共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugawara T Kinoshita M Ohnishi M Tsuzuki T Miyazawa T Nagata J Hirata T Saito M 《Bioscience, biotechnology, and biochemistry》2004,68(12):2541-2546
The aim of this study was to determine whether sphingoid bases that originated from various dietary sources, such as mammals, plants, and fungi, are substrates for P-glycoprotein in differentiated Caco-2 cells, which are used as a model of intestinal epithelial cells. In Caco-2 cells, the uptake of sphingosine, the most common sphingoid base found in mammals, was significantly higher at physiological temperatures than those of cis/trans-8-sphingenine, trans-4, cis/trans-8-sphingadienine, 9-methyl-trans-4, trans-8-sphingadienine, or sphinganine. Verapamil, a potent P-glycoprotein inhibitor, increased the cellular accumulation of sphingoid bases, except for sphingosine, in a dose-dependent manner. Incubation with 1 microM digoxin for 48 h caused up-regulation of multidrug-resistance (MDR)1 mRNA and decreased the accumulation of sphingoid bases in Caco-2 cells, except for sphingosine. Thus P-glycoprotein probably contributes to the selective absorption of sphingosine from dietary sphingolipids in the digestive tract. 相似文献
2.
3.
Human intestinal Caco-2 cells display active transport of benzo[a]pyrene metabolites 总被引:1,自引:0,他引:1
Buesen R Mock M Nau H Seidel A Jacob J Lampen A 《Chemico-biological interactions》2003,142(3):201-221
Epithelial cells of the gastrointestinal tract are challenged by exposure to many potentially toxic agents including the well-known food contaminant benzo[a]pyrene (B[a]P). They are equipped with a variety of Phase 1- and Phase 2-enzymes that are able to metabolize B[a]P. Furthermore, transmembranous ABC-transport proteins are expressed at the apical pole of these cells. The aim of this study was to investigate whether [14C]B[a]P or products of the metabolism are transported by intestinal cells back into the gut lumen. The intestinal Caco-2 cell line was used as a metabolism and transport model. Experiments with Caco-2 monolayers in the Transwell-system revealed that radiolabeled substance is transported towards the apical (luminal) region. This transport was characterized as active and increased after induction of cytochromes P450 1A1 and 1B1 by beta-naphthoflavone. On the other hand, transport was decreased with the concomitant inhibition of Phase 1-metabolism. TLC-analysis revealed that the primary metabolites of B[a]P found in the supernatant were very polar; other metabolites of less polarity could only be detected in trace amounts. These results indicate that B[a]P is metabolized by Caco-2 cells to highly polar metabolites resulting from biphasic metabolism and that these polar metabolites are subject to an apically directed transport. Chemical inhibition studies showed that P-glycoprotein and MRP1 or 2 were not involved in this polarized B[a]P-metabolite secretion. 相似文献
4.
Uc A Husted RF Giriyappa RL Britigan BE Stokes JB 《American journal of physiology. Gastrointestinal and liver physiology》2005,289(2):G202-G208
Enterocytes maintain fluid-electrolyte homeostasis by keeping a tight barrier and regulating ion channels. Carbon monoxide (CO), a product of heme degradation, modulates electrolyte transport in kidney and lung epithelium, but its role in regulating intestinal fluid-electrolyte homeostasis has not been studied. The major source of endogenous CO formation comes from the degradation of heme via heme oxygenase. We hypothesized that heme activates electrolyte transport in intestinal epithelial cells. Basolateral hemin treatment increased baseline Caco-2 cell short-circuit currents (I(sc)) twofold (control = 1.96 +/- 0.14 microA/cm(2) vs. hemin = 4.07 +/- 0.16 microA/cm(2), P < 0.01); apical hemin had no effect. Hemin-induced I(sc) was caused by Cl- secretion because it was inhibited in Cl- -free medium, with ouabain, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), or DIDS. Apical electrogenic Na+ channel inhibitor benzamil had no effect on hemin-induced I(sc). Hemin did not alter the ability of Caco-2 cells to respond maximally to forskolin, but a soluble guanylate cyclase inhibitor, [1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) inhibited the effects of hemin. A CO-releasing molecule, tricarbonyldichlororuthenium II, induced active Cl- secretion that was also inhibited with ODQ. We conclude that hemin induces active Cl- secretion in Caco-2 cells via a cGMP-dependent pathway. These effects are probably the consequence of CO formation. Heme and CO may be important regulators of intestinal fluid-electrolyte homeostasis. 相似文献
5.
