首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jayaraman S  Gantz DL  Gursky O 《Biochemistry》2008,47(12):3875-3882
High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by providing antioxidants for low-density lipoproteins. Oxidation of HDLs affects their functions via the complex mechanisms that involve multiple protein and lipid modifications. To differentiate between the roles of oxidative modifications in HDL proteins and lipids, we analyzed the effects of selective protein oxidation by hypochlorite (HOCl) on the structure, stability, and remodeling of discoidal HDLs reconstituted from human apolipoproteins (A-I, A-II, or C-I) and phosphatidylcholines. Gel electrophoresis and electron microscopy revealed that, at ambient temperatures, protein oxidation in discoidal complexes promotes their remodeling into larger and smaller particles. Thermal denaturation monitored by far-UV circular dichroism and light scattering in melting and kinetic experiments shows that protein oxidation destabilizes discoidal lipoproteins and accelerates protein unfolding, dissociation, and lipoprotein fusion. This is likely due to the reduced affinity of the protein for lipid resulting from oxidation of Met and aromatic residues in the lipid-binding faces of amphipathic alpha-helices and to apolipoprotein cross-linking into dimers and trimers on the particle surface. We conclude that protein oxidation destabilizes HDL disk assembly and accelerates its remodeling and fusion. This result, which is not limited to model discoidal but also extends to plasma spherical HDL, helps explain the complex effects of oxidation on plasma lipoproteins.  相似文献   

2.
Circulatory lipid transport in animals is mediated to a substantial extent by members of the large lipid transfer (LLT) protein (LLTP) superfamily. These proteins, including apolipoprotein B (apoB), bind lipids and constitute the structural basis for the assembly of lipoproteins. The current analyses of sequence data indicate that LLTPs are unique to animals and that these lipid binding proteins evolved in the earliest multicellular animals. In addition, two novel LLTPs were recognized in insects. Structural and phylogenetic analyses reveal three major families of LLTPs: the apoB-like LLTPs, the vitellogenin-like LLTPs, and the microsomal triglyceride transfer protein (MTP)-like LLTPs, or MTPs. The latter are ubiquitous, whereas the two other families are distributed differentially between animal groups. Besides similarities, remarkable variations are also found among LLTPs in their major lipid-binding sites (i.e., the LLT module as well as the predicted clusters of amphipathic secondary structure): variations such as protein modification and number, size, or occurrence of the clusters. Strikingly, comparative research has also highlighted a multitude of functions for LLTPs in addition to circulatory lipid transport. The integration of LLTP structure, function, and evolution reveals multiple adaptations, which have come about in part upon neofunctionalization of duplicated genes. Moreover, the change, exchange, and expansion of functions illustrate the opportune application of lipid-binding proteins in nature. Accordingly, comparative research exposes the structural and functional adaptations in animal lipid carriers and brings up novel possibilities for the manipulation of lipid transport.  相似文献   

3.
The hemolymph of the fifth instar larvae of the silkworm Bombyx mori contains a group of homologous proteins with a molecular weight of approximately 30 kDa, termed B. mori low molecular weight lipoproteins (Bmlps), which account for about 5% of the total plasma proteins. These so-called "30 K proteins" have been reported to be involved in the innate immune response and transportation of lipid and/or sugar. To elucidate their molecular functions, we determined the crystal structure of a 30 K protein, Bmlp7, at 1.91?. It has two distinct domains: an all-α N-terminal domain (NTD) and an all-β C-terminal domain (CTD) of the β-trefoil fold. Comparative structural analysis indicates that Bmlp7 represents a new family, adding to the 14 families currently identified, of the β-trefoil superfamily. Structural comparison and simulation suggest that the NTD has a putative lipid-binding cavity, whereas the CTD has a potential sugar-binding site. However, we were unable to detect the binding of either lipid or sugar. Therefore, further investigations are needed to characterize the molecular function of this protein.  相似文献   

