首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yoshida S 《Plant physiology》1979,64(2):252-256
Freeze-thawing of microsome-enriched membranes from living bark tissues of black locust trees, especially those from less hardy tissues, caused a drastic increase in sensitivity to Ca2+ and a complete loss of the regulatory action of Mg2+ in membrane-bound phospholipase D activity with endogenous (membrane-bound) substrates. Also, the freeze-thaw cycle made phospholipase D in these membranes more resistant to digestion by proteases. Thus, the regulatory properties of the membrane-bound phospholipase D seem to be dependent on the nature of the membranes and on the interaction between the enzyme and membranes as well. The alteration of regulatory properties by freezing was protected by sucrose, at lower concentrations, and more effectively for membranes from hardy tissues than for membranes from less hardy tissue. Addition of partially purified soluble phospholipase D to the reaction system containing membranes caused only a slight stimulation of the degradation of endogenous phospholipids. Phospholipid degradation in vivo during freezing of less hardy tissue may be catalyzed mainly by the bound enzyme. Disintegration of the tonoplast, however, besides releasing soluble phospholipase D into the cytosol, would release organic acids (lowering the pH) and free Ca2+. Both factors would stimulate drastically the membrane-bound phospholipase D, causing degradation of membrane phospholipids.  相似文献   

2.
The conversion of isopentenyl pyrophosphate to phytoene in Neurospora crassa requires both a soluble and a particulate fraction. Soluble and particulate enzyme fractions obtained from light-treated and dark-grown wild type, albino-1, albino-2, albino-3, and white collar-1 strains were mixed in various combinations, and the activity for conversion of [1-14C]isopentenyl pyrophosphate to phytoene was assayed. From such experiments it can be concluded that: (a) albino-3 is defective in the soluble fraction; (b) albino-2 is defective in the particulate fraction; (c) the in vivo light treatment increases the enzyme activity in the particulate fraction; (d) this light effect occurs in wild type, albino-1, and albino-3 strains; and (e) enzyme activity is present in the particulate fraction obtained from the white collar-1 mutant, but the in vivo light treatment does not cause an increase in this activity. To measure directly the level of particulate enzyme activity, [14C]geranylgeranyl pyrophosphate was used as a substrate. This compound, which is not available commercially, was synthesized enzymically using extracts of pea cotyledons. Particulate enzyme fractions obtained from wild type, albino-1, and albino-3 strains incorporate [14C]geranylgeranyl pyrophosphate into phytoene, and this activity is higher in extracts obtained from light-treated cultures. The particulate fraction obtained from the white collar-1 mutant also incorporates [14C]geranylgeranyl pyrophosphate into phytoene, but the in vivo light treatment does not cause an increase in this activity. No incorporation occurs when particulate fractions obtained from either dark-grown or light-treated albino-2 cultures are assayed. The soluble enzyme fraction obtained from the albino-3 mutant was shown to be almost totally defective in enzyme activity required for the biosynthesis of [14C]geranylgeranyl pyrophosphate from [1-14C]isopentenyl pyrophosphate. An in vivo light treatment increases the level of this activity in wild type, albino-1, albino-2, and albino-3 strains, but not in the white collar-1 mutant. A model is presented to account for all of the results obtained in this investigation. It is proposed that the white collar-1 strain is a regulatory mutant blocked in the light induction process, whereas the albino-1, albino-2, and albino-3 strains are each defective for a different enzyme in the carotenoid biosynthetic pathway.  相似文献   

3.
The previous demonstration that incubation of brain slices with [32P]phosphate brings about rapid tabeling of phosphatidic acid in myelin suggests that the enzyme involved should be present in this specialized membrane. DAG kinase (ATP:1,2-diacyglycerol 3-phosphotransferase, E.C. 2.7.1.107) is present in rat brain homogenate at a specific activity of 2.5 nmol phosphatidic acid formed/min/mg protein, while highly purified myelin had a much lower specific activity (0.29 nmol/min/mg protein). Nevertheless, the enzyme appears to be intrinsic to this membrane since it can not be removed by washing with a variety of detergents or chelating agents, and it could not be accounted for as contamination by another subcellular fraction. Production of endogenous, membrane-associated, diacylglycerol (DAG) by PLC (phospholipase C) treatment brought about translocation from soluble to particulate fractions, including myelin. Another level of control of activity involves inactivation by phosphorylation; a 10 min incubation of brain homogenate with ATP resulted in a large decrease in DAG kinase activity in soluble, particulate and myelin fractions.  相似文献   

