首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have defined two distinct classes of IgG Fc receptors (FcR) on cells of a human monocytic line (U937) by analyzing the direct binding of murine IgG subclasses in medium of low ionic strength. Four lines of evidence support this contention. The binding of aggregated murine IgG2b (AggmIgG2b) to U937 and Daudi cells was enhanced at low ionic strength, whereas monomeric murine IgG2a (mIgG2a) did not bind to Daudi cells and its high affinity binding to U937 cells was unaffected by changes in ionic strength. Double reciprocal inhibition experiments with U937 cells indicated that the binding of both ligands was inhibited 30 to 135 times more efficiently by the homologous ligand than by the heterologous one. That is, the binding of 125I-AggmIgG2b was inhibited 50% by 3.5 micrograms/ml of AggmIgG2b and 100 micrograms/ml of mIgG2a. Similarly, the binding of 125I-mIgG2a was inhibited 50% by 2.5 micrograms/ml of mIgG2a and only 44% by 243 micrograms/ml of AggmIgG2b. A monoclonal antibody of the IgG2b subclass raised against an IgG FcR on K562 cells inhibited binding to U937 cells of AggmIgG2b but not of mIgG2a. Trypsinization of U937 cells abrogated by 32% the binding of mIgG2a but did not affect the binding of AggmIgG2b. Human IgG inhibited binding of both AggmIgG2b and mIgG2a to U937 cells. We propose that the newly recognized FcR that binds AggmIgG2b is the human homologue of the murine macrophage IgG2b/1 FcR (FcRII), and that the previously described 72,000 dalton high-affinity FcR on U937 cells that binds mIgG2a is the human equivalent of the murine macrophage IgG2a FcR (FcRI).  相似文献   

2.
The mitogenic activity of anti-CD3 mouse monoclonal antibodies (mAb) in cultures of human peripheral blood mononuclear cells (PBMC) depends on the ability of the mAb to interact with CD3 molecules on the T cells, and with Fc receptors (FcR) on monocytes. Two types of FcR with distinct specificity for murine (m) IgG subclasses are involved: a 72-kDa receptor (FcRI) binds mIgG2a and a 40-kDa receptor (FcRII) binds mIgG1. In this study we examined the mitogenic activity of mIgG3 anti-CD3 mAb RIV9. In cultures of human PBMC, the mAb induced T cell proliferation and interleukin 2 production. We found that subjects, unresponsive to mIgG2a anti-CD3 (e.g., OKT3), were also RIV9 nonresponders. In contrast, nonresponders to mIgG1 anti-CD3 (e.g., anti-Leu4) had a normal response to RIV9. Our results therefore suggested that anti-CD3 mAb of the mIgG2a and mIgG3 subclass bind to the same monocytic FcR. Human monomeric IgG, which has been shown to bind to FcRI only, blocked T cell proliferation induced by mIgG2a and mIgG3 anti-CD3, but had no effect on T cell proliferation induced by mIgG1 anti-CD3. In contrast, a mAb (IV.3) to FcRII, which blocks ligand binding of the receptor, blocked the mitogenic activity of mIgG1 anti-CD3 antibodies, but had no effect on T cell proliferation induced by mIgG3 anti-CD3 or by mIgG2a anti-CD3. Binding of RIV9 to FcR of responder monocytes could be demonstrated in immunofluorescence. Monocytes from the RIV9 nonresponder subjects however were unable to bind the Fc portion of this antibody. The binding of fluorescein (FITC)-conjugated mIgG3 or FITC-conjugated mIgG2a to responder monocytes could be inhibited by human monomeric IgG and by mIgG2a and mIgG3, but not by the mAb to FcRII. The results demonstrate that mIgG3 binds to FcRI on human monocytes and that this binding is needed for the mitogenic activity of mIgG3 anti-CD3.  相似文献   