4.
The role of the kidney in lipid metabolism   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: Cellular uptake of plasma lipids is to a large extent mediated by specific membrane-associated proteins that recognize lipid-protein complexes. In the kidney, the apical surface of proximal tubules has a high capacity for receptor-mediated uptake of filtered lipid-binding plasma proteins. We describe the renal receptor system and its role in lipid metabolism in health and disease, and discuss the general effect of the diseased kidney on lipid metabolism. RECENT FINDINGS: Megalin and cubilin are receptors in the proximal tubules. An accumulating number of lipid-binding and regulating proteins (e.g. albumin, apolipoprotein A-I and leptin) have been identified as ligands, suggesting that their receptors may directly take up lipids in the proximal tubules and indirectly affect plasma and tissue lipid metabolism. Recently, the amnionless protein was shown to be essential for the membrane association and trafficking of cubilin. SUMMARY: The kidney has a high capacity for uptake of lipid-binding proteins and lipid-regulating hormones via the megalin and cubilin/amnionless protein receptors. Although the glomerular filtration barrier prevents access of the large lipoprotein particles to the proximal tubules, the receptors may be exposed to lipids bound to filtered lipid-binding proteins not associated to lipoprotein particles. Renal filtration and receptor-mediated uptake of lipid-binding and lipid-regulating proteins may therefore influence overall lipid metabolism. The pathological mechanisms causing the pronounced atherosclerosis-promoting effect of uremia may involve impairment of this clearance pathway.  相似文献   

5.
Annexin A2, a calcium-, actin-, and lipid-binding protein involved in exocytosis, mediates the formation of lipid microdomains required for the structural and spatial organization of fusion sites at the plasma membrane. To understand how annexin A2 promotes this membrane remodeling, the involvement of cortical actin filaments in lipid domain organization was investigated. 3D electron tomography showed that cortical actin bundled by annexin A2 connected docked secretory granules to the plasma membrane and contributed to the formation of GM1-enriched lipid microdomains at the exocytotic sites in chromaffin cells. When an annexin A2 mutant with impaired actin filament–bundling activity was expressed, the formation of plasma membrane lipid microdomains and the number of exocytotic events were decreased and the fusion kinetics were slower, whereas the pharmacological activation of the intrinsic actin-bundling activity of endogenous annexin A2 had the opposite effects. Thus, annexin A2–induced actin bundling is apparently essential for generating active exocytotic sites.  相似文献   

6.
Erythroid and neuronal spectrin (fodrin) are both known to interact strongly with the aminophospholipids that occur in the inner leaflet of plasma membranes. In erythroid spectrin the positions of the binding sites within the constituent (alphaI and betaI) polypeptide chains have been defined, and also the importance of the lipid interaction in regulating the properties of the membrane. Here we report the locations of the corresponding binding sites in the alphaII and betaII chains that make up the fodrin molecule. Of the 10 lipid-binding repeats in the erythroid spectrin chains 5 are conserved in fodrin; one cluster of 3 consecutive structural repeating units in alphaI erythroid spectrin (repeats 8-10) is displaced by one repeat in alphaII fodrin (repeats 9-11). Fodrin also contains one binding site at the N-terminus of the alphaII chain, not present in the erythroid protein. The regions of the two spectrins containing equivalent lipid-binding sites show a much higher degree of sequence identity than corresponding repeats that do not share this property. The evolutionary conservation of the distribution of a large proportion of strong lipid-binding sites in the polypeptide chains of these two proteins of disparate character argues for a specific function of fodrin-phospholipid interactions in the neuron.  相似文献   

7.
The structure of Locusta migratoria apolipophorin-III consists of a five-helix bundle connected by four short loops. The role of the conformational flexibility of helices and loops on the lipid-binding activity of this apolipoprotein was investigated by disulfide mediated tethering experiments. One disulfide mutant tethering the second and fourth loops (L2-L4), and two disulfide mutants restricting the flexibility of the neighboring alpha-helices 3 and 4 (H3-H4) and 1 and 5 (H1-H5), were studied. The ability of the disulfide mutants to interact with phospholipid vesicles, mixed micelles of phosphatidylcholine and cholate, and in vivo with native spherical lipoprotein particles was studied. The L2-L4 mutant was active with native lipoproteins as well as being able to form discoidal lipoproteins upon incubation with either liposomes or discoidal micelles. The H3-H4 mutant was not able to interact with liposomes or native lipoproteins but interacted with discoidal micelles. The H1-H5 mutant was unable to interact with lipid in any of the three systems. Three conclusions were reached: (1) opening of the helix bundle does not require the separation of loops 2 and 4 as recently proposed by others and (2) alpha-helices 3 and/or 4 are involved in the insertion of apoLp-III in both phospholipid bilayers and monolayers. The conformational flexibility of helices 3 and 4 is required for the lipid-binding activity of apoLp-III. (3) Interaction of helices 1 and/or 5 with the lipid surface is required to the formation of stable lipoprotein complexes of any kind.  相似文献   