Maxime Delisle-Houde Pascal Dubé Russell J. Tweddell 《The Annals of applied biology》2020,177(1):51-60
Ethanolic crude extract prepared from autumn-shed leaves of sugar maple (Acer saccharum Marsh.) was recently shown to have antibacterial activity against Pseudomonas cichorii and Xanthomonas campestris pv. vitians, two bacteria causing diseases in lettuce production. In this study, antibacterial activity of sugar maple autumn-shed leaves (SMASL) extract was further investigated. SMASL ethanolic crude extract was fractionated using HPLC system and geraniin was identified as the antibacterial compound by UPLC/Q-Tof-MS system. Geraniin, an ellagitannin, was then purified from SMASL crude extract using a glass chromatographic C18-reversed phase silica gel column (purification Step 1) and a semi-preparative HPLC system equipped with 5 μm XTerra Prep MS C18 column (purification Step 2). Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of purified geraniin (purity of 96%) against P. cichorii and X. campestris pv. vitians were determined. X. campestris pv. vitians (MIC of 0.024 mg ml−1 and MBC of 3.125 mg ml−1) was more sensitive to geraniin than P. cichorii (MIC of 0.781 mg ml−1 and MBC of 6.25 mg ml−1). In the present study, geraniin is reported for the first time as the main antibacterial compound present in SMASL. 相似文献
6.
Uc A Stokes JB Britigan BE 《American journal of physiology. Gastrointestinal and liver physiology》2004,287(6):G1150-G1157
Heme prosthetic groups are vital for all living organisms, but they can also promote cellular injury by generating reactive oxygen species. Therefore, intestinal heme absorption and distribution should be carefully regulated. Although a human intestine brush-border heme receptor/transporter has been suggested, the mechanism by which heme crosses the apical membrane is unknown. After it enters the cell, heme is degraded by heme oxygenase-1 (HO-1), and iron is released. We hypothesized that heme transport is actively regulated in Caco-2 cells. Cells exposed to hemin from the basolateral side demonstrated a higher HO-1 induction than cells exposed to hemin from the apical surface. Hemin secretion was more rapid than absorption, and net secretion occurred against a concentration gradient. Treatment of the apical membrane with trypsin increased hemin absorption by threefold, but basolateral treatment with trypsin had no effect on hemin secretion. Neither apical nor basolateral trypsin changed the paracellular pathway. We conclude that heme is acquired and transported in both absorptive and secretory directions in polarized Caco-2 cells. Secretion is via an active metabolic/transport process. Trypsin applied to the apical surface increased hemin absorption, suggesting that protease activity can uncover a process for heme uptake that is otherwise quiescent. These processes may be involved in preventing iron overload in humans. 相似文献
7.
Although the colonic cell line Caco-2 is widely used as a model of the small intestinal barrier function, it has limitations such as overestimated transepithelial electrical resistance (TEER) compared to in vivo conditions. Therefore, we investigated Human Intestinal Epithelial Cells (HIECs) as an alternative in vitro model.We explored whether cell seeding number of HIEC-6, and the number of incubation days for HIEC and Caco-2 cells had an impact on TEER, and tight junction expression was examined for both cell lines via immunofluorescence in the presence and absence of probiotic bacteria.We observed no significant difference in TEER readings for either cell lines when cultured for different days. Further, the HIEC TEER readings did not change with increased seeding number and were not significantly different from a control with no cells. HIECs expressed Claudin-1 and Zonula Occludens-1 but not Occludin. Caco-2 co-culture with probiotic bacteria demonstrated a significant increase in TEER, particularly for the lactobacillus strains, whereas HIEC TEER did not respond to bacterial co-incubation.Our study shows that although HIECs express certain TJ proteins, a significant TEER was not observed, likely due to the embryonic origin of the cells, which limits the application of this cell line as a suitable model for small intestinal barrier function. 相似文献
8.
