of constituent sugars from poly(glycosyl)ceramides, the glycolipids were found to contain an excess of N-acetylglucosamine over galactose. On the basis of Smith degradation, methylation study, chromium trioxide degradation and the structures of oligosaccharides released from the glycolipids by partial acid hydrolysis, the presence of two types of sugar sequences has been established in poly(glycosyl)ceramides: a) Galbeta1 leads to 4GlcNAcbeta1 leads to 6Gal3 comes from R1 b) Galbeta1 leads to 4GlcNAcbeta1 leads to 4GlcNAc1 leads to R2. The repeating unit of poly(glycosyl)ceramides seems to be the GlcNAcbeta1 leads to 3Gal sequence. The specificity of one anti-I serum (Woj) is directed against the non-reducing ending of the first kind of chain. Three other anti-I sera reacted with inner portions of the oligosaccharide chains of the glycolipids.  相似文献   

3.
Glucose-O-omega-palmitic acid is an amphipathic molecule that is useful as a tool for studying the mechanism of mitochondrial uncoupling proteins. The synthesis of this glycolipid is described herein. The study of the reaction of a series of glycosyl donors with appropriate acceptors derived from 16-hydroxyhexadecanoic acid showed that a glycosyl trichloroacetimidate donor was more efficient than thioglycoside, glycosyl halide and glycosyl acetate donors for synthesis of this glycolipid.  相似文献   

4.
Enzymatic transglycosylation using p-nitrophenyl alpha-D-rhamnopyranoside as the glycosyl donor and 6equiv of ethyl 1-thio-alpha-D-rhamnopyranoside as the glycosyl acceptor yielded a D-rhamnooligosaccharide derivative. The reaction was catalyzed by jack bean alpha-mannosidase in a 1:1 (v/v) mixture of 0.1 M sodium citrate buffer (pH4.5)-MeCN at 25 degrees C. The enzyme exhibited high catalytic activity for the reaction, to afford in 32.1% isolated yield (based on donor substrate) ethyl alpha-D-rhamnopyranosyl-(1-->2)-1-thio-alpha-D-rhamnopyranoside, which is a derivative of the common oligosaccharide unit of the antigenic lipopolysaccharides from Pseudomonas.  相似文献   

5.
Zhang L  Xu X  Luo Z  Shen D  Wu H 《Biochimie》2009,91(2):240-251
NAD-glycohydrolases (NADases) are ubiquitous enzymes that possess NAD glycohydrolase, ADPR cyclase or cADPR hydrolase activity. All these activities are attributed to the NADase-catalyzed cleavage of C-N glycosyl bond. AA-NADase purified from the venom of Agkistrodon acutus is different from the known NADases, for it consists of two chains linked with disulfide-bond(s) and contains one Cu(2+) ion. Here, we show that AA-NADase is not only able to cleave the C-N glycosyl bond of NAD to produce ADPR and nicotinamide, but also able to cleave the phosphoanhydride linkages of ATP, ADP and AMP-PNP to yield AMP. AA-NADase selectively cleaves the P-O-P bond of ATP, ADP and AMP-PNP without the cleavage of P-O-P bond of NAD. The hydrolysis reactions of NAD, ATP and ADP catalyzed by AA-NADase are mutually competitive. ATP is the excellent substrate for AA-NADase with the highest specificity constant k(cat)/K(m) of 293+/-7mM(-1)s(-1). AA-NADase catalyzes the hydrolysis of ATP to produce AMP with an intermediate ADP. AA-NADase binds with one AMP with high affinity determined by isothermal titration calorimetry (ITC). AMP is an efficient inhibitor against NAD. AA-NADase has so far been identified as the first unique multicatalytic enzyme with both NADase and AT(D)Pase-like activities.  相似文献   

