首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
甾体C11β—羟基生物转化菌株新月弯孢霉的筛选和鉴定   总被引:3,自引:0,他引:3  
文章对甾体C11β-羟某化生物转化菌株-新月弯孢霉的生长和生物转化特征进行了研究。经过反复筛选,最终选出了一株氧化可的松转化率达30%的最优菌株。文中描述了新月弯孢霉菌体生长过程中,菌体干重与PH的变化情况,并通过正交实验确定了该菌株生长的最适培养基配方。经过研究,对新月弯孢霉菌株的生长和生物转化特性及其进行甾体C11β-羟基化生物转化过程有了初步的了解。  相似文献   

2.
对新月弯孢霉AS3.4381的菌丝体转化16a-甲基Reicbstein's 化合物S21-醋酸酯(I)生成16a-甲基氢化可的松(II)进行了研究。培养24h的菌丝体的11β-羟基化活性最高;乙醇对此羟基化活性的抑制作用明显。当(1)浓度为0.15%,转化72h,产物(II)的重量收率为55.4%。  相似文献   

3.
甾体化合物RSA的11β-羟基化反应   总被引:2,自引:0,他引:2  
原生质体在甾体中的应用起始于Dlugonski在 1984年采用Cunninghamellaelegans转化可的松龙 ( 17α ,2 1 二羟基孕甾 4 烯 3 ,2 0 二酮 )和Hyphodermaroseum转化 6α 氟 可的松龙 16,17 醋酸酯 ( 6α Flu 17α ,2 1 二羟基孕甾 4 烯 3 ,2 0 二酮 16,17 醋酸酯 ) ,发现原生质体具有甾体转化能力[1 ,2 ] 。Sedlaczek进一步采用等重的原生质体和菌丝体进行比较 ,原生质体的羟基化能力较后者提高了 3倍 ,表现出很高的转化能力[3] ,从而引起人们的关注。随后展开了有关原生质…  相似文献   

4.
新月弯孢霉原生质体的形成与11β—羟基化反应   总被引:2,自引:0,他引:2  
王敏  路福平 《微生物学杂志》2000,20(3):35-36,62
研究了新月弯孢霉原生质体形成的条件以及 1 1 β-羟基化反应。将培养 1 6~ 1 8h的菌体 ,以0 .6mol/LKCl作为渗透压稳定剂 ,3 0℃下 ,经过 1 %溶壁酶和 1 %纤维素酶混合酶液 ( pH5.6)酶解 4~ 5h ,原生质体释放量达 6.1 1× 1 0 6/ml,再生率为 1 3 .1 %。原生质体细胞具有 1 1 β -羟基化反应的能力 ,氢化可的松转化率为 4 4.4 4%。  相似文献   

5.
C11β-羟基化是甾体微生物转化中难以实现的一步反应。对甾体C11β-羟基化的机理及部分生理生化问题进行了讨论,对蓝色犁头霉和新月弯孢霉催化转化甾体C11β-羟基化的应用研究特点及其催化转化反应产物氢化可的松的工业生产现状及相关问题进行了评述,并对此技术开发前景进行了预测。  相似文献   

6.
选育到一株对16β-甲基-17α,21-二羟基孕甾-1,4-二烯3,20-二酮(Ⅱa)11α-羟基化活性强的犁头霉A28菌株,并发现底物21乙酰化(Ⅱb)可明显提高11α-羟基化的能力。在适宜的转化条件下,Ⅱb投料浓度0.5%,产物16β-甲基-11α,17α,21-三羟基孕甾-1,4-二烯3,20-二酮(Ⅲ)收率为73%,结构经波谱分析确认。  相似文献   

7.
选育到一株对16β-甲基,17α,21-二羟基孕甾-1,4-二烯-3,20-二酮(Ⅱa)11α-羟基化活性强的犁头霉A28菌株,并发现底物21-乙酰化(Ⅱb)可明显提高11α-羟基化的能力.在适宜的转化条件下,Ⅱb投料浓度0.5%,产物16β-甲基-11α,11α,21-三羟基孕甾-1,4-二烯-3,20-二酮(Ⅲ)收率为73%,结构经波谱分析确认.  相似文献   

8.
9.
10.
微生物降解甾醇侧链转化雄甾-4-烯-3,17-二酮的研究进展   总被引:9,自引:0,他引:9  
杨英  姜绍通   《微生物学通报》2006,33(6):142-145
甾体激素类药物是临床上不可缺少的一类重要药物。雄甾-4-烯-3,17-二酮是甾体激素类药物不可替代的中间体,对机体起着非常重要的调节作用。可以说几乎所有甾体激素类药物都是以其作为起始原料进行生产的。近年来研究表明,通过微生物转化技术,将甾醇边链选择性切除,可得到甾体药物的这一关键中间体.综述了该项技术近期的研究进展,指出该领域工业化生产尚待解决的问题。  相似文献   