4.
Arachidonoyl-hydrolyzing phospholipase A2 plays a central role in providing substrate for the synthesis of the potent lipid mediators of inflammation, the eicosanoids, and platelet-activating factor. Although Ca2+ is required for arachidonic acid release in vivo and most phospholipase A2 enzymes require Ca2+ for activity in vitro, the role of Ca2+ in phospholipase A2 activation is not understood. We have found that an arachidonoyl-hydrolyzing phospholipase A2 from the macrophage-like cell line, RAW 264.7, exhibits Ca2(+)-dependent association with membrane. The intracellular distribution of the enzyme was studied as a function of the Ca2+ concentration present in homogenization buffer. The enzyme was found almost completely in the 100,000 x g soluble fraction when cells were homogenized in the presence of Ca2+ chelators and there was a slight decrease in soluble fraction activity when cells were homogenized at the level of Ca2+ in an unstimulated cell (80 nM). When cells were homogenized at Ca2+ concentrations expected in stimulated cells (230-450 nM), 60-70% of the phospholipase A2 activity was lost from the soluble fraction and became associated with the particulate fraction in a manner that was partly reversible with EGTA. Membrane-associated phospholipase A2 activity was demonstrated by [3H]arachidonic acid release both from exogenous liposomes and from radiolabeled membranes. With radiolabeled particulate fraction as substrate, this enzyme hydrolyzed arachidonic acid but not oleic acid from membrane phospholipid, and [3H]arachidonic acid was derived from phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol/phosphatidylserine. We suggest a mechanism in which the activity of phospholipase A2 is regulated by Ca2+: in an unstimulated cell phospholipase A2 is found in the cytosol; upon receptor ligation the cytosolic Ca2+ concentration increases, and the enzyme becomes membrane-associated which facilitates arachidonic acid hydrolysis.  相似文献   

5.
Phospholipase A activity was hardly detected in Escherichia coli K12 sonicate when solvent-extracted (free) 32P-phosphatides were used as substrate. Phosphatides bound in membrane were, however, actively hydrolyzed to give the corresponding lysolipids by an endogenous enzyme. The results indicated the presence in E. coli membrane of a novel phospholipase which can be more precisely called as lipoprotein phospholipase A. Lysophospholipase was shown to be present in the cellular soluble fraction.

With free phosphatides as substrate, alcohols and some water-miscible solvents, as well as nonionic detergents, markedly stimulated phospholipase A activity of the membrane, possibly by enabling the substrate to hold physical state in someway simillar to that in the membrane. Possible role of this enzyme in membrane lipid metabolism is discussed.  相似文献   

6.
After human platelets were lysed by freezing and thawing in the presence of EDTA, about 35% of the total cyclic AMP-dependent protein kinase activity was specifically associated with the particulate fraction. In contrast, Ca2+-activated phospholipid-dependent protein kinase was found exclusively in the soluble fraction. Photoaffinity labelling of the regulatory subunits of cyclic AMP-dependent protein kinase with 8-azido-cyclic [32P]AMP indicated that platelet lysate contained a 4-fold excess of 49 000-Da RI subunits over 55 000-Da RII subunits. The RI and RII subunits were found almost entirely in the particulate and soluble fractions respectively. Chromatography of the soluble fraction on DEAE-cellulose demonstrated a single peak of cyclic AMP-dependent activity with the elution characteristics and regulatory subunits characteristic of the type-II enzyme. A major enzyme peak containing Ca2+-activated phospholipid-dependent protein kinase was eluted before the type-II enzyme, but no type-I cyclic AMP-dependent activity was normally observed in the soluble fraction. The particulate cyclic AMP-dependent protein kinase and associated RI subunits were solubilized by buffers containing 0.1 or 0.5% (w/v) Triton X-100, but not by extraction with 0.5 M-NaCl, indicating that this enzyme is firmly membrane-bound, either as an integral membrane protein or via an anchor protein. DEAE-cellulose chromatography of the Triton X-100 extracts demonstrated the presence of both type-I cyclic AMP-dependent holoenzyme and free RI subunits. These results show that platelets contain three main protein kinase activities detectable with histone substrates, namely a membrane-bound type-I cyclic AMP-dependent enzyme, a soluble type-II cyclic AMP-dependent enzyme and Ca2+-activated phospholipid-dependent protein kinase, which was soluble in lysates containing EDTA.  相似文献   