6.
A phosphorylated, choline-containing polysaccharide was obtained by O-deacylation of the lipopolysaccharide (LPS) of Proteus mirabilis O18 by treatment with aqueous 12% ammonia, whereas hydrolysis with dilute acetic acid resulted in depolymerisation of the polysaccharide chain by the glycosyl phosphate linkage. Treatment of the O-deacylated LPS with aqueous 48% hydrofluoric acid cleaved the glycosyl phosphate group but, unexpectedly, did not affect the choline phosphate group. The polysaccharide and the derived oligosaccharides were studied by NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HMQC and HMQC-TOSCY experiments, along with chemical methods, and the following structure of the pentasaccharide phosphate repeating unit was established: [carbohydrate structure in text] Where ChoP=Phosphocoline Immunochemical studies of the LPS, O-deacylated LPS and partially dephosphorylated pentasaccharide using rabbit polyclonal anti-P. mirabilis O18 serum showed the importance of the glycosyl phosphate group in manifesting the serological specificity of the O18-antigen.  相似文献   

7.
The deacylated phosphatidylinositol manno-oligosaccharides (dPIMs) from the glycosyl phosphatidylinositol (GPI) carbohydrate antigen anchor of Gordonia sputi were the known 2,6-di-O-alpha-mannopyranosyl-myo-inositol glycerophosphate (dPIM-2) and the illustrated novel compound (dPIM-8), which could not be separated from dPIM-7 and dPIM-6, these three compounds being present in the mixture in the molar ratios 1.0:0.65:0.4. dPIM-8 is an analogue of dPIM-2 (and also of dPIM-7 and dPIM-6) in having alpha-mannopyranose and an alpha-mannopyranosyl linked heptasaccharide bonded to O-2 and O-6, respectively, of the inositol. The dPIM-8 species has not been found previously. [structure: see text]  相似文献   

8.
The title trisaccharide was synthesized from methyl 2,3,4-tri-O-benzyl-L-glycero-alpha-D-manno-heptopyranoside by acetolysis, followed by conversion into ethyl thioglycosides and also glycosyl bromides, which were both used in glycosylation reactions. In glycosylations using thioglycosides as glycosyl donors, N-iodosuccinimide-silver triflate and dimethyl(methylthio)sulfonium triflate were used as promoters, and in glycosylations with glycosyl bromides silver triflate was used. The protecting groups introduced into intermediates during the synthesis of the title trisaccharide were designed to allow later glycosylation at O-3' to give larger oligosaccharide fragments of the Salmonella LPS core region, and also to allow the introduction of phosphate groups at O-4 and O-4', a structural element that is suggested to be present in the Ra core.  相似文献   

9.
Using combinations of different polysaccharides as glycosyl donors and of oligosaccharides fluorescently labeled by sulforhodamine (SR) as glycosyl acceptors, we screened for the presence of transglycosylating activities in extracts from nasturtium (Tropaeolum majus). Besides xyloglucan endotransglycosylase/hydrolase (XTH/XET, EC 2.4.1.207) activity, which transfers xyloglucanosyl residues from xyloglucan (XG) to XG-derived oligosaccharides (XGOs), a glycosyl transfer from XG to SR-labeled cellooligosaccharides and laminarioligosaccharides has been detected. The XGOs also served as acceptors for the glycosyl transfer from soluble cellulose derivatives carboxymethyl cellulose and hydroxyethylcellulose. The effectivity of these polysaccharides as glycosyl donors for transfer to XG-derived octasaccharide [1-3H]XXLGol decreased in the order XG > HEC > CMC. Isoelectric focusing in polyacrylamide gels showed that bands corresponding to hetero-transglycosylase activities coincided with zones corresponding to XTH/XET. These results can be explained as due either to substrate non-specificity of certain isoenzymes of XTH/XET or to existence of enzymes catalyzing a hetero-transfer, that is the formation of covalent linkages between different types of carbohydrate polymers.  相似文献   