3.
Here we have used hybrid mouse IgG1-2a and IgG2a-2b mAb to demonstrate that the interaction between the human high-affinity IgG FcR (huFc gamma RI) and monomeric mouse IgG2a mAb requires only one of the mIgG2a H chains. Recently, we reported a method for the generation and isolation of hybrid hybridomas, producing hybrid mouse mAb. Using this method we have obtained hybrid mouse (m)IgG1-2a and mIgG2a-2b mAb reacting with either horseradish peroxidase or human IgA1 (monospecific mAb) or with both Ag (bispecific mAb). Using protein A- or Ag-affinity chromatography purified hybrid mAb, we demonstrate here the binding of monomeric hybrid mIgG1-2a and mIgG2a-2b mAb to huFc gamma R on U937 cells, whereas no binding could be observed to the K562 cell line. Monomeric mouse IgG2a mAb and human IgG1 were found to be capable of inhibiting the binding of these hybrid mIgG1-2a and mIgG2a-2b mAb in a manner similar to the way they inhibited binding of monomeric mIgG2a mAb to U937 cells; this is in contrast to our findings for mIgG1 and mIgG2b mAb which did not inhibit the binding of both hybrid mAb. In addition, the binding of the hybrid mIgG1-2a and mIgG2a-2b mAb could be blocked by mAb TB-3, which is known to block huFc gamma RI-mediated binding by the "Kurlander phenomenon" and not by the anti-Fc gamma RII mAb CIKM5 and IV.3. These results indicate that both types of monomeric hybrid mAb are bound by the huFc gamma RI. Scatchard plots of mIgG2a, hybrid mIgG1-2a, and mIgG2a-2b mAb binding revealed similar numbers of binding sites and similar affinity constants of huFc gamma RI for these mAb (0.9 to 3.6 x 10(8) M-1). These results suggest that huFc gamma RI, present on the U937 cell line, are capable of binding monomeric hybrid mIgG1-2a and mIgG2a-2b mAb, and that this interaction requires only one of the mIgG2a H chains.  相似文献   

4.
The valence for ligand of the 72 kD high-affinity IgG FcR present on human mononuclear phagocytes was evaluated. Lysates of U937 cells whose high-affinity FcR had been saturated with equivalent quantities of 125I-IgG1 kappa and unlabeled IgG1 lambda or with 125I-IgG1 lambda and unlabeled IgG1 kappa were incubated with Sepharose-anti-kappa. Eighty-nine percent of the applied 125I-IgG1 kappa was bound, whereas 0.35% of the applied 125I-IgG1 lambda bound (mean of two experiments), indicating that if the receptors are occupied with ligand, the receptors bind only one ligand molecule at a time. Two experiments were performed to show that the receptors were ligand-occupied. First, a monoclonal antibody directed against the 72 kD FcR (FcRmab32) was added to lysates of U937 cells saturated with equal quantities of 125I-IgG1 lambda and IgG1 kappa. This anti-FcR antibody caused a dose-dependent sevenfold increase in the amount of 125I-IgG1 lambda bound to the anti-kappa immunoadsorbent (presumably by cross-linking receptors bearing 125I-IgG1 lambda with receptors bearing IgG1 kappa), whereas monoclonal antibodies (MMA and IV3) directed against two other determinants on U937 caused no such increase. In the second experiment, Sepharose-FcRmab32 adsorbed 60% of the 125I-IgG1 kappa and 46% of the 125I-IgG1 lambda applied in a U937 lysate (bearing high-affinity FcR), whereas only 3% of 125I-IgG1 kappa and 6% of 125I-IgG1 lambda applied in a K562 lysate (bearing no high-affinity FcR) were adsorbed. We interpret these data to indicate that in detergent solution the valency of the high-affinity FcR on U937 cells is one.  相似文献   