7.
Particulate fractions from the heads of Drosophila melanogaster catalyze the conversion of o-aminophenols to phenoxazinones. This particulate enzyme is stimulated by Mn2+. It has a number of features which distinguish it clearly from the Mn2+-dependent activity found in the soluble fraction. The particulate enzyme has a characteristic developmental pattern, showing a marked increase in activity at about the time of onset of xanthommatin synthesis. In addition, it is much reduced in activity in a number of xanthommatin-deficient mutants (v, cn, st, cd, and w). We believe that the head particulate enzyme is involved in xanthommatin biosynthesis and that the developmental onset of synthesis of this pigment is brought about by the synthesis or activation of this enzyme.  相似文献   

8.
Succinyl-CoA synthetase in greening maize leaves   总被引:1,自引:0,他引:1  
R. Fluhr  E. Harel 《Phytochemistry》1975,14(10):2157-2160
In extracts of greening maize leaves succinyl-CoA synthetase was present in both a particulate and a soluble fraction. Aqueous and non-aqueous fractionation together with determination of chlorophyll content and cytochrome oxidase activity indicated that the enzyme was neither located, nor originated in plastids. Pre-illumination of leaves caused only small increases in the activity of either the particulate or the soluble enzyme. The soluble enzyme was ATP specific and had a low affinity for succinate (Km = 63 mM).  相似文献   

9.
Plasma membrane phosphatidic acid phosphohydrolase (PAPH) plays an important role in signal transduction by converting phosphatidic acid to diacylglycerol. PAPH-2, a Mg2+-independent, detergent-dependent enzyme involved in cellular signal transduction, is reportedly absent from the plasma membranes of neutrophilic leukocytes, a cell that responds to metabolic stimulation with abundant phospholipase -dependent diacylglycerol generation. The present study was designed to resolve this discrepancy, focusing on the influence of cellular disruption techniques, detergenta availability and cation sensitivity on the apparent distribution of PAPH in neutrophil sub-cellular fractions. The results clearly indicate the presence of two distinct types of PAPH within the particulate and cytosolic fractions of disrupted cells. Unlike the cytosolic enzyme, the particulate enzyme was not potentiated by magnesium and was strongly detergent-dependent. The soluble and particulate enzymes displayed dissimilar pH profiles. Separation of neutrophil particulate material into fractions rich in plasma membranes, specific granules and azurophilic granules by high speed discontinuous density gradient centrifugation revealed that the majority of the particulate activity was confined to plasma membranes. This activity was not inhibited by pretreatment with n-ethyl-maleimide in concentrations as high as 25 mM. PAPH activity recovered in the cytosolic fraction of disrupted neutrophils was almost completely inhibited by 5.0 mM n-ethylmaleimide. We conclude that resting neutrophils possess n-ethylmaleimide-resistant PAPH (type 2) within their plasma membranes. This enzyme may markedly influence the kinetics of cell activation by metabolizing second messengers generated as a result of activation of plasma membrane phospholipase D.  相似文献   

10.
  • 1.1. Phosphatidylinositol-cleaving activity was studied in subcellular fractions from smooth muscle of rat vas deferens.
  • 2.2. In the presence of calcium ions and deoxycholate most of the endogenous phosphatidylinositol was broken-down in 60 min, whilst the other phospholipids were stable.
  • 3.3. The enzymatic activity responsible for this breakdown catalyses a phospholipase C-type cleavage of the glycerol-phosphate bond, the water soluble products from exogenous [32P]-labelled phosphatidylinositol being d-myoinositol 1:2-cyclic phosphate (702-80%) and d-myoinositol 1-phosphate (202-30%).
  • 4.4. Activity was abolished by 1 mM ethanedioxybis(ethylamine)tetra-acetate (EGTA) and in the presence of deoxycholate both the soluble and total particulate fractions showed maximum activity at pH 6.52-6.8. The soluble fraction showed a second peak of activity at pH 5.52-5.8 that was independent of deoxycholate; this was not observed in the particulate fraction.
  • 5.5. About two-thirds of the activity was soluble. The remaining activity was particulate, with a preferential concentration in the microsomal fraction.
  相似文献   