10.
The gene coding for beta-xylosidase, bxl1, has been cloned from the thermophilic filamentous fungus, Talaromyces emersonii. This is the first report of a hemicellulase gene from this novel source. At the genomic level, bxl1 consists of an open reading frame of 2388 nucleotides with no introns that encodes a putative protein of 796 amino acids. The bxl1 translation product contains a signal peptide of 21 amino acids that yields a mature protein of 775 amino acids, with a predicted molecular mass of 86.8 kDa. The deduced amino acid sequence of bxl1 exhibits considerable homology with the primary structures of the Aspergillus niger, Aspergillus nidulans, Aspergillus oryzae, and Trichoderma reesei beta-xylosidase gene products, and with some beta-glucosidases, all of which have been classified as Family 3 glycosyl hydrolases. Northern blot analysis of the bxl1 gene indicates that it is induced by xylan and methyl-beta-D-xylopyranoside. D-Xylose induced expression of bxl1 but was shown to repress induction of the gene at high concentrations. The presence of six CreA binding sites in the upstream regulatory sequence (URS) of the bxl1 gene indicates that the observed repression by D-glucose may be mediated, at least partly, by this catabolite repressor.  相似文献   

11.
The first synthesis of a d-rhamnose branched tetrasaccharide, corresponding to the repeating unit of the O-chain from Pseudomonas syringae pv. cerasi 435, as methyl glycoside is reported. The approach used is based on the synthesis of an opportune building-block, that is the methyl 3-O-allyl-4-O-benzoyl-alpha-D-rhamnopyranoside, which was then converted into both a glycosyl acceptor and two different protected glycosyl trichloroacetimidate donors. Successive couplings of these three compounds afforded the target oligosaccharide. The reported synthesis is also useful to perform the oligomerization of the repeating unit.  相似文献   

12.
Barthet VJ 《Phytochemistry》2008,69(2):411-417
cis-Vaccenic acid or cis-11-octadecenoic acid, a C18:1 (n-7) isomer of oleic acid (C18:1 (n-9)) has been found in several oilseeds. It is synthesized from palmitic acid (C16:0) via production of C16:1 (n-7) by a Delta9 desaturase and elongation by an elongase giving C18:1 (n-7). In this study, the fatty acid composition of 12 Brassica species was analyzed by GC-FID and confirmed by GC-MS. All species contained C18:1 (n-7), C20:1 (n-7) and C22:1 (n-7) fatty acid isomers, suggesting that C18:1 (n-7) was elongated. The levels of these fatty acids varied according to the species. C18:1(n-7)) represented from 0.4% to 3.3% of the total relative fatty acid contents of the seeds. The contents of C20:1(n-7) and C22:1(n-7) levels were lower than C18:1(n-7) contents; the relative fatty acid composition varied from 0.02% to 1.3% and from below the limit of detection to 1.3% for C20:1 (n-7) and C22:1 (n-7), respectively. The ratios of (n-7)/(n-9) ranged from 2.8% to 16.7%, 0.6% to 29.5% and 0% to 2.6% for C18:1, C20:1 and C22:2, respectively. Using statistical similarities or differences of the C18:1 (n-7)/(n-9) ratios for chemotaxonomy, the surveyed species could be arranged into three groups. The first group would include Brassica napus, B. rapa, and B. tournefortii with Eruca sativa branching only related to B. napus. The second group would include B. tournefortii, Raphanus sativus and Sinapis alba. The last group would include B. juncea, B. carinata and B. nigra with no similarity/relationship between them and between the other species. Results suggested that the level of C20:1 (n-7) influenced the levels of all monounsaturated fatty acids with chain length higher than 20 carbons. On the other hand, palmitoleic acid (C16:1) levels, C16:1 being the parent of all (n-7) fatty acids, had no statistically significant correlation with the content of any of the fatty acids of the (n-7) or (n-9) family.  相似文献   