5.
Within the first minute after incubation with the mouse anti-human T cell orthoclone monoclonal antibodies OKT3, OKT4, and OKT8, and in the absence of complement, human monocytes generate a burst of highly reactive oxygen metabolites as detected by a luminol-dependent photometric chemiluminescence (CL) assay. The kinetics of the CL responses to these antibodies are identical to that induced by OKM1, the monoclonal antibody to human monocytes and granulocytes. With regard to CL response intensities, OKM1 induces the maximal response and those of OKT3, OKT4, and OKT8 closely reflect the proportion of T cell subsets recognized by these antibodies in peripheral blood. This reaction is also observed when monoclonal antibodies against mouse Lyt surface determinants (Lyt-1 and Lyt-2) and Thy-1 antigen are tested against murine spleen cells. This murine model was further used to investigate the specificity and the mechanism of this reaction. It was demonstrated that the CL response is Lyt antigen specific, occurs upon addition of monoclonal IgG but not IgM antibodies, requires the concomitant presence of CL-producing cells (CLPC) (promonocytes, monocytes, macrophages, and/or granulocytes) and of fully differentiated T cells, and lastly, is mediated via a T cell opsonization process. Selective blockade of bone marrow cell Fc receptors (FcR II) with monoclonal anti-mouse FcR II antibody inhibits the CL response to IgG2b anti-T cell antibody-coated thymocytes and thus strongly suggests that the stimulation of CLPC oxidative metabolism in this model results from the binding of opsonized T cells to plasma membrane Fc receptors. These observations lend additional support to increasing evidence that the initiation of effector functions by monoclonal anti-T cell antibodies may be strictly dependent upon the presence of monocytes and/or macrophages.  相似文献   

6.
The effects of anti-CD3 mAb on MHC-unrestricted cytotoxic activity of NK depleted PHA-activated human T cells were examined. Anti-CD3 mAb had variable effects on killing of K562 or Daudi targets. Whereas lower concentrations of OKT3 often inhibited lysis of either target, higher concentrations (greater than 1 micrograms/ml) frequently increased K562 killing and always augmented Daudi lysis. However, lysis of the renal cell carcinoma, Cur, was consistently inhibited by OKT3 over a broad concentration range. Such variable effects were not related to differential regulation of heterogeneous subsets of effector cells, as similar patterns of OKT3-mediated modulation of tumor cell lysis by T cell clones was also observed. Another IgG2a anti-CD3 mAb, 64.1, and either F(ab')2 fragments of OKT3 or intact OKT3 in the presence of aggregated human Ig were found to inhibit lysis of Cur, K562, and Daudi targets consistently. Additional experiments were carried out to determine whether modulation of CD3 accounted for the inhibitory effects of the anti-CD3 mAb. PMA was noted to cause modulation of CD3 from the surface of PHA or alloantigen-activated T cells, and the combination of anti-CD3 and PMA caused even more marked modulation of CD3. Whereas preincubation with PMA and/or anti-CD3 decreased alloantigen-specific cytotoxic T cell function in relative proportion to the loss of CD3 expression, no consistent relationship between CD3 expression and the capacity of PHA-activated T cells to kill Cur targets was noted. PMA alone caused no consistent alteration of Cur lysis. Moreover, in the presence of PMA, anti-CD3 mAb caused no significant inhibitory effect on Cur lysis, in spite of increased modulation and in some cases virtual total loss of surface CD3 expression. These findings indicate that when FcR interactions are prevented, anti-CD3 mAb consistently inhibit MHC-unrestricted cytotoxicity by PHA-activated T cells. Despite this, the data support the conclusion that CD3/TCR complex interactions with target cells are not required for either target cell recognition or triggering of lysis by MHC-unrestricted cytotoxic T cells.  相似文献   

7.
OKT3 monoclonal antibody (MoAb), a mouse MoAb against cluster of differentiation 3 (CD3) molecule, induced a large amount of procoagulant activity (PCA) in human peripheral blood mononuclear cells (PBM). The PCA-inducing capability in OKT3 MoAb was abolished by absorption with T lymphocytes or Sepharose-conjugated antibody to mouse IgG. Most of the PCA in PBM was associated with monocytes. There was a dose-dependent increase in PCA when increasing numbers of T cells were added to the monocytes in the presence of OKT3 MoAb. OKT3 MoAb did not induce PCA in either T cells or monocytes alone. T cells pulsed with OKT3 MoAb only in the presence of monocytes could induce PCA in monocytes. Culture supernatants (CS) from PBM stimulated with OKT3 MoAb did not enhance PCA in monocytes; however, it did induce PCA in the human monocyte-like cell line (U937) which differs in some properties from monocytes; this activity could be abolished by the MoAb against human interferon-gamma (IFN-gamma). Nevertheless, neither human IFN-gamma nor interleukin 1 or 2 had significant direct effect in inducing PCA in U937 cells; CS from either monocytes or T cells alone stimulated with OKT3 MoAb did not induce PCA in U937 cells. This apparent discrepancy suggests that there may be factors in CS that induce PCA in U937 cells only in the presence of IFN-gamma. The PCA induced in monocytes or U937 cells was tissue factor-like because of the dependence on coagulation factors V, VII, and X. These observations suggest that OKT3 MoAb is a potent T cell-dependent monocyte PCA inducer and stimulates T cells only in the presence of monocytes. The direct cellular interaction between monocytes and stimulated T cells appears to be necessary to elicit monocyte PCA with OKT3 MoAb stimulation. Thus, monocytes may play a dual role, not only as effector cells, but also as cells that collaborate with T cells after OKT3 MoAb stimulation so as to produce PCA.  相似文献   