11.
The transverse distribution of phospholipids and their interactions with marker enzymes were investigated in pig heart mitoplasts and inverted vesicles, using phospholipase A2 from N. naja venom and chemical labeling with TNBS and FDNB. Morphological integrity was checked by freeze-fracturing. Fifty percent of phosphatidylcholine was hydrolyzed in mitoplasts as well as in inverted vesicles, suggesting an even distribution of this phospholipid on the two halves of the inner membrane; however, the fatty acid distribution did not appear the same in the two membrane fractions. Cardiolipin is exclusively hydrolyzed in inverted vesicles proving its location on the inner face of the inner membrane. The results obtained from phospholipase hydrolysis and TNBS labeling suggest that three different pools of phosphatidylethanolamine occur in the membrane: a first pool—about 50–60% of the total membrane phosphatidylethanolamine–is quickly accessible from the two sides of the membrane, a second pool—about 20–30% is slowly available, and finally 20–30% are buried within the membrane and inaccessible to the phospholipase and the probe. The cytochrome c oxidase activity increased in mitoplasts with the phospholipase attack suggesting a better accessibility of added cytochrome c after the attack. The rotenone-sensitive NADH-cytochrome c reductase was activated in mitoplasts but completely inactivated in inverted vesicles by the attack; the addition of cardiolipin liposomes restored the latter activity. The soluble matricial malate dehydrogenase was released, but the particulate form of this enzyme, strongly associated to the membrane, was detached only after attack of inverted vesicles.  相似文献   

12.
A phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate to release inositol trisphosphate was detected in a sedimentable fraction from celery and from some other higher plants. The particulate enzyme also hydrolyses phosphatidylinositol, whereas the soluble phosphatidylinositol phosphodiesterase described previously [Irvine, Letcher & Dawson (1980) Biochem. J. 192, 279-283] acts only on phosphatidylinositol, and we were unable to detect activity of this soluble activity on phosphatidylinositol 4,5-bisphosphate. Activity of the particulate enzyme is markedly enhanced in the presence of deoxycholate, but not of other detergents; the particulate enzyme can also be solubilized by extraction with deoxycholate.  相似文献   

13.
—The detailed subcellular distribution and some properties of acetyl-CoA hydrolase were studied in the rat brain. The brain homogenate (S1) hydrolysed acetyl-CoA at a rate of approx 2·3 nmol/min/mg of protein at 37°C. The total activity of acetyl-CoA hydrolase was distributed in the following order: soluble > mitochondrial > microsomal, synaptosomal > myelin fraction. The order of the specific activity of the enzyme was: soluble, microsomal > mitochondrial > synaptosomal > myelin fraction. The synaptic vesicle fraction (D) had relatively high specific activity among the intraterminal particulate fractions, having two or three times higher specific activity than that of the synaptic cytoplasmic membrane fraction (F or G). Attempts to de-occlude acetyl-CoA hydrolase in the particulate fraction showed that only the enzyme activity in the myelin fraction was increased markedly by the treatment with ether or Triton X-100. Lineweaver-Burk plots gave straight lines for each subcellular fraction and apparent Km values for acetyl-CoA were between 0·1 and 0·2 mM. Neither diisopropyl fluorophosphate nor physostigmine at the concentration of 0·1 mm inhibited the enzyme activity.  相似文献   

14.
Glutamate dehydrogenase from pumpkin (Cucurbita moschata Pior. cultivar Dickinson Field) cotyledons was found in both soluble and particulate fractions with the bulk of the activity in the soluble fraction. Both enzymes used NAD(H) and NADP(H) but NAD(H) was favored. The enzymes were classified as glutamate-NAD oxidoreductase, deaminating (EC 1.4.1.3). Both enzymes were heat stable, had a pH optimum for reductive amination of 8.0, and were inhibited by high concentrations of NH4+ or α-ketoglutarate. The soluble enzyme was more sensitive to NH4+ inhibition and was activated by metal ions after ammonium sulfate fractionation while the solubilized particulate enzyme was not. Inhibition by ethylenediaminetetraacetate was restored by several divalent ions and inhibition by p-hydroxymercuribenzoate was reversed by glutathione. Particulate glutamate dehydrogenase showed a greater activity with NADP. The molecular weights of the enzymes are 250,000. Separation of the enzymes by disc gel electrophoresis showed that during germination the soluble isoenzymes increased from 1 to 7 in number, while only one particulate isoenzyme was found at any time. This particulate isoenzyme was identical with one of the soluble isoenzymes. A number of methods indicated that the soluble isoenzymes were not simply removed from the particulate fraction and that true isoenzymes were found.  相似文献   