11.
为进一步确定黑曲霉菌株TCCC41650的生物转化能力,以雄甾-4-烯-3,17-二酮(Androstenedione)为底物,利用黑曲霉菌株TCCC41650进行催化,产物经纯化、重结晶后,通过单晶衍射鉴定为16β-羟基雄甾-4-烯-3,17-二酮。转化条件为:培养液pH 6.0,乙醇添加量为2%,投料浓度为1‰时,72 h转化率为85.8%。目前甾体研究领域对于C16β-羟基化的微生物转化未见报道,研究结果为C16β-羟基甾体药物的研发奠定了基础。  相似文献   

12.
葡枝根霉NG0305酶催化甾体C11α-羟基化的研究   总被引:3,自引:3,他引:3  
应用本实验室保藏的葡枝根霉Rhizopus stolonifer NG0305对甾体化合物烯睾丙内酯(3-oxo-4,6-diene-Pregna-17-aloha-hydroxy-21-carboxylic acid gama-lactone)进行酶催化C11α-羟基化反应的研究。研究结果表明,菌体培养的碳源供应对菌体所产羟化酶的活力有重要影响。采用葡萄糖和淀粉组合碳源,并加入适量的黑曲霉糖化酶的方式,解决了葡萄糖抑制的问题,并缩短了菌体培养反应时间,得到高羟化转化率。酶转化反应88h后,提取吸附在菌丝球内的产物,应用液相色谱测定,结果表明C11α-羟基化转化率达到了53.0%。  相似文献   

13.
考察了β-环糊精(β-cyclodextrin, CD)对雄甾-4-烯-3,17-二酮(androst-4-ene-3,17-diorle,AD)在水中的溶解度及微生物对其11а羟化反应的影响,结果表明β-环糊精能显著提高底物AD在发酵培养基中的溶解度,增溶效果优于有机溶剂.在底物投料浓度0.2%(w/v)时,与4%无...  相似文献   

14.
甾体化合物具有独特的生理活性,已被广泛应用于抗炎、利尿、免疫、避孕及抗癌等领域。近些年,生物催化与转化在甾体药物中间体合成中发挥的作用日益强大。为了能够合成一些具有潜在价值的新型甾体化合物,以实验室菌种库中保藏的一株Gibberella intermedia C2为研究对象,选取了雄甾烷中一种有广泛用途的化合物4-雄甾烯-3、17-二酮(简称雄烯二酮,AD)为底物进行生物转化。转化液经提取分离,最终获得2个转化产物,经结构鉴定分别为15α-OH-AD和11α,15α-diOH-AD。转化机制研究发现,G.intermedia C2先将底物的15位羟基化生成15α-OHAD,再将其11位羟基化形成双羟基产物。赤霉菌能够特异性、有序地完成对AD的两步羟化反应。此外,通过工艺优化,确定了羟化4AD反应的最适工艺参数如下:发酵培养基的初始pH 6.5,装液量30ml/250ml,底物浓度6.0g/L,转化温度28℃,摇床转速220r/min,转化周期为84h。此时,底物AD的摩尔转化率达到81.5%。  相似文献   

15.
从保藏的200多株菌中筛选出1株高效转化植物甾醇为4-烯-雄甾-3,17-二酮和1,4-二烯-雄甾-3,17-二酮的菌株,并对该菌进行了形态、生理生化的研究。结果发现菌株ST06可以利用多种碳源,可以水解淀粉,但不利用纤微素。用16SrDNA的方法对其进行鉴定,发现与Bacillus属Bacillus amyloiquefaciens的相似性最高,达到99.9%,将该菌株命名为Bacillus amyloiquefaciens ST06。该菌在培养温度30℃,pH7.0,转速220r/min,转化时间7d,底物添加量为0.3%时,ADD与AD的总得率高达40%以上,此时底物转化率高达93.7%。  相似文献   