8.
We have utilized monoclonal antibodies against the two IgG Fc receptors (p40 and p72) of U937 cells to stimulate the release of superoxide. The monoclonal antibody (mAb) specific for p40 (IV3) has been described elsewhere. A murine IgG1 mAb specific for the high affinity p72 Fc receptor (designated mAb FcR32 or simply mAb 32) bound to the same p72 precipitated by Sepharose-human IgG as shown by preclearing experiments and by identical isoelectric focussing patterns. Binding of mAb 32 to p72 was independent of the Fc region of the antibody since Fab' fragments of mAb 32 affinity adsorbed p72. The binding of both mAb 32 and human IgG1 to the intact U937 cell was not reciprocally inhibitory, indicating that mAb 32 does not interfere with the ligand binding site of p72. mAb 32 bound to human monocytes, U937, and HL60 cells, but not to granulocytes or lymphocytes. U937 cells cultured in gamma-interferon and 1,25-dihydroxycholecalciferol generated superoxide when incubated with mAb 32 or IV3 followed by cross-linking with F(ab')2 anti-murine Ig. Incubation with mAb 32 or IV3 alone or with 3 of 5 other anti-U937 mAbs cross-linked with anti-murine Ig did not result in superoxide generation. Immune complex-mediated superoxide production was inhibited 80% by IgG, but not by mAb 32 or IV3.  相似文献   

9.
Anti-CD3 MAb can inhibit MHC-restricted cytolytic activity of CD3+ mature cytotoxic T cells. In particular effector-target cell combinations, however, anti-CD3 MAb enhance or induce cytolysis by cross-linking CD3+ effector and IgG-FcR+ target cells. Virtually all natural killer (NK) cells or NK cell-derived clones are CD3-4-8- but do express CD2 and CD16 (IgG-FcR) antigens. We have studied how these cell surface molecules are involved in the regulation of cytolytic activities. The addition of anti-CD2 MAb to effector and target cells was found to induce conjugate formation of the IgG-FcR+ target cells with the effector cell and nonspecific cytolysis of, for instance, the P815 mouse mastocytoma cells. Enhancement or induction of conjugate formation and cytolysis of IgG-FcR+, P815, U937, and Daudi cells was also accomplished by using anti-CD16 MAb (e.g., Leu-11c (B73.1) or CLB Fc-gran 1 (VD2) MAb). Some human and mouse tumor cell lines (K562, P815, and U937) appear to express distinct types of IgG-FcR, showing different affinities for distinct subclasses of MAb (e.g., IgG1, IgG2a), but another line (Daudi) expresses only one type of IgG-FcR preferentially binding IgG1 MAb. Here we demonstrate that IgG-FcR on the effector cells can act as activation sites because anti-CD3 as well as anti-CD16 MAb of IgG1 and IgG2a subclasses can induce lytic activity of target cells bearing the relevant IgG-FcR. These data demonstrate that induction of conjugate formation and cytolysis by MAb occur when the target cells bear IgG-FcR with "specificity" for those MAb. Thus, besides via CD3, cytolytic activity by mature T and NK cells also can be induced via the CD2 and CD16 antigens on these cells.  相似文献   