13.
Rahman MM  Gu XX  Tsai CM  Kolli VS  Carlson RW 《Glycobiology》1999,9(12):1371-1380
Nontypeable Haemophilus influenzae (NTHi) is an important pathogen responsible for otitis media in children and of pneumonitis in adults with depressed resistance. NTHi is acapsular and, therefore, capsular polysaccharide-based vaccines are ineffective for preventing infections by this pathogen. Recently it was found that a detoxified lipooligo-saccharide (LOS) conjugate from NTHi 9274 induced bactericidal antibodies effective against a large number of NTHi isolates, and conferred protection against NTHi otitis media in chinchillas (X.-X.Gu et al., 1996, Infect. Immun.,64, 4047-4053; X. -X.Gu et al., 1997., Infect. Immun.,65, 4488-4493). In this paper we report the chemical character-ization of the LOS from NTHi 9274 LOS. NTHi is capable of expressing a heterogenous population of LOS exhibited by multiple oligosaccharide (OS) epitopes. OSs released from the LOS of NTHi 9274 by mild acid hydrolysis were purified using Bio-Gel P4 gel permeation chromatography. The OSs were characterized by glycosyl composition analysis, glycosyl linkage analysis, nuclear magnetic resonance spectroscopy (NMR), fast atom bombardment mass spectro-metry (FAB-MS), matrix-assisted laser desorption time of flight mass spectro-metry (MALDITOF-MS), and tandem MS/MS. At least 17 different OS molecules were observed. These contained variable glycosyl residues, phosphate (P), and phospho-ethanolamine (PEA) substituents. These molecules contained either three, four, or five hexoses, and all contained four heptosyl residues. The four heptosyl residues consisted of one D,D-Hep and three L,D-Hep. Dephosphorylation of the OSs with aqueous 48% hydrofluoric acid (HF) reduced the number of molecules to about to seven; Hex(1)-(7)Hep(4)Kdo(1). Of these seven, Hex(2)Hep(4)Kdo(1), Hex(3)Hep(4)Kdo(1), and Hex(4)Hep(4)Kdo(1)were the major constituents. Thus, this NTHi LOS preparation is very heterogeneous, and contains structures different from those previously published for Haemophilus influenzae. The tandem MS/MS analysis and glycosyl linkage data suggest that the LOS oligosaccharides have the following structures where Hex is either a Glc or Gal residue.  相似文献   

14.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

15.
An increase in clinical cases of Candidiosis globally as well as fungal resistance to drugs prompted the search for novel anti-Candida albicans agents from plant sources. Leaf extracts of Markhamia obtusifolia were screened for activity against C. albicans in vitro. An acetone extract obtained following serial exhaustive extraction contained mainly the active components with at least four active zones on the bioautogram. Bioassay guided fractionation of this extract led to the isolation of three compounds which inhibited the growth of three C. albicans strains. Based on spectroscopy studies (NMR and MS), the compounds were identified as 3β-hydroxyurs-12-en-28-oic acid, ursolic acid (1) 3β, 19α-dihydroxyurs-12-en-28-oic acid, pomolic acid (2) and 2β, 3β, 19α -trihydroxy-urs-12-en-28-oic acid, 2-epi-tormentic acid (3). The most active compound was 3β, 19α-dihydroxy-12-ursen-28-oic acid (2) with a minimum inhibitory concentration (MIC) value of 12.5 µg/mL for C. albicans isolated from dog and 25.0 µg/mL for C. albicans from cat and ATCC 90028 at 24 h following incubation. However, at 48 h of incubation MICs were > 400 µg/mL for all the three compounds isolated. This study indicated that M. obtusifolia could be a potential source of active principles against C. albicans.  相似文献   

16.
The structure of the extracellular polysaccharide (EPS) produced by Erwinia chrysanthemi strain RA3W, a mutant strain of E. chrysanthemi RA3, has been determined using low pressure size-exclusion and anion-exchange chromatographies, high pH anion-exchange chromatography, glycosyl linkage analysis, and 1D 1H NMR spectroscopy. The polysaccharide is structurally similar, if not identical, to the family of EPS produced by such as E. chrysanthemi strains Ech9, Ech9Sm6, and SR260. The molecular weight of EPS RA3W by ultracentrifugation (sedimentation equilibrium) and light scattering is compared with those of other E. chrysanthami EPSs, as are the viscometric properties.  相似文献   

