首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pool size of dATP and dTTP in human lymphocytes was studied in untreated and PHA-treated cells. Different methods of extracting the cellular content of dATP and dTTP have been investigated and extraction with 60% methanol was preferred. The pool size of dATP and dTTP in non-stimulated lymphocytes was about 0.2 and 0.05 pmoles/106 cells, respectively. After treatment with PHA for about 50 h the dATP and dTTP pools reached peak values representing increases in the pools of 20 and 170 fold, respectively. The variation in the pool sizes during transformation was paralleled by the variation of the rate of incorporation of labeled deoxy-thymidine into cellular DNA.  相似文献   

2.
The incorporation of uracil into and excision from DNA were studied in vitro using lysates on cellophane discs made from Escherichia coli strains with defects in the enzymes dUTPase (dut) and uracil-DNA glycosylase (ung).Results with dut ung lysates indicate that dUTP is competitively incorporated with dTTP at the replication fork. Such incorporation is not due to DNA polymerase I. There is a mild discrimination (2.5-fold) against incorporation of dUTP versus dTTP. These data, together with in vivo uracil incorporation data (Tye et al., 1978) permit a rough estimate of the pool of dUTP in vivo (~0.5% of the dTTP pool).These in vitro data indicate that uracil-DNA glycosylase is the initial step in at least 90% of uracil excision events. However, in a strain defective in uracil-DNA glycosylase (ung-1), uracil-containing DNA is still more subject to single-strand scission than non-uracil-containing DNA, albeit at a rate at least tenfold less than in an ung+ strain.A number of qualitative statements may also be made about different steps in uracil incorporation and subsequent excision and repair events. When high levels of dUTP are added in vitro, a dut ung+ strain has a higher steady-state level of uracil in newly synthesized DNA than does an isogenic dut+ ung strain. Thus the dUTPase in these lysates has a higher capacity to be overloaded than does the excision system (i.e. uracil DNA glycosylase). However, the DNA sealing system (presumably DNA polymerase I and DNA ligase) apparently can handle all single-strand interruptions being introduced by uracil excision at the maximal rate, at least so that DNA synthesis can continue.  相似文献   

3.
Gene 1.2 protein of bacteriophage T7. Effect on deoxyribonucleotide pools   总被引:8,自引:0,他引:8  
The gene 1.2 protein of bacteriophage T7, a protein required for phage T7 growth on Escherichia coli optA1 strains, has been purified to apparent homogeneity and shown to restore DNA packaging activity of extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants (Myers, J. A., Beauchamp, B. B., White, J. H., and Richardson, C. C. (1987) J. Biol. Chem. 262, 5280-5287). After infection of E. coli optA1 by T7 gene 1.2 mutant phage, under conditions where phage DNA synthesis is blocked, the intracellular pools of dATP, dTTP, and dCTP increase 10-40-fold, similar to the increase observed in an infection with wild-type T7. However, the pool of dGTP remains unchanged in the mutant-infected cells as opposed to a 200-fold increase in the wild-type phage-infected cells. Uninfected E. coli optA+ strains contain severalfold higher levels of dGTP compared to E. coli optA1 cells. In agreement with this observation, dGTP can fully substitute for purified gene 1.2 protein in restoring DNA packaging activity to extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants. dGMP or polymers containing deoxyguanosine can also restore packaging activity while dGDP is considerably less effective. dATP, dTTP, dCTP, and ribonucleotides have no significant effect. The addition of dGTP or dGMP to packaging extracts restores DNA synthesis. Gene 1.2 protein elevates the level of dGTP in these packaging extracts and restores DNA synthesis, thus suggesting that depletion of a guanine deoxynucleotide pool in E. coli optA1 cells infected with T7 gene 1.2 mutants may account for the observed defects.  相似文献   

4.
The infection of Pseudomonas acidovorans with bacteriophage phi W-14 leads to the gradual disappearance of dTTP from the cells and to the appearance of hydroxymethy dUTP (hmdUTP). Infected-cell contain dUMP hydroxymethylase and activities converting hmdUMP to humdUDP and hmdUTP. Hydroxymethylase appears immediately after infection, reaching a maximum 20 min later. Thymidylate synthase activity decreases to less than 10% of the preinfection level during the initial 40 min after infection. Newly replicated DNA contains 2 to 3% hydroxymethyluracil. Although uracil is released from newly replicated DNA by acid hydrolysis, uracil is not incorporated as such into phi W-14 DNA, and dUTP is not present in the acid-soluble pool of infected cells. It is concluded that the thymine and alpha-putrescinylthymine in phi W-14 DNA are formed from hydroxymethyluracil at the polynucleotide level and that an intermediate in one or both of these conversions is degraded to uracil by acid hydrolysis. The modification of hydroxymethyluracil is coupled tightly to replication.  相似文献   