10.
Aglycosylated human IgG1 and IgG3 monoclonal anti-D (Rh) and human IgG1 and IgG3 chimaeric anti-5-iodo-4-hydroxy-3-nitrophenacetyl (anti-NIP) monoclonal antibodies produced in the presence of tunicamycin have been compared with the native glycosylated proteins with respect to recognition by human Fc gamma RI and/or Fc gamma RII receptors on U937, Daudi or K562 cells. Human red cells sensitized with glycosylated IgG3 form rosettes via Fc gamma RI with 60% of U937 cells. Inhibition of rosette formation required greater than 35-fold concentrated more aglycosylated than glycosylated human monoclonal anti-D (Rh) antibody. Unlabelled polyclonal human IgG and glycosylated monoclonal IgG1 and anti-D (Rh) antibody inhibited the binding of 125I-labelled monomeric human IgG binding by U937 Fc gamma RI at concentrations greater than 50-fold lower than the aglycosylated monoclonal IgG1 anti-D (Rh) (K50 approximately 3 x 10(-9) M and approximately 6 x 10(-7) M respectively). Similar results were obtained using glycosylated and aglycosylated monoclonal human IgG1 or IgG3 chimaeric anti-NIP antibody-sensitized red cells rosetting with Fc gamma RI-/Fc gamma RII+ Daudi and K562 cells. Rosette formation could be inhibited by the glycosylated form (at greater than 10(-6) M) but not by the aglycosylated form. Haemagglutination analysis using a panel of murine monoclonal antibodies specific for epitopes located on C gamma 2, C gamma 3 or C gamma 2/C gamma 3 interface regions did not demonstrate differences in Fc conformation between the glycosylated or aglycosylated human monoclonal antibodies. These data suggest that the Fc gamma RI and Fc gamma RII sites on human IgG are highly conformation-dependent and that the carbohydrate moiety serves to stabilize the Fc structure rather than interacting directly with Fc receptors.  相似文献   

11.
By using the OKM1 monoclonal antibody and the fluorescence-activated cell sorter to identify lymphocytes bearing iC3b (type 3) complement receptors, two principal populations of OKM1+ lymphocytes have been identified in human peripheral blood. One subset exhibited azurophilic granules and Fc receptors for IgG stained by Leu-11. The other population did not display FcR, but was enriched in cells reacting with OKT3 and OKT8 (low intensity). In healthy subjects, approximately 60% of CR3+ lymphocytes were granular FcR-bearing cells and only 18% co-expressed OKT3 determinants. In patients with systemic lupus erythematosus (SLE), CR3+ lymphocytes were predominantly FcR negative cells and 71% lacked granules. Only 33% reacted with Leu-11, but 50% co-expressed OKT3, 44% reacted with OKT8+, and 15% were OKT4+. We tested the hypothesis that agranular OKT3+ Leu-11- lymphocytes, such as those found in SLE patients, contained the precursors of natural killer (NK) cells. Leu-11+ cells were removed from normal lymphocytes by complement lysis, and the remaining cells were treated with recombinant IFN-alpha, IFN-gamma, or IL 2. These procedures were ineffective in generating typical NK effector cells. Our studies do not support the hypothesis that CR3+ Leu-11- lymphocytes are the precursors of granular Leu-11+ NK cells.  相似文献   

12.
Anti-Leu-3a, anti-Leu-3b, OKT4, and anti-T4 murine monoclonal antibodies react with a membrane component expressed by mature peripheral blood helper T cells and certain thymocyte subsets. Using a variety of immunologic staining techniques, we have demonstrated the reactivity of these antibodies with other cell types. Normal and neoplastic cells of monocyte/macrophage lineage bear the Ia+/Leu-6-/Leu-3+ phenotype, whereas histiocytosis X cells bear the Ia+/Leu-6+/Leu-3+ phenotype. The Ia+/Leu-6- cells of malignant histiocytosis and the Ia+/Leu-6+ epidermal Langerhans cells were variably Leu-3+. Normal monocyte/macrophage reactivity with anti-Leu-3/T4 appears to be primarily intracytoplasmic, whereas on U937 monocyte tumor cells, marked membrane reactivity is also observed. These results strongly suggest that certain cells other than helper T cells and thymocytes can express and, at least in some cases, synthesize a component previously regarded as T-lineage specific.  相似文献   