8.
The aggregation behaviour and stability in solution of apolipoprotein E (apoE) isolated from human blood plasma very low density lipoproteins were investigated. The equilibrium denaturation of fluorescein-labeled apoE by guanidine-hydrochloride determined by anisotropy and overall intensity of fluorescence, shift of the emission spectrum maximum and gel-chromatographic behaviour was characterized by reversibility, biphasity, apoE concentration dependence and the existence of native structure of the apoE monomer. The contribution of the long-living component to the kinetic dependence of fluorescence anisotropy in the presence of the 6 M denaturant increased with an increase in apoE concentration. The data obtained fit into the following scheme: oligomer (upon aging of the preparation) in equilibrium tetramer in equilibrium native monomer in equilibrium denaturated monomer. The presence in the tetrameric structure of apoE of two domains is postulated; one of those is formed by lipid-binding fragments during aggregation of individual molecules of apoE. Monoclonal antibody 3D12F11 (subclass IgG1) showed a high affinity for the apoE (Kd = 3.5 +/- 0.5 nM) without any effect on the apoprotein binding to heparin-Sepharose and apoE-induced destruction of dipalmitoylphosphatidylcholine liposomes. It is concluded that the 3D12F11 epitope is localized outside heparin- and lipid-binding sites of the apoprotein molecule.  相似文献   

9.
The microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB) belong to the vitellogenin (VTG) family of lipid transfer proteins. MTP is essential for the intracellular assembly and secretion of apoB-containing lipoproteins, the key intravascular lipid transport proteins in vertebrates. We report the predicted three-dimensional structure of the C-terminal lipid binding cavity of MTP, modeled on the crystal structure of the lamprey VTG gene product, lipovitellin. The cavity in MTP resembles those found in the intracellular lipid-binding proteins and bactericidal/permeability-increasing protein. Two conserved helices, designated A and B, at the entrance to the MTP cavity mediate lipid acquisition and binding. Helix A (amino acids 725-736) interacts with membranes in a manner similar to viral fusion peptides. Mutation of helix A blocks the interaction of MTP with phospholipid vesicles containing triglyceride and impairs triglyceride binding. Mutations of helix B (amino acids 781-786) and of N780Y, which causes abetalipoproteinemia, have no impact on the interaction of MTP with phospholipid vesicles but impair triglyceride binding. We propose that insertion of helix A into lipid membranes is necessary for the acquisition of neutral lipids and that helix B is required for their transfer to the lipid binding cavity of MTP.  相似文献   

10.
Apolipophorin III: role model apolipoprotein   总被引:1,自引:0,他引:1  
It has been one-quarter century since the identification of apolipophorin III (apoLp-III) as an important component of insect hemolymph lipid transport processes. Original studies of flight-related lipid transport that led to the discovery of apoLp-III have been followed by detailed studies of its structure and function relations, species distribution as well as its physiological roles beyond lipid transport. The non-exchangeable apoLp-I and -II, which are derived from a common precursor, are structural protein components of the multifunctional lipophorin particle. ApoLp-I/II have been identified as members of a broad lipid-binding protein family based on sequence similarities with their vertebrate counterparts. By contrast, apoLp-III can be found as a lipid-free hemolymph protein that associates with lipophorin during hormone-induced lipid mobilization. Based on structural characterization, apoLp-III belongs to a large family of exchangeable apolipoproteins characterized by segments of amphipathic alpha-helix. The remarkable structural adaptability of apoLp-III can be ascribed to its globular amphipathic alpha-helix bundle conformation wherein hydrophobic lipid-binding regions are stabilized in the absence of lipid by helix-helix interactions. Upon exposure to potential lipid surface-binding sites, the globular helix bundle opens to expose its hydrophobic interior permitting substitution of helix-helix contact in the bundle for helix-lipid interactions. Novel functions of apoLp-III beyond lipid transport have been identified recently. The expanding role of apoLp-III in innate immunity promises to offer exciting research opportunities in the future.  相似文献   