5.
Summary The labelling of nucleic acids of growing cells of the blue-green algae Anacystis nidulans and Synechocystis aquatilis by radioactive precursors has been studies. A. nidulans cells most actively incorporate radioactivity from [2-14C]uracil into both RNA and DNA, while S. aquatilis cells incorporate most effectively [2-14C]uracil and [2-14C]thymine.Deoxyadenosine does not affect incorporation of label from [2-14C]thymidine into DNA, but weakly inhibits [2-14C]thymine incorporation into both nucleic acids and significantly suppresses the incorporation of [2-14C]uracil.The radioactivity from [2-14C]uracil and [2-14C]thymine is found in RNA uracil and cytosine and DNA thymine and cytosine. The radioactivity of [2-14C]thymidine is incorporated into DNA thymine and cytosine. These results and data of comparative studies of nucleic acid labelling by [2-14C]thymine and [5-methyl-14C]thymine suggest that the incorporation of thymine and thymidine into nucleic acids of A. nidulans and S. aquatilis is accompanied by demethylation of these precursors. In this respect blue-green algae resemble fungi and certain green algae.  相似文献   

6.
7.
Increase in dATP pool in aphidicolin-resistant mutants of mouse FM3A cells   总被引:2,自引:0,他引:2  
Mutants that were resistant to aphidicolin were isolated from mutagenized mouse FM3A cells at a frequency of about 10?6. Resistance to aphidicolin in these mutants was not due to an effect on [3H]thymidine incorporation into DNA, DNA synthesis in permeabilized cells, or DNA polymerase α.All the mutants showed a greatly increased dATP pool and decreased ability to incorporate [3H]deoxycytidine into DNA. They also showed cross-resistance to both 1-β-D-arabinofuranosyladenine and 1-β-D-arabinofuranosylcytosine.These results indicate that an enzyme involved in production of dATP or its regulation is altered in these mutants. It is suggested that dATP competes with aphidocolin at its killing site or that dATP reverses the effect of aphidicolin by some unknown mechanism invivo.  相似文献   

8.
The incorporation of 3H-labeled deoxyadenosine and deoxyguanosine into nucleic acids by cultured Novikoff rat hepatoma cells is about 80% into RNA and 20% into DNA. The pathways of incorporation have been elucidated in studies with whole cells and cell-free extracts. Deoxyadenosine is very rapidly deaminated to deoxyinosine. Most of the deoxyinosine formed by whole cells is transported out of the cells and accumulates in the medium. A portion of the deoxyinosine, and deoxyguanosine are phosphorolyzed by purine nucleoside phosphorylase to hypoxanthine and guanine, respectively. The latter are subsequently converted by hypoxanthine-guanine phosphoribosyl transferase to IMP and GMP, respectively. Incorporation of the purine deoxyribonucleosides into DNA is mainly via this pathway and the subsequent reduction of ADP and GDP by ribonucleoside reductase, although a small proportion of the deoxyadenosine and deoxyguanosine taken up by the cells seems to be directly phosphorylated to dAMP and dGMP, respectively. Deoxyguanosine is incorporated only into guanine residues of RNA and DNA. Deoxyadenosine is also mainly incorporated into guanine residues of RNA and DNA, although the radioactivity of deoxyadenosine in the acid-soluble pool is almost exclusively associated with ATP. A similar labeling pattern is observed with labeled deoxyinosine, inosine or hypoxanthine. The pyrimidine deoxyribonucleosides, on the other hand, are specific precursors for their respective bases in DNA. Hydroxyurea inhibits the incorporation of all deoxyribonucleosides into DNA. Results from pulse-chase experiments indicate that the inhibition of DNA synthesis is prevented by the presence of high concentrations of deoxyadenosine plus deoxyguanosine in the medium. Either purine deoxyribonucleoside alone or deoxycytidine, hypoxanthine or inosine alone or in combination with deoxyadenosine or deoxyguanosine are ineffective. The results are consistent with the conclusion that the inhibition of DNA synthesis is due to a depletion of the dATP and dGTP pools as a result of the hydroxyurea treatment. On the other hand, hydroxyurea causes an increased incorporation of thymidine and deoxycytidine into the dTTP and dCTP pools, respectively. Evidence is presented to indicate that this effect of hydroxyurea is due to an increased synthesis of dTTP and dCTP rather than to an inhibition of their turnover.  相似文献   