13.
We studied the interaction of bispecific mouse mAb with human IgG Fc receptors, and assessed their ability to activate the monocytic cell line U937. Binding of monomeric hybrid anti-HuIgA1/HRP mAb to the high-affinity IgG receptor, Fc gamma RI, on U937 cells was only observed when mAb with one or more mIgG2a H chains (hybrid mIgG1-2a, mIgG2a-2b, and mIgG2a-2a) were used. These Fc gamma RI-bound hybrid mAb were capable of enhancing the internal free cytosolic Ca2+ concentration ([Ca2+]i) in U937 cells only when bound mIgG were cross-linked using F(ab')2 fragments of goat anti-mIg antibody. A hybrid mIgG1-2a mAb were cross-linked using goat anti-mIgG1 antibody, showing that the hybrid mAb themselves mediate the induction of Ca2+ increase. Remarkably, anti-Fc gamma RII mAb IV.3 was able to inhibit the Ca2+ increase induced via mIgG2a-1 or mIgG1-2a hybrid mAb completely, despite the fact that we could not detect any effect of IV.3 on binding of monomeric hybrid mIgG1-2a or mIgG2a-1 mAb to U937. The hybrid mAb were also able to induce lysis of HuIgA1-coated E using U937 effector cells. This lysis was completely inhibited by preincubation of U937 cells with mIgG2a mAb TB-3, which blocks Fc gamma RI via its Fc-part ("Kurlander phenomenon"). In contrast, Fc gamma RII-blocking mAb IV.3 and CIKM5 caused a significant enhancement of the antibody-dependent cellular cytotoxicity (ADCC) activity mediated by hybrid mIgG1-2a and mIgG2a-2b mAb. This enhancement did not occur when the parental anti-HuIgA1/2a or the hybrid anti-HuIgA1/HRP/2a-2a mAb were evaluated for ADCC activity. These findings suggest that hybrid mAb not only can bind to Fc gamma RI, but can mediate functional activation of myeloid cells. Given the effect of mAb IV.3 on [Ca2+]i changes and ADCC triggered through IgG1-2a mAb, we suggest that Fc gamma RII may have a role in the regulation of Fc gamma RI-triggered functions or signaling.  相似文献   

14.
The use of murine monoclonal antibodies in the immunotherapy of human disease has prompted interest in the interactions of murine IgG with Fc receptors (FcR) expressed on human effector cells. We examined the heterocytophilic interactions between monomeric murine IgG subclass proteins and the FcR expressed on human monocytic cells (peripheral blood monocytes and interferon (IFN)-gamma-induced U937 cells). All four murine IgG2a antibodies and both murine IgG3 antibodies that were tested bound to human monocyte FcR with high affinity (10(8) to 10(9) M-1). By contrast, the affinities of four murine IgG1 and four IgG2b monomers were 100-fold to 1000-fold lower than the affinity of the human IgG1-FcR interaction. A 68,000 to 72,000 dalton protein was isolated by affinity chromatography from blood monocytes and from IFN-gamma-induced U937 cells on murine IgG2a, IgG3, and human IgG immunoadsorbents. In binding assays with IFN-stimulated U937 cells, murine IgG2a and IgG3 antibodies showed complete cross-blocking with a human IgG1 myeloma protein, indicating that murine and human IgG interact with the same population of Fc-binding proteins. No evidence for heterogeneity of cross-reactive FcR was observed. The ability of murine IgG2a and IgG3 monomers to compete with human IgG1 monomers for binding to human monocyte FcR suggests the potential usefulness of antibodies of these isotypes in the immunotherapy of diseases in which monocyte- or macrophage-mediated, antibody-dependent cellular cytotoxicity may play a role in the modification or remission of disease.  相似文献   