17.
A rapid, continuous, and convenient three-enzyme coupled UV absorption assay was developed to quantitate the glucuronic acid and N-acetylglucosamine transferase activities of hyaluronan synthase from Pasteurella multocida (PmHAS). Activity was measured by coupling the UDP produced from the PmHAS-catalyzed transfer of UDP-GlcNAc and UDP-GlcUA to a hyaluronic acid tetrasaccharide primer with the oxidation of NADH. Using a fluorescently labeled primer, the products were characterized by gel electrophoresis. Our results show that a truncated soluble form of recombinant PmHAS (residues 1-703) can catalyze the glycosyl transfers in a time- and concentration-dependent manner. The assay can be used to determine kinetic parameters, inhibition constants, and mechanistic aspects of this enzyme. In addition, it can be used to quantify PmHAS during purification of the enzyme from culture media.  相似文献   

18.
Sun J  Han X  Yu B 《Carbohydrate research》2003,338(9):827-833
Oleanolic acid 3-yl alpha-L-arabinopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)-2-acetamido-2-deoxy-beta-D-glucopyranoside, a cytotoxic saponin isolated from Acacia tenuifolia and Albizia subdimidiata with a typical structure of the N-acetylglucosamine-containing plant saponins, was synthesized. The synthesis adopted a stepwise glycosylation fashion employing glycosyl trifluoroacetimidates 5 and 9 and thioglycoside 12 as donors.  相似文献   

19.
Antibody production against the trehalose 6,6'-dimycolate (TDM, cord factor) of Rhodococcus ruber, a non-pathogenic species of the Actinomycetales group, was investigated in mice by repeated intraperitoneal injection of TDM in water-in-oil-in-water micelles without carrier protein. The antigenic TDM was isolated and purified chromatographically from the chloroform-methanol extractable lipids of R. ruber. The hydrophobic moiety of this TDM was composed of two molecules of monoenoic or dienoic alpha-mycolic acids with a carbon chain length ranging from C44 to C48 centering at C46. To detect the antibody, an enzyme-linked immunosorbent assay (ELISA) system was employed using plastic plates coated with TDM. The antibody reacted against the TDM of R. ruber. The antibody was reactive in similar fashion against glycosyl monomycolates differing in the carbohydrate moiety, such as that of glucose mycolate (GM) and mannose mycolate (MM), obtained from R. ruber. Moreover, the antibody reacted against mycolic acid methyl ester itself when it was used as the antigen in ELISA, and trehalose did not absorb the antibody to TDM or inhibit the reaction. These results indicate that the epitope of TDM recognized by the antibody is mycolic acid, an extremely hydrophobic part of the molecule. Next, we prepared monoclonal anti-TDM antibody (moAb) in mice myeloma cells to examine its biological activities and the role of humoral immunity in mycobacterial infection. MoAb reacted against the TDM, glycosyl mycolate, and mycolic acid methyl ester in ELISA in the same manner as our polyclonal antibody did. The administration of moAb suppressed granuloma formation in the lungs, spleen, and liver induced by TDM and inhibited the production of interleukin-1 (IL-1) and chemotactic factor, which is reported to precede granuloma formation.  相似文献   

20.
The most comprehensive studies on a plant lysozyme (EC 3.2.1.17) are those on the enzyme from papaya (Carica papaya) latex, published in 1967 and 1969. However, the N-terminal amino acid sequence of five amino acid sequence of this enzyme, determined by manual Edman degradation, did not allow assignment to any of the much later-classified families of glycosyl hydrolases. N-Terminal sequence analysis of 22 residues of papaya lysozyme now shows unambiguously that the enzyme belongs to the family 19 chitinases. It has properties similar to those of basic class I chitinases with lysozyme activity, such as cleavage specificity at the C-1 of N-acetylmuramic acid with inversion of configuration, but as it lacks an N-terminal hevein domain, it should be classified as a class II chitinase. Received: 3 February 1999 / Accepted 25 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号