Giovannini C Matarrese P Scazzocchio B Sanchez M Masella R Malorni W 《FEBS letters》2002,523(1-3):200-206
We investigated the mechanisms underlying the pro-apoptotic activity exerted by oxidized low-density lipoproteins (oxLDL) in Caco-2 intestinal cells, a cell line which retains many morphological and enzymatic features typical of normal human enterocytes. We found that: (i) oxLDL induced mitochondrial-mediated apoptosis by provoking first an increase in mitochondrial membrane potential, followed, later, by the typical apoptosis-associated depolarization (type II apoptosis); accordingly, (ii) caspase-9 inhibition significantly hindered apoptosis while caspase-8 inhibition did not; and finally (iii) dietary phenolic antioxidizing compounds exerted a significant protective antiapoptotic activity. These results point to mitochondrial hyperpolarization as 'sensitizing feature' in apoptotic proneness of Caco-2 intestinal cells to oxLDL exposure. 相似文献
9.
Carrero JC Lugo H Pérez DG Ortiz-Martínez C Laclette JP 《International journal for parasitology》2004,34(9):1091-1097
Cyclosporin A (CsA) inhibits the proliferation of several protozoan parasites through blocking the activity of calcineurin (Cn) or P-glycoproteins (Pgp). We report here, that inhibition of the proliferation of Entamoeba histolytica trophozoites, the causal agent of human amebiasis, is due to interference of the phosphatase activity of Cn, in a similar fashion to the effect of this immunosuppressive drug on T lymphocytes. The non-immunosuppressive CsA analog PSC-833, which binds Pgp without interfering the function of Cn, did not inhibit the proliferation of HM1:IMSS trophozoites. Moreover, phosphatase activity of amebic Cn, detected using the phosphopeptide RII, was drastically affected by incubation with CsA, but not with PSC-833. On the other hand, both drugs were also tested on clone C2 trophozoites, which grow in the presence of emetine due to over-expression of Pgp. The effect of CsA was similar to that observed on HM1:IMSS trophozoites, whereas PSC-833 only affected the proliferation and viability of clone C2 when the trophozoites were grown in the presence of 40 microM of emetine, suggesting an interference of the Pgp activity. This suggestion was confirmed by results from experiments of Pgp-dependent effux of rhodamine from pre-loaded trophozoites, in the presence of either of these drugs. Therefore, CsA inhibition of E. histolytica trophozoite proliferation is more likely due to Cn than Pgp activity inhibition. 相似文献
10.
Jae Youn Yi Yu-Jin Jung Sun Shim Choi Eunkyung Chung 《Biochemical and biophysical research communications》2009,386(3):455-458
Imiquimod (IMQ) is recognized as a topical immune response modifier compound that enhances immune responses with anti-viral and anti-tumoral activities. Its anti-tumoral effects have been previously demonstrated in a variety of cancer cells, and were identified as indirect responses mediated by the immune modulation of cutaneous dendritic cells. Recently, the pro-apoptotic activities of IMQ occurring via the modulation of bcl-2 family have been reported in several tumor cells. In this study, we first observed IMQ-initiated autophagy determined by vesicular organelle formation and the generation of LC3-II in Caco-2 human colonic adenocarcinoma cells, which expressing functional TLR7. Additionally, IMQ-induced autophagy resulted in cell death occurring independently of molecular changes of apoptotic markers. Loxoribine also induced autophagy and autophagy-induced cell death at less potent than IMQ. Moreover, the activation of autophagy by rapamycin induced enhanced cell death in TNF-alpha-treated Caco-2 cells, which were autophagy and cell death-resistant. Our results led us to conclude that IMQ exerts a direct effect on the anti-tumoral activity of Caco-2 cells via autophagy-induced cell death. In conclusion, the modulation of autophagy might be applied in a potential cancer therapy for the treatment of colon cancer cells. 相似文献
11.