15.
We investigated the effect of polymorphonuclear neutrophils (PMN) on anti-CD3 mAb (OKT3 and anti-Leu4)-mediated T cell activation. In the absence of monocytes, purified E-rosette-positive cells (further referred to as "T cells") require either solid-phase bound anti-CD3 or the combination of both a high concentration of soluble anti-CD3 and exogenous recombinant interleukin 2 (rIL-2) to proliferate. PMN cannot sustain T cell proliferation with soluble anti-CD3, but they markedly boost proliferation in the presence of soluble anti-CD3 and rIL-2. When PMN were added to T cell cultures stimulated with anti-CD3, this resulted in IL-2 receptor (IL-2R) expression and CD3 modulation. The mechanism of enhancement of anti-CD3-induced IL-2-responsiveness by PMN was further analyzed. A cellular T cell-PMN interaction was found to play a critical role and this was mediated through PMN Fc receptors (FcR). PMN bear two types of low-affinity FcR (FcRII and FcRIII). FcRII is known to bind mIgG1 (e.g., anti-Leu4) and FcRIII binds mIgG2a (e.g., OKT3). FcR involvement was demonstrated by two observations. Anti-FcRII mAb IV.3 inhibited the PMN signal for T cell activation with anti-Leu4. PMN bearing the second variant of FcRII which is unable to bind mIgG1 failed to promote anti-Leu4/IL-2-mediated T cell proliferation. Thus, PMN potentiate T cell responsiveness to IL-2 in the presence of anti-CD3 mAb and this potentiation by PMN requires interaction of anti-CD3 with PMN-FcR.  相似文献   

16.
We compare five monoclonal antibodies ( B73 .1, 3G8 , Leu- 11a , Leu- 11b , and VEP13 ) that react with natural killer (NK) cells and polymorphonuclear cells (PMN). We show that all of these antibodies are directed against and inhibit the functional properties of the receptor for the Fc portion of IgG (FcR). Modulation of the FcR on NK cells after reaction with immune complexes induces the disappearance of the antigen(s) recognized by each of the five antibodies. Conversely, the antibodies block binding of IgG-sensitized erythrocytes to the NK cells and PMN and inhibit their ability to mediate cytotoxicity against antibody-sensitized tumor target cells. By using two-color immunofluorescence techniques, we characterize directly the lymphocyte population recognized by these antibodies and show that it is a homogeneous subset that does not bear markers of either B or T cells, with the exception of the 33,000 dalton antigen characteristic of suppressor/cytotoxic T cells present in 20 to 50% of the cells, and the 45,000 dalton receptor for sheep erythrocytes present on 80 to 90% of the cells. The phenotype of the cells reacting with the monoclonal antibodies corresponds to that of NK cells. Cross-competition experiments indicate that these antibodies detect at least two distinct epitopes on FcR, one ( B73 .1) preferentially expressed on NK cells and one or more ( 3G8 /Leu- 11a /Leu- 11b / VEP13 ) preferentially expressed on PMN. The lack of reactivity of these antibodies with B cells suggests that human B cells bear a different FcR from that on NK cells and PMN.  相似文献   

17.
Structural polymorphism of the human platelet Fc gamma receptor   总被引:1,自引:0,他引:1  
A variable T lymphocyte proliferative response to murine IgG1 anti-T3 monoclonal antibodies, in which most North American Caucasians respond whereas a minority do not, is well established. This is most likely the result of a genetic polymorphism manifested by 1) the inability of the monocyte 40-kDa IgG FcR of some individuals to bind murine IgG1, and 2) a distinctive trimorphic pattern on IEF of the monocyte 40-kDa FcR, one form being seen in all individuals who do not respond and another form (or a combination of both forms) being seen in those who do respond. We have evaluated the IEF patterns of the platelet 40-kDa FcR and find that in every individual tested the pattern for platelet FcR correlates with that seen for the monocyte 40-kDa FcR pattern. Furthermore, the platelets of those individuals whose "nonresponder" monocyte 40-kDa FcR did not mediate a murine IgG1 anti-T3 response did not respond with an aggregation reaction to murine IgG1 immune complexes (opsonized E). In contrast, platelets from donors possessing "responder" monocytes displayed positive "aggregation" responses to E coated with murine IgG1 antibody. However, the platelet FcR structural polymorphism described earlier did not correlate with the donor-specific variability in capacity of platelets to respond functionally to aggregated human IgG described in an earlier paper. Rather, the variation in capacity of platelets from individual donors to respond functionally to aggregated human IgG was related to the quantitative expression of platelet FcR. These data indicate that the molecular mechanisms responsible for the platelet 40-kDa FcR structural polymorphism are quite different from the mechanisms governing the variation in quantitative expression of the receptor.  相似文献   