16.
雄甾-4-烯-3,17-二酮(4AD)是甾体化合物合成过程中的关键中间体,其羟化产物通常具有良好的药理活性或作为工业生产甾体药物的重要中间体。利用粉红单端孢Trichothecium roseum对4AD进行生物转化,从其发酵提取物中共分离鉴定了3个4AD羟基化产物:6β-羟基-雄甾-4-烯-3,17-二酮(6β-OH-4AD,1),14α-羟基-雄甾-4-烯-3,17-二酮(14α-OH-4AD,2),6β,14α-双羟基-雄甾-4-烯-3,17-二酮(6β,14α-di-OH-4AD,3),表明T. roseum对4AD的C-6β位和C-14α位具有较强的羟化能力,其中14α-OH-4AD(2)可作为合成强心甾类化合物毛地黄毒素的重要中间体,6β,14α-di-OH-4AD(3)可作为合成具有抗肿瘤活性的14α-羟基-雄甾-4-烯-3,6,17-三酮的重要中间体。提供了1株能够高效制备活性甾醇中间体14α-OH-4AD和6β,14α-di-OH-4AD的菌株,同时可为研究其他甾醇药物奠定基础。  相似文献   

17.
构建分枝杆菌表达载体pMTac并在分枝杆菌Mycobacterium neoaurum JC-12中加强表达甾醇降解过程中的关键酶3-甾酮-△1-脱氢酶(KSDD)以提高雄甾-1,4-二烯-3,17-二铜(ADD)的产量。将p MF41的启动子pACE替换成tac启动子构建载体pMTac,在分枝杆菌中分别表达报告基因绿色荧光蛋白(GFP)和关键酶KSDD,通过GFP亮度和KSDD酶活验证tac启动子在M.neoaurum JC-12中的效果,并发酵验证加强表达KSDD对产物ADD的影响。荧光显微照片表明两个载体均能在M.neoaurum JC-12表达GFP,但tac启动子的效果比pACE强。酶活测定结果为重组菌M.neoaurum JC-12/pMTac-ksdd破碎细胞上清液中KSDD酶活比原始菌提高了6.53倍,比M.neoaurum JC-12/pMF41-ksdd提高了4.36倍。摇瓶发酵显示重组菌M.neoaurum JC-12/pMTac-ksdd ADD的产量比原始菌提高了22.2%,由4.86 g/L提高到5.94 g/L,而AD的产量由0.92 g/L减少到0.17 g/L,降低了81.5%;与M.neoaurum JC-12/p MF41-ksdd比,ADD产量提高了12.7%,AD降低了71.2%。以20 g/L植物甾醇为底物,5 L发酵罐中重组菌M.neoaurum JC-12/pMTac-ksdd的ADD产量达到10.28 g/L。结果表明,构建的新型表达载体pMTac适用于在M.neoaurum JC-12中加强表达关键酶KSDD,而且在M.neoaurum JC-12中过量表达KSDD有助于ADD产量的提高,为目前报道的发酵法利用新金色分枝杆菌降解植物甾醇合成ADD的最高水平。  相似文献   

18.
19.
3β,20α-羟基甾体脱氢酶(3β,20α-Hydroxysteroid dehydrogenase,3β,20α-HSD)是从胎羊血中分离得到的。分子量为35kD。该酶以NADPH为辅酶,有两种底物。以孕酮为底物时,Km=30.8μmol/L,Vmax=0.7nmol min~(-1)(nmol enzyme)~(-1);以5α-二氢睾酮(5α-Dihydrotestosterone,5α-DHT)为底物时,Km=74μmol/L,Vmax=1.3nmol min~(-1)(nmol enzyme)~(-1)。5α-DHT竞争性抑制20α-还原活性,Ki=102μmol/L。16α-溴代乙酰氧基(16α-Bromo acetoxyprogesterone,16α-BAP)是3β,20α-HSD不可逆竞争性抑制剂,t_(1/2)=75min。对3β和20α还原活性的抑制常数Ki分别为23μmol/L和58μmol/L。  相似文献   

20.
分枝杆菌常被用作甾体药物中间体生产菌种,然而当前人们对其具体的甾醇降解机制仍然不是很清楚。为了获得C20-羟基甾药中间体,文章直接以RS为底物进行了转化,并通过对转化产物进行TLC、HPLC、LS-MS和核磁分析,初步确定分枝杆菌中存在类固醇C20-羟基脱氢酶(1DHC)参与的代谢途径。同时,基于生物信息学和结构生物学,通过序列和结构比对分析,最终从分枝杆菌中鉴定出了一个与类固醇C20-羟基脱氢酶同源性很高的基因。将该基因在大肠杆菌中异源表达,并对其功能活性进行分析,证明该基因所编码的酶和类固醇C20-羟基脱氢酶具有相同的功能活性。文章首次从分枝杆菌中鉴定出一种类固醇C20-羟基脱氢酶,使研究者对分枝杆菌甾醇代谢机制有了更深入的理解,同时也为新型甾药中间体的制备以及分枝杆菌的改造奠定了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号