Vitamin A metabolism in the human intestinal Caco-2 cell line 总被引:2,自引:0,他引:2
The human intestinal Caco-2 cell line, described as enterocyte-like in a number of studies, was examined for its ability to carry out the metabolism of vitamin A normally required in the absorptive process. Caco-2 cells contained cellular retinol-binding protein II, a protein which is abundant in human villus-associated enterocytes and may play an important role in the absorption of vitamin A. Microsomal preparations from Caco-2 cells contained retinal reductase, acyl-CoA-retinol acyltransferase (ARAT), and lecithin-retinol acyltransferase (LRAT) activities, which have previously been proposed to be involved in the metabolism of dietary vitamin A in the enterocyte. When intact Caco-2 cells were provided with beta-carotene, retinyl acetate, or retinol, synthesis of retinyl palmitoleate, oleate, palmitate, and small amounts of stearate resulted. However, exogenous retinyl palmitate or stearate was not used by Caco-2 cells as a source of retinol for ester synthesis. While there was a disproportionate synthesis of monoenoic fatty acid esters of retinol in Caco-2 cells compared to the retinyl esters typically found in human chylomicrons or the esters normally synthesized in rat intestine, the pattern was consistent with the substantial amount of unsaturated fatty acids, particularly 18:1 and 16:1, found in the sn-1 position of Caco-2 microsomal phosphatidylcholine, the fatty acyl donor for LRAT. Both ARAT and LRAT have been proposed to be responsible for retinyl ester synthesis in the enterocyte.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
Ornithine aminotransferase (OAT) is a crucial enzyme in the synthesis of citrulline and arginine from glutamine/glutamate and proline by enterocytes of the small intestine. However, a role for OAT in intestinal polyamine synthesis and cell growth is not known. All-transretinoic acid (RA), an active metabolite of vitamin A, regulates the activity of several metabolic enzymes related to OAT, including ornithine decarboxylase and arginase, which may influence the function of OAT through effects on substrate (ornithine) availability. The objective of the present study was to test the hypothesis that RA regulates OAT mRNA expression and enzymatic activity in intestinal epithelial cells. Caco-2 cells were cultured for 12-72 h in the presence of 0, 0.01 and 1 microM RA and then used for measurements of OAT mRNA levels and enzyme activity as well as ornithine and polyamines. Treatment with RA induced increases in OAT gene expression and enzymatic activity, which resulted in decreased intracellular concentrations of ornithine and polyamines (putrescine, spermidine and spermine) in a dose-dependent manner. These changes occurred concomitantly with a decrease in the total number of cells, and the increase in OAT activity was due to increased OAT mRNA expression. In cells treated with 1 microM RA, addition of 10 microM putrescine to culture medium restored both cellular levels of polyamines and cell numbers to the values for the control group (without addition of RA). We conclude that exposure of Caco-2 cells to RA induces OAT expression for increasing ornithine catabolism. This leads to a reduced availability of intracellular ornithine for polyamine synthesis, thereby decreasing cell proliferation. These novel findings indicate a functional role for OAT in regulating intestinal polyamine synthesis and growth. 相似文献
13.
Monensin inhibits the expression of sucrase-isomaltase in Caco-2 cells at the mRNA level 总被引:1,自引:0,他引:1
Using L-[35S]methionine labeling, SDS-PAGE and Northern blot analysis of sucrase-isomaltase mRNA, two different concentrations of monensin were used to delineate in Caco-2 cells the effect of the drug on the conversion of the high mannose to the complex form of sucrase-isomaltase from its dual effect on the biosynthesis of the enzyme and on the rate of glucose consumption. At 0.1 microM the drug has no effect on the rate of glucose consumption and, although it inhibits the conversion of the high mannose to the complex form of the enzyme, it has no effect on the level of sucrase-isomaltase mRNA and on the amount of neosynthesized enzyme. At 1 microM, in addition to its inhibiting effect on the maturation of the enzyme, monensin provokes concomitantly an increase in the rate of glucose consumption and a decrease in the level of sucrase-isomaltase mRNA and in the amount of neosynthesized enzyme. All these effects are reversible within 48 h after removal of the drug. 相似文献
14.