11.
Fang Y  Gursky O  Atkinson D 《Biochemistry》2003,42(45):13260-13268
Apolipoprotein A-I (apoA-I, 243 amino acids) is the major protein of high-density lipoproteins (HDL) that plays an important structural and functional role in lipid transport and metabolism. The central region of apoA-I (residues 60-183) is predicted to contain exclusively amphipathic alpha-helices formed from tandem 22-mer sequence repeats. To analyze the lipid-binding properties of this core domain, four terminally truncated mutants of apoA-I, Delta(1-41), Delta(1-59), Delta(1-41,185-243), and Delta(1-59,185-243), were expressed in baculovirus infected Sf-9 cells. The effects of mutations on the ability of apoA-I to form bilayer disk complexes with dimyristoyl phosphatidylcholine (DMPC) that resemble nascent HDL were analyzed by density gradient ultracentrifugation and electron microscopy (EM). The N-terminal deletion mutants, Delta(1-41) and Delta(1-59), showed altered lipid-binding ability as compared to plasma and wild-type apoA-I, and in the double deletion mutants, Delta(1-41, 185-243) and Delta(1-59, 185-243), the lipid binding was abolished. Thermal unfolding of variant apoA-I/DMPC complexes monitored by circular dichroism (CD) showed hysteresis and a shift in the melting curves by about -12 degrees C upon reduction in the heating rate from 1.0 to 0.067 K/min. This indicates an irreversible kinetically controlled transition with a high activation energy E(a) = 60 +/- 5 kcal/mol. CD and EM studies of the apoA-I/DMPC complexes at different pH demonstrated that changes in the net charge or in the charge distribution on the apoA-I molecule have critical effects on the conformation and lipid-binding ability of the protein.  相似文献   

12.
Nanodiscs are an example of discoidal nanoscale self-assembled lipid/protein particles similar to nascent high-density lipoproteins, which reduce the risk of coronary artery disease. The major protein component of high-density lipoproteins is human apolipoprotein A-I, and the corresponding protein component of Nanodiscs is membrane scaffold protein 1 (MSP1), a 200-residue lipid-binding domain of human apolipoprotein A-I. Here we present magic-angle spinning (MAS) solid-state NMR studies of uniformly (13)C,(15)N-labeled MSP1 in polyethylene glycol precipitated Nanodiscs. Two-dimensional MAS (13)C-(13)C correlation spectra show excellent microscopic order of MSP1 in precipitated Nanodiscs. Secondary isotropic chemical shifts throughout the protein are consistent with a predominantly helical structure. Moreover, the backbone conformations of prolines derived from their (13)C chemical shifts are consistent with the molecular belt model but not the picket fence model of lipid-bound MSP1. Overall comparison of experimental spectra and (13)C chemical shifts predicted from several structural models also favors the belt model. Our study thus supports the belt model of Nanodisc structure and demonstrates the utility of MAS NMR to study the structure of high molecular weight lipid-protein complexes.  相似文献   

13.
Previous studies have shown that the antigenic sites of human plasma high-density apolipoprotein A-II (apoA-II) are separate from their lipid-binding determinants in human high density lipoproteins (HDL). A specific radioimmunoassay has shown that three distinct antigenic sites are located in residues 4-23, 31-46, and 56-77; these studies suggested that an antigenic site might be restricted to residues 60-77 in the 56-77 fragment. To further delineate this site, we have developed a solid phase radioimmunoassay technique using an improved solid support on which selected sequences of peptides were synthesized, deprotected with HF, and the resulting peptidyl-resins tested for their capability of binding purified 125I-anti-apoA-II antibodies. Amino acid analyses and solid phase sequence analyses were performed to verify the sequence of the synthetic peptide on the solid support. Using this technique, 125I-anti-apoA-II antibodies had achieved 50% of maximal binding when residues 61-77 were attached to the solid support. The maximal binding was achieved by the addition of one more residue, Leu60, thus confirming our suggestion that a major antigenic site is located in residues 60-77. The binding to the peptidyl-resin was inhibited by a synthetic fragment corresponding to residues 60-77 indicating that the antibodies were specifically bound to the resin.  相似文献   