15.
Marie Paule Roisin  Adam Kepes 《BBA》1973,305(2):249-259
Membrane-bound ATPase of Escherichia coli was released in a soluble form by decreasing the Mg2+ concentration to 0.05 mM. The particulate fraction left behind was depleted by more than 90% from its initial ATPase activity.Soluble ATPase exhibits a number of different properties as compared with membrane-bound ATPase. These are a 2-fold increased Km toward ATP, a shift of 1–1.5 pH units in the pH-dependence curve, a greatly increased resistance to inhibition by N,N′-dicyclohexylcarbodiimide (DCCD) and a stimulation by Dio 9 instead of an inhibition.Upon mixing the soluble fraction and the depleted membrane fraction, the initial properties of native membrane-bound ATPase reappear. This reconstitution requires Mg2+ and results in the physical binding of the activity to sedimentable material.Soluble ATPase and depleted membrane can be titrated against each other until an equivalence point is reached, beyond which the component in excess keeps its previous characteristics.During the release procedure, DCCD remains associated with the particulate fraction with conservation of the ATPase-binding sites.Such DCCD-treated depleted membranes behave as a specific inhibitor of soluble ATPase.  相似文献   

16.
Incubation of smooth muscle strips from rat uterus with isoproterenol resulted in redistribution of protein kinase activity between the cytosol and a 20,000 to 50,000g membrane fraction. Similarities in the elution properties of the cytosolic and membrane-associated forms of the enzyme on DEAE-cellulose ion exchange chromatography further suggested the two forms were the same. The nature of membrane binding of the soluble enzyme was investigated using smooth muscle microsomal and cytosol fractions. Membranes readily bound the soluble enzyme when the two subcellular compartments were reconstituted and incubated at 30 °C for 10 min. The extent of binding was proportional to the ratio of membranes to cytosol and was characterized by the inhibition of soluble enzyme activity toward exogenous substrates in a Triton X-100 reversible manner. In marked contrast to the binding of soluble protein kinase to heart particulate fractions, binding of the cytosol enzyme to smooth muscle cell membranes was unaffected by ionic strength or cAMP. The latter property indicated holoenzyme was bound in a manner similar to the free catalytic subunit of cAMP-dependent protein kinase and suggested the enzyme was bound by association between the membrane and the catalytic subunit. Binding of cytosol protein kinase to the membranes rendered the enzyme insensitive to trypsin digestion and the capacity of the smooth muscle cell membranes to bind the soluble enzyme exceeded that of other rat tissue fractions. Resistance to salt extraction and proteolysis, as well as its detergent dependence, suggested the soluble enzyme became an integral or intrinsic membrane protein following association with the membrane. The ability of membranes to incorporate [γ-32P]ATP into phosphoprotein was lost on detergent extraction of protein kinase and restored in an apparently specific manner when extracted and washed membranes were reconstituted with soluble enzyme. The intrinsic nature of membrane protein kinase and the apparent specificity with which the soluble enzyme was hound by membranes further indicated that, in myometrium. hormone-induced translocation of protein kinase is an important mechanism by which enzyme activity is increased in the vicinity of its in situ substrates.  相似文献   

17.
Treatment of rat liver mitochondria with digitonin followed by differential centrifugation was used to resolve the intramitochondrial localization of both soluble and particulate enzymes. Rat liver mitochondria were separated into three fractions: inner membrane plus matrix, outer membrane, and a soluble fraction containing enzymes localized between the membranes plus some solublized outer membrane. Monoamine oxidase, kynurenine hydroxylase, and rotenone-insensitive NADH-cytochrome c reductase were found primarily in the outer membrane fraction. Succinate-cytochrome c reductase, succinate dehydrogenase, cytochrome oxidase, β-hydroxybutyrate dehydrogenase, α-ketoglutarate dehydrogenase, lipoamide dehydrogenase, NAD- and NADH-isocitrate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and ornithine transcarbamoylase were found in the inner membrane-matrix fraction. Nucleoside diphosphokinase was found in both the outer membrane and soluble fractions; this suggests a dual localization. Adenylate kinase was found entirely in the soluble fraction and was released at a lower digitonin concentration than was the outer membrane; this suggests that this enzyme is localized between the two membranes. The inner membrane-matrix fraction was separated into inner membrane and matrix by treatment with the nonionic detergent Lubrol, and this separation was used as a basis for calculating the relative protein content of the mitochondrial components. The inner membrane-matrix fraction retained a high degree of morphological and biochemical integrity and exhibited a high respiratory rate and respiratory control when assayed in a sucrose-mannitol medium containing EDTA.  相似文献   