Certain ginsenosides, also known as triterpene glycosides, have been recently reported to have a characteristic effect on cultured intestinal and leukemia cell growth. Ginsenoside aglycones 20(S)-protopanaxadiol (PD), 20(S)-protopanaxatriol (PT), and ginsenoside Rh2 have been identified as having a strong effect on reducing cell viability. Furthermore, ginsenoside Rh2 is thought to be a rare ginsenoside not found in all ginseng products. Rather, Rh2 has been recently reported to be a breakdown product of thermal processing of North American ginseng. In this study, pure ginsenosides PD, PT, Rh2 standards and an enriched Rh2 fraction derived from ginseng leaf were tested in cultured Caco-2 cells for relative cytotoxic potency. PD and Rh2 LC50 were similar after 24 to 72 h, whereas a drop in PT LC50 occurred later at 48 and 72 h. Furthermore, PD and Rh2 affected membrane integrity as indicated by LDH secretion earlier than PT and the enriched Rh2 fraction (P < or = 0.05). Ginsenoside Rh2 showed the greatest (P < or = 0.05) build up of necrotic cells (18.3 +/- 0.1%) at the respective LC50 after 24 h and PD (21.3 +/- 0.3%) showed the largest effect after 44 h of exposure. The effect on apoptotic cells at 44 h of treatment were significantly different (P < or = 0.05) for Rh2 (21 +/- 0.4%), PD (14.6 +/- 0.1%), enriched Rh2 leaf fraction (9.9 +/- 0.6%), and PT (2.3 +/- 0.1%) treatments. Caco-2 caspase-3 activity was different between ginsenoside exposure; Rh2 (10.6 +/- 0.3 nM pNA) had the greatest (P < or = 0.05) activity followed by the enriched Rh2 leaf fraction (8.3 +/- 0.2 nM pNA), PT (7.3 +/- 0.3 nM pNA). The PD (4.8 +/- 0.04 nM pNA) treatment was similar to untreated cells (4.3 +/- 0.05 nM pNA) in caspase-3 activity. These results show variable bioactive response in cultured intestinal cell to specific ginsenosides and an enriched Rh2 North American ginseng extract which may be explained on basis of hydrophobic/hydrophilic balance. 相似文献
15.
Bohkyung Kim Youngki Park Casey J. Wegner Bradley W. Bolling Jiyoung Lee 《The Journal of nutritional biochemistry》2013,24(9):1564-1570
Black chokeberry (Aronia melanocarpa) is a rich source of polyphenols. The hypolipidemic effects of polyphenol-rich black chokeberry extract (CBE) have been reported, but underlying mechanisms have not been well characterized. We investigated the effect of CBE on the expression of genes involved in intestinal lipid metabolism. Caco-2 cells were incubated with 50 or 100 μg/ml of CBE for 24 h for quantitative realtime polymerase chain reaction analysis. Expression of genes for cholesterol synthesis (3-hydroxy-3-methylglutaryl coenzyme A reductase and sterol regulatory element binding protein 2), apical cholesterol uptake (Niemann-Pick C1 Like 1 and scavenger receptor class B Type 1) and basolateral cholesterol efflux [ATP-binding cassette transporter A1 (ABCA1)] was significantly decreased by CBE compared with control. Western blot analysis confirmed that CBE inhibited expression of these proteins. In contrast, CBE markedly induced mRNA and/or protein levels of ABCG5 and ABCG8 that mediate apical cholesterol efflux to the intestinal lumen. Furthermore, CBE significantly increased mRNA and protein levels of low-density lipoprotein (LDL) receptor, and cellular LDL uptake. Expression of genes involved in lipid metabolism and lipoprotein assembly, including sterol regulatory element-binding protein 1c, fatty acid synthase and acyl-CoA oxidase 1, was significantly decreased by CBE in a dose-dependent manner. Concomitantly, CBE significantly increased sirtuin 1, 3 and 5 mRNA levels, while it decreased SIRT-2. Our data suggest that hypolipidemic effects of CBE may be attributed, at least in part, to increased apical efflux of LDL-derived cholesterol and to decreased chylomicron formation in the intestine; and specific isoforms of SIRT may play an important role in this process. 相似文献
16.