14.
Lipid thermal transition patterns of the very low density lipoproteins in native and variously treated egg yolk plasma and extracted total very low density lipoproteins lipids have been recorded by differential scanning calorimetry in the temperature range 220–300 K, after lowering the freeze endotherm of free water in the sample with ethylene glycol. Three distinguishable patterns of lipid endotherms, designated types 1, 2 and 3 were obtained, respectively, from (i) native very low density lipoproteins in egg yolk plasma, (ii) freeze damaged very low density lipoproteins in gelled egg yolk plasma and (iii) extracted total lipids of very low density lipoproteins dispersed in water. Protein-depleted ‘lipid core’ particles of very low density lipoproteins obtained by exhaustive proteolysis of egg yolk plasma gave type 2 lipid transition pattern suggesting similarities in its lipid association with that of the freeze damaged very low density lipoproteins. Freezing the ‘lipid cores’ of very low density lipoproteins led to phase separation and gave type 3 lipid transition pattern of water-dispersed, phase-separated total very low density lipoprotein lipids. Relative heat uptake of native very low density lipoproteins in egg yolk plasma was about 15% lower than the freeze damaged sample or of the extracted total lipids. Treatments which prevented aggregation and gelation of very low density lipoproteins in egg yolk plasma during frozen storage, namely with additives such as glycerol or NaCl, gave subsequent lipid transition pattern intermediate between type 1 and 2, indicating that while very low density lipoprotein aggregation is prevented, additives do not altogether prevent changes in lipid association in these particles.  相似文献   

15.
The structure and the metabolism of plasma lipoproteins are altered in diabetes mellitus. Insulin or oral agent treatments affect the lipoprotein metabolism in addition to improving hyperglycemia. However, it is not clear whether the alterations seen in lipoproteins during treatment are related to the degree of diabetic control or to the mode of diabetic treatment. The effects of insulin or oral agent treatments on the plasma lipoproteins and lipoprotein lipase activator were compared in a strictly defined non-obese, non-insulin dependent diabetic patient. Both treatment groups had similar plasma triglyceride, total cholesterol, low and high density lipoprotein cholesterol, and lipoprotein lipase activator levels. Lipoprotein lipase activator contents of the very low density lipoproteins correlated positively with their triglyceride (r = 0.803 in insulin, r = 0.828 in oral agent treated patients) and protein (r = 0.713 in insulin, r = 0.862 in oral agent treated patients) contents. The findings of this study indicated that plasma lipid levels, very low density lipoprotein compositions, and lipoprotein lipase activator contents were not significantly different in non-obese, non-insulin dependent diabetic patients treated with either oral hypoglycemic agents or insulin.  相似文献   

16.
Surface potential of human plasma lipoproteins was studied by the use of positively charged spin probe. The calculated values of surface potential of high and low density lipoproteins appeared to be -29 +/- 1 and -16 +/- 1 respectively. It was shown that lipid peroxidation process induces an increase of surface potential of both high and low density lipoproteins. Probably, it is connected with the increase of the negative charge density on their surface. This fact can play an important role in pathogenesis of diseases with lipid metabolism and lipid peroxidation level disorders in plasma (atherosclerosis, ischemic heart disease etc.).  相似文献   

17.
ApoE exists as three common isoforms, apoE2, apoE3, and apoE4; apoE2 and apoE3 preferentially bind to high density lipoproteins, whereas apoE4 prefers very low density lipoproteins (VLDL). To understand the molecular basis for the different lipoprotein distributions of these isoforms in human plasma, we examined the lipid-binding properties of the apoE isoforms and some mutants using lipid emulsions. With both large (120 nm) and small (35 nm) emulsion particles, the binding affinity of apoE4 was much higher than that of apoE2 and apoE3, whereas the maximal binding capacities were similar among the three isoforms. The 22-kDa N-terminal fragment of apoE4 displayed a much higher binding capacity than did apoE2 and apoE3. The apoE4(E255A) mutant, which has no electrostatic interaction between Arg61 and Glu255, showed binding behavior similar to that of apoE3, indicating that N- and C-terminal domain interaction in apoE4 is responsible for its high affinity for lipid. In addition, the apoE3(P267A) mutant, which is postulated to contain a long alpha-helix in the C-terminal domain, had significantly decreased binding capacities for both sizes of emulsion particle, suggesting that the apoE4 preference for VLDL is not due to a stabilized long alpha-helical structure. Isothermal titration calorimetry measurements showed that there is no significant difference in thermodynamic parameters for emulsion binding among the apoE isoforms. However, fluorescence measurements of 8-anilino-1-naphthalenesulfonic acid binding to apoE indicated that apoE4 has more exposed hydrophobic surface compared with apoE3 mainly due to the different tertiary organization of the C-terminal domain. The less organized structure in the C-terminal domain of apoE4 leads to the higher affinity for lipid, contributing to its preferential association with VLDL. In fact, we found that apoE4 binds to VLDL with higher affinity compared with apoE3.  相似文献   