18.
This paper elucidates the effect of different polychlorinated biphenyls (PCBs) on the phospholipase D (PLD) activity in soluble and particulate fractions of rat renal proximal tubular culture cells. Treatment with Aroclor 1248 (a commercial PCB mixture) caused a marked increase in the activity of PLD in intact renal tubular cells. The PLD activity was increased by Aroclor 1248 in the particulate fraction while the enzyme activity was unaffected in the soluble fraction. This work also shows that PCB 153 (2,2',4,4',5,5'-hexachlorobiphenyl, a di-ortho-substituted nonplanar congener) can increase the activity of PLD only in the particulate fraction. The exposure of cell cultures to PCB 77 (3,3',4,4'-tetrachlorobiphenyl, a non-ortho-substituted planar congener) does not alter PLD activity. These results suggest that PCB effects are structure dependent. Therefore, in order to clarify the molecular mechanism of activation of PLD by PCBs, the contents of immunoreactive PLD were examined by immunoblot analysis. Renal tubular cells expressed a PLD protein of 120 kDa corresponding with the PLD1 mammalian isoform in both the particulate and the soluble fraction. Aroclor 1248, PCB 153, and PCB 77 do not induce changes in the levels of PLD protein. These data indicate that PCBs, particularly nonplanar congeners, increase PLD activity. Moreover, these changes could not be demonstrated in the enzyme content in rat renal tubular cell cultures.  相似文献   

19.
An enzyme present in rat liver lysosomes catalyzes the conversion of neutral rabbit liver fructose 1,6-bisphosphatase (Fru-P2ase, EC 3.1.3.11) to a form having maximum activity at pH 9.2. The converting enzyme is partly released when lysosomes are subjected to a single freeze-thaw cycle, but a significant fraction tends to remain with the lysosomal membrane fraction even after repeated freezing and thawing. After repeated freezing and thawing hexosaminidase and cathepsin D are also partly membrane-bound, but cathepsins A, B, and C are completely solubilized. The membrane-bound enzymes, unlike those in intact lysosomes, are not cryptic. The converting enzyme activity is inactivated by phenylmethanesulfonyl fluoride, and is almost completely inactive after exposure to iodoacetic acid or tosylamido-2-phenylethyl and N-α-tosyl lysyl chloromethyl ketones. Unlike cathepsin B, it is not inhibited by leupeptin. Converting enzyme is unstable above pH 6.5, and this property also serves to distinguish it from cathepsins B and D. The results suggest that the converting enzyme is not identical to any of the well-characterized cathepsins.  相似文献   

20.
The enzyme activity synthesizing poly-beta-hydroxybutyrate (PHB) was mainly localized in the PHB-containing particulate fraction of Zoogloea ramigera I-16-M, when it grew flocculatedly in a medium supplemented with glucose. On the other hand, the enzyme activity remained in the soluble fraction when the bacterium grew dispersedly in a glucose-starved medium. The soluble PHB synthase activity became associated with the particulate fraction as PHB synthesis was initiated on the addition of glucose to the dispersed culture. Conversely, the enzyme activity was released from the PHB-containing granules to the soluble fraction when the flocculated culture was kept incubated without supplementing the medium with glucose. PHB synthase was also incorporated into the newly formed PHB fraction when partially purified soluble PHB synthase was incubated with D(-)-beta-hydroxybutyryl CoA in vitro. Although attempts to solubilize the particulate enzyme were unsuccessful, and the soluble enzyme became extremely unstable in advanced stages of purification, both PHB synthases had the same strict substrate specificity for D(-)-beta-hydroxybutyryl CoA, and showed the same pH optimum at 7.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号