We compared the inhibitory effect of various cyclodextrins (CyDs) on P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (MRP2) function and examined the contribution of cholesterol to the inhibitory effect of 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-CyD) on the efflux activity of the function in Caco-2 cell monolayers. Of various CyDs, DM-beta-CyD significantly impaired the efflux activity of P-gp and MRP2. DM-beta-CyD released P-gp and MRP2 from the monolayers in the apical side's transport buffer and decreased the extent of cholesterol as well as P-gp and MRP2 in caveolae of Caco-2 cell monolayers, but not caveolin and flotillin-1. On the other hand, DM-beta-CyD did not change MDR1 and MRP2 mRNA levels. Therefore, these results suggest that the inhibitory effect of DM-beta-CyD on P-gp and MRP2 function, at least in part, could be attributed to the release of these transporters from the apical membranes into the medium as secondary effects through cholesterol-depletion in caveolae after treatment of Caco-2 cell monolayers with DM-beta-CyD. 相似文献
17.
Intestinal epithelial cell differentiation is closely regulated during normal cell renewal, maturation, and malignant transformation. Since tyrosine phosphorylation influences differentiation in other cell types and has been reported to vary between crypt cells to differentiated villus tip cells, we investigated the influence of tyrosine phosphorylation in colonocyte differentiation, by using human colonic Caco-2 cells as a model and expression of the brush border enzymes alkaline phosphatase (AKP) and dipeptidyl peptidase (DPDD) as differentiation markers. We studied three tyrosine kinase inhibitors with different modes of action and specificities, viz., genistein, erbstatin analog (EA), and tyrphostin, and the tyrosine phosphatase inhibitor sodium orthovanadate. AKP- and DPDD-specific activities were assayed in protein-matched cell lysates by synthetic substrate digestion. We also correlated the effects of these agents on brush border enzyme activity with tyrosine phosphorylation of phosphoproteins by Western blotting. Genistein (5–75?mg/ml) dose-dependently stimulated AKP and DPDD with a maximal stimulation at 75?mg/ml by 158.6± 17.5% and 228.6±37.1% of control values, respectively (n=12, P<0.001). The inactive analog genistin had no effect. Tyrphostin (25?mM) similarly stimulated AKP and DPDD by 138.6±6.6% and 131.8±1.5% of control values (n=12, P<0.001). Unexpectedly, EA (0.1–10?mM) had the opposite effect, inhibiting AKP- and DPDD-specific activity significantly at 10?mM with a maximal 14.8±6.4% and 26.5±2.5% of control values (n=12, each P<0.001). Sodium orthovanadate had a discordant effect on these two differentiation markers. Orthovanadate dose-dependently increased AKP to a maximal 188.5±16.1% of basal activity at 1.5?mM but decreased DPDD activity at 1.5?mM to 47.2±3.8% (n=9, P<0.001 each). The effects of each agent were preserved when proliferation was blocked with mitomycin C, suggesting that the modulation of phenotype by these agents was independent of any effects of proliferation. The tyrosine phosphorylation of several phosphoprotein bands was affected differently by these agents. In particular, the tyrosine phosphorylation of one 70-kDa to 71-kDa band was increased by genistein and tyrophostin but deceased by EA. The different effects of these modulators of tyrosine kinase activity raise the possibility that at least two independent enzymes or pathways regulating tyrosine phosphorylation modulate intestinal epithelial differentiation. Furthermore, tyrosine phosphorylation of the 70-kDa to 71-kDa phosphoprotein may be important in the intracellular signaling by which intestinal epithelial cell differentiation is controlled. 相似文献
18.