18.
Emerging evidence indicates that membrane lipids regulate protein networking by directly interacting with protein-interaction domains (PIDs). As a pilot study to identify and functionally annodate lipid-binding PIDs on a genomic scale, we performed experimental and computational studies of PDZ domains. Characterization of 70 PDZ domains showed that ~40% had submicromolar membrane affinity. Using a computational model built from these data, we predicted the membrane-binding properties of 2,000 PDZ domains from 20 species. The accuracy of the prediction was experimentally validated for 26 PDZ domains. We also subdivided lipid-binding PDZ domains into three classes based on the interplay between membrane- and protein-binding sites. For different classes of PDZ domains, lipid binding regulates their protein interactions by different mechanisms. Functional studies of a PDZ domain protein, rhophilin 2, suggest that all classes of lipid-binding PDZ domains serve as genuine dual-specificity modules regulating protein interactions at the membrane under physiological conditions.  相似文献   

19.
Apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) are known to interact with each other. We evaluated the effect of different lipids on the protein-protein interactions between MTP and apoB100 or its C-terminally truncated forms. Negatively charged lipids decreased protein-protein interactions between apoB and MTP. In contrast, zwitterionic phospholipids enhanced (2-4-fold) the binding of apoB100 to MTP by increasing affinity (1.5-3-fold) between these proteins without affecting the number of binding sites. Similarly, phospholipids augmented (1.5-4-fold) the binding of various C-terminally truncated apoB peptides to MTP. The increased binding was greater for apoB peptides containing lipid-binding domains, such as apoB28 and apoB42. Surprisingly, preincubation of apoB28 with lipid vesicles had no effect on MTP binding. In contrast, incubation of MTP with lipid vesicles resulted in a stable association of MTP with vesicles, and MTP-lipid vesicles bound better (5-fold increase) to LDL than did lipid-free MTP. To determine whether MTP exists stably associated with lipids in cells, microsomal contents from COS cells expressing MTP, HepG2 cells, and mouse liver were ultracentrifuged, and MTP was visualized in different density fractions. MTP was found associated and unassociated with lipids. In contrast, apoB17 and apoB:270-570 were present unassociated with lipids in COS cells. These studies show that the binding of MTP to lipids results in increased affinity for apoB and that stable MTP-lipid complexes exist in the lumen of the endoplasmic reticulum. Protein-protein interactions between apoB and MTP may juxtapose lipids associated with MTP to lipid-binding domains of apoB and facilitate hydrophobic interactions leading to enhance affinity. We speculate that MTP-lipid complexes may serve as nuclei to form "primordial lipoproteins" and may also play a role in the bulk addition of lipids during the "core expansion" of these lipoproteins.  相似文献   

20.
Mammalian sperm preservation in extenders containing egg yolk (EY) and/or milk has been used for over half a century. However, the mechanism by which EY or milk protects sperm during storage remains elusive. Studies conducted over the past two decades in our laboratory have revealed that a family of lipid-binding proteins (BSP proteins) present in bull seminal plasma is detrimental to sperm preservation since these proteins induce cholesterol and phospholipid removal from the sperm membrane. Interestingly, these detrimental factors of seminal plasma interact with the low-density lipoproteins (LDL) present in EY. This interaction minimizes lipid removal from the sperm membrane, which positively influences sperm storage in liquid or frozen states. Based on several lines of evidence, we suggest that the sequestration of BSP proteins by LDL (BSP proteins: lipoprotein interaction) is the major mechanism of sperm protection by EY. Skimmed milk, which is devoid of lipoproteins, also protects sperm during storage. Several studies indicate that the active components involved in sperm protection by milk are casein micelles. Thus, it appears that the mechanism by which milk protects sperm involves a BSP protein: casein micelle interaction. In view of these new insights, novel strategies have been suggested to improve the efficiency of semen preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号