9.
Inhibition of protein synthesis by cycloheximide blocks DNA replication in many eukaryotic cells. To test whether this effect was mediated through enzymes furnishing DNA precursors, pool sizes of deoxyribonucleoside triphosphates were measured following cycloheximide treatment in the synchronous mitotic cycle of Physarum. It was found that cycloheximide either did not affect the pool size of DNA precursors (dATP and dGTP) or it led to a pool expansion (dCTP and dTTP). It is concluded that the arrest of DNA replication by inhibitors of protein synthesis is not due to a lack of precursors.  相似文献   

10.
Thymidylate synthase-negative mutants of mouse FM3A cells were transformed to thymidine prototrophs by human DNA. The stable transformants had only human thymidylate synthase and segments of human DNA. They grew normally but had unusually high levels of the human enzyme. In two transformants examined, however, neither was the dTTP pool elevated nor the dCTP pool decreased. DNA synthesis in permeabilized cells of a transformant was more efficient than that in the wild type with dATP, dGTP, dCTP, and dUMP as substrates, but this was not so when dUMP was replaced by dTTP. Unlike the mouse enzyme, the human enzyme in the transformants did not co-sediment with DNA polymerase alpha and thymidine kinase in a sucrose gradient, suggesting that the human enzyme is not incorporated into a multienzyme complex for DNA replication. The high levels of the human enzyme in the transformants were suppressed to various degrees by fusion with a wild type mouse line. No active hybrid dimer enzyme was found between the human and mouse enzymes, which each consist of two identical subunits. Thus, the human enzyme in the transformants seems to behave differently from the mouse enzyme and its overproduction seems to be necessary for supporting the normal growth of the transformants.  相似文献   

11.
Despite the fact that mature SP10c DNA contains dTMP, the acid-soluble fraction of infected cells contained no dTTP during the interval of phage replication. However, infected cells contained normal cellular levels of dATP, dGTP, and dCTP. Upon infection of deoxythymidine-starved Bacillus subtilis M160 (a deoxythymidine-requiring mutant of B. subtilis W23), mature phage DNA with a normal dTMP content was made. SP10c codes for an enzyme that seems to catalyze the tetrahydrofolate-dependent transfer of 1-carbon fragments to the 5 position of dUMP. The transfer of 1-carbon fragments is not accompanied by oxidation of tetrahydrofolage to dihydrofolate, implying that the enzyme in question is not a dTMP synthetase. It is proposed that dTMP in mature SP10c DNA is derived by the postreplicational modification of some other nucleotide and not by the direct incorporation of dTTP into DNA.  相似文献   

12.
The deoxyribonucleotide triphosphohydrolase SAMHD1 restricts lentiviral infection by depleting the dNTPs required for viral DNA synthesis. In cultured human fibroblasts SAMHD1 is expressed maximally during quiescence preventing accumulation of dNTPs outside S phase. siRNA silencing of SAMHD1 increases dNTP pools, stops cycling human cells in G1, and blocks DNA replication. Surprisingly, knock-out of the mouse gene does not affect the well being of the animals. dNTPs are both substrates and allosteric effectors for SAMHD1. In the crystal structure each subunit of the homotetrameric protein contains one substrate-binding site and two nonidentical effector-binding sites, site 1 binding dGTP, site 2 dGTP or dATP. Here we compare allosteric properties of pure recombinant human and mouse SAMHD1. Both enzymes are activated 3–4-fold by allosteric effectors. We propose that in quiescent cells where SAMHD1 is maximally expressed GTP binds to site 1 with very high affinity, stabilizing site 2 of the tetrameric structure. Any canonical dNTP can bind to site 2 and activate SAMHD1, but in cells only dATP or dTTP are present at sufficient concentrations. The apparent Km for dATP at site 2 is ∼10 μm for mouse and 1 μm for human SAMHD1, for dTTP the corresponding values are 50 and 2 μm. Tetrameric SAMHD1 is activated for the hydrolysis of any dNTP only after binding of a dNTP to site 2. The lower Km constants for human SAMHD1 induce activation at lower cellular concentrations of dNTPs thereby limiting the size of dNTP pools more efficiently in quiescent human cells.  相似文献   

13.
We have shown that DNA polymerase beta, the only nuclear DNA polymerase present in adult neurons, cannot discriminate between dTTP and dUTP, having the same Km for both substrates. This fact suggests that during reparative DNA synthesis, in adult neurons, dUMP residues can be incorporated into DNA. Since uracil DNA-glycosylase functions to prevent the mutagenic effects of uracil in DNA coming as a product of deamination of cytosine residues or as a result of dUMP incorporation by DNA polymerase, we have studied the perinatal activity of uracil DNA-glycosylase and of 2 enzymes (nucleoside diphosphokinase and dUTPase) involved in dUTP metabolism. Our data indicate that during neuronal development there is a rapid decrease in uracil DNA-glycosylase which could impair the removal of uracil present in DNA in adult neurons. However, misincorporation of dUMP into DNA might be kept to a low frequency by the action of dUTPase present at all developmental stages.  相似文献   