《The Journal of nutritional biochemistry》2014,25(1):26-35
Maintaining tight junction (TJ) integrity in the intestine is critical for nutrient absorption, host defense, and host immunity. While leptin secreted from adipose tissue is associated with obesity and obesity-related intestinal inflammation, the role of luminal leptin in intestinal TJ function is elusive. Here, we examined the role of leptin in intestinal TJ function in Caco-2 BBe cells and further explored the function of curcumin (CCM) in leptin-induced TJ dysfunction. Apical leptin, but not basolateral leptin, treatment at a concentration of 100 ng/ml deteriorated TJ function in Caco-2 BBe cells. Leptin-impaired TJ alteration was resulted from induction of leptin receptor-dependent JAK2/STAT3 signaling pathway and its-related PI3K/Akt/ERK1/2 signaling pathways. Apical leptin also lowered the expression levels of genes encoding TJ-associated proteins such as zonula occludens-3, claudin-5, and occludin, and elevated expression of pro-inflammatory genes such as IL-6 and TNF-α. Leptin-impaired TJ junction in Caco-2 BBe cells was blunted by a 30-min CCM pretreatment through inhibition of leptin receptor-dependent signaling pathway, and its-associated induction of expression of genes encoding TJ-associated proteins and pro-inflammatory cytokines. Our results elucidate a novel function of luminal leptin in intestinal TJ dysfunction, and further identify CCM as an effective dietary compound that prevents leptin-impaired TJ function in intestinal cells. 相似文献
19.
Tsukazaki M Satsu H Mori A Sugita-Konishi Y Shimizu M 《Biochemical and biophysical research communications》2004,315(4):991-997
The effect of tributyltin (TBT) on human intestinal epithelial cell functions was investigated by using human intestinal Caco-2 cell monolayers. We paid particular attention to the effect of TBT on two barrier functions: the tight junction as a physical barrier and MDR1/P-glycoprotein as a biological barrier. A loss of monolayer integrity was apparent from the TBT treatment and the paracellular permeability was increased by TBT. On the other hand, the activity of P-glycoprotein, which was examined by measuring the accumulation of Rhodamine-123 and daunomycin, was increased by prolonged TBT treatment in a concentration-dependent manner (1-100 nM). Furthermore, it was clarified by Western and Northern blots that this increase was accompanied by the increased expression of MDR1 mRNA and protein. The activation of a multidrug resistance transporter P-glycoprotein by TBT would cause a disorder of the human intestines by changing the drug pharmacokinetics. 相似文献
20.
Flavonoids found in common vegetables, fruits, and legumes have been shown to possess antioxidant property. This study is the first to demonstrate that one member of the flavonoid family, genistein, can induce the expression of metallothionein (a metal-binding protein with antioxidant property). We found the effect of genistein to be time- and dose-dependent (10-100 microM). The effect can be observed at both protein and mRNA levels and was synergistic to that of 30 microM zinc. Genistein was shown previously to interact with the estrogen receptor and induce gene expression similar to estrogens at a lower affinity. We thus tested the hypothesis that the effect of genistein on metallothionein expression was mediated through the steroid hormone pathway. We found that various glucocorticoids do not affect metallothionein expression in Caco-2 cells. 17Beta-estradiol at 10-100 microM (concentrations much higher than needed to activate the estrogen response element) induced metallothionein expression in Caco-2 cells. However, a synthetic estrogen, diethylstilbestrol, did not increase metallothionein level at 10 microM. 17Beta-estradiol also did not act synergistically with zinc. Thus, genistein may enhance metallothionein expression through an uncharacterized mechanism. Further studies are needed to delineate the molecular mechanism and to determine whether the expression of other genes is also affected by genistein. 相似文献