18.
Three classes of FcR have been defined on human myeloid cells by their reactivity with mAb; FcRI (mAb 32); FcRII (mAb IV3); and FcRIII (mAb 3G8). We have quantitated the expression of each FcR on human myeloid leukemia cells and cell lines (KG-1, HL-60, U937, and K562). Detailed analysis of FcR surface expression is provided for the U937 cell line after exposure to CSF and cytokines. Increased expression of FcRI and FcRII occurred at 72 h in cells exposed to GCT or Mo cell line-conditioned medium as well as to medium from PHA-treated mononuclear cells. The augmentation of FcRII required protein synthesis and was diminished by a neutralizing antibody to granulocyte-macrophage CSF. We also show that fractions containing natural granulocyte CSF or granulocyte-macrophage CSF as well as r-granulocyte and r-granulocyte-macrophage CSF are capable of inducing FcRII on these cells, whereas other cytokines such as IL-1 and IL-2, TNF-alpha, INF-gamma and macrophages CSF failed to do so.  相似文献   

19.
Human peripheral blood mononuclear cells (PBMC) proliferated and generated non-specific cell-mediated cytotoxicity (CMC) after stimulation with a cell-wall glucomannan-protein (GMP) fraction of Candida albicans or chemically-inactivated intact microrganism. No effects were observed using other fungal cell wall components such as glucan or alkali-acid treated glucomannan. The highest CMC level was detected after 7-10 days of PBMC incubation in the presence of 50 micrograms/ml of whole Candida cells and the cytotoxic immunoeffectors elicited by these antigenic stimulations equally affected NK-susceptible (K562) and NK-resistant (Raji, Daudi and Jurkat) tumor cell lines. Both Interleukin-2 (IL-2) and gamma interferon (IFN-gamma) were produced by GMP-stimulated PBMC, the IL-2 peak production constantly preceding that of IFN production. GMP-induced generation of natural CMC was potentiated by the addition of IFN-gamma and a monospecific anti IFN-gamma serum totally abrogated both IFN activity and CMC generation. The cytolytic effectors were shown to be OKT3-, OKT8- and HLA-DR-. They did not possess typical NK markers (e.g. Leu-7 and AB8.28) but were partially recognized by A10, a IgG2a monoclonal antibody reacting to PBMC-NK lymphocytes and activated T cells. These results suggest that the antitumor cytolytic effectors generated in PBMC cultures exposed to Candida material belong either to a discrete subset of natural effectors lacking classical NK markers or to other lymphokine-activated cells. This study also suggests that the human indigenous microrganisms C.albicans may play a role in raising nonspecific antitumor effects in normal host.  相似文献   

20.
Unfractionated human peripheral blood mononuclear cells produce a small amount of interleukin 2 (IL 2) by stimulation with a monoclonal anti-T3 antibody (OKT3) in vitro. The IL 2 production could be greatly augmented by the addition of a phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA). In the presence of TPA, the T cell enriched fraction deprived of macrophages did not produce IL 2, but the T cells pulse-incubated with OKT3 and reconstituted with macrophages efficiently produced IL 2 in subsequent culture in the presence of TPA as did T cells reconstituted with OKT3-pulse-incubated macrophages. The stimulating effect of OKT3 in the presence of macrophages was inhibited dose-dependently by the addition of immunoglobulins, particularly by mouse IgG2a which is the same isotype as that of the OKT3 antibody, showing that it inhibits by blocking the binding of OKT3 to Fc receptors on macrophages. The same extent of IL 2 production was induced in T cells when paraformaldehyde-fixed macrophages were substituted for intact macrophages. Remarkable IL 2 production was also induced by OKT3 when latex beads coated with rabbit anti-mouse IgG2a antibody and TPA were added to the culture. It was confirmed that the production induced by these stimulations was due to an increase of IL 2 mRNA. These results show that effective signals for IL 2 production are generated by efficient crosslinking of T3 molecules which results from multi-interaction of T3 molecules on the T cell membrane and anti-T3 antibody molecules on macrophage membrane or on the surface of the latex particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号