14.
The DNA polymerase induced by Bacillus subtilis bacteriophage PBS2 (whose DNA contains uracil instead of thymine) has been purified and characterized for its specificity. The enzyme requires a high ionic strength for optimal stability and activity and is sensitive to various anions and to sulfhdryl reagents. Both dUTP and dTTP are incorporated efficiently as substrates and are competitive inhibitors at the same active site. The apparent Km and Ki values are about 6 micrometers for dTTP and 15 micrometers for dUTP, when denatured, uracil-containing B. subtilis or salmon sperm DNA (3.9 micrometers for dUTP and 2.6 micrometers for dTTP). The PBS2 enzyme works best on denatured DNA, on double-stranded DNA activated by DNase to produce gaps, or on primed homopolymeric DNA. Using denatured DNA preparations of average molecular weight 6.2 million, the apparent Km values are 270 micrograms/ml for B. subtilis DNA and 360 micrograms/ml for PBS2 DNA; the Vmax value for denatured PBS2 DNA containing uracil is 7-fold greater than that for denatured B. subtilis DNA containing thymine. However, lower molecular weight DNAs have 10-fold lower apparent Km values and show similar Vmax values for both B. subtilis and PBS2 DNAs. Thus, the PBS2 phage-induced DNA polymerase (which likely replicates only uracil-containing phage DNA using dUTP in vivo) has little selectivity for uracil- versus thymine-containing deoxyribonucleotides or DNA in vitro.  相似文献   

15.
The metabolic fate of 1-β-d -arabinofuranosyl-5-[(E)-2-bromovinyl]uracil (BV-araU) in herpes simplex virus type 1-infected cells was studied using tritium-labeled BV-araU. [3H]BV-araU was selectively taken-up by infected cells. Approximately 10% of the total uptake of [3H]BV-araU was recovered from the acid-insoluble fraction at any time post-infection. Both cellular uptake of [3H]BV-araU and its incorporation into the acid-insoluble fraction increased with increasing incubation time through 8 hr post-infection. Uptake of [3H]BV-araU and its incorporation into the acid-insoluble fraction also increased proportionally to the duration of exposure to [3H]BV-araU. An alkaline sucrose gradient sedimentation analysis revealed that the radioactive DNA obtained from cells pulse-labeled with [3H]BV-araU were small DNA fragments which remained at the top following a chasing period in isotope-free medium, whereas that pulse-labeled with [3H]thymidine was chased to a fraction of high molecular weight DNA. Nuclease P1 digestion reduced 99% of the [3H]BV-araU-labeled DNA extracted from infected cells to a low molecular weight. Following digestion of [3H]BV-araU-labeled DNA with micrococcal nuclease and spleen exonuclease, all of the radioactivity was recovered as [3H]BV-araU 3′-monophosphate. Thus, BV-araU strongly inhibits the elongation of viral DNA strands as demonstrated by the alkaline sucrose gradient sedimentation analysis, whereas at least a portion of the [3H]BV-araU is incorporated inside viral DNA strands in infected cells.  相似文献   

16.
The rate of synthesis of cellular DNA is stimulated in stationary phase mouse embryo cells infected with polyoma virus. Nascent cellular DNA strands pulselabeled with [3H]thymidine in the presence of replicating viral DNA are smaller, by an average of 2·1 × 107 daltons, than DNA made under similar conditions in uninfected cells. Previous work (Cheevers et al., 1972) has indicated that this observation is the consequence of activation in infected cells of cellular DNA initiation sites not in operation during a similar pulse-labeling interval in uninfected cells. Similar results were obtained using cells infected with the temperature-sensitive Ts-a mutant of polyoma at 32 °C, which permits both the induction of cellular DNA synthesis and replication of viral DNA. However, at a temperature of 39 °C, which permits only the induction of cellular DNA replication in Ts-a-infected cells, the size of newly synthesized DNA is not different from that of uninfected cells. Similarly, in rat embryo cells abortively infected with polyoma (wild-type), stimulation of cellular DNA synthesis occurs but viral DNA replication is restricted, and no difference is apparent in the size of newly formed DNA as compared to uninfected cells. These results are interpreted to mean that in productively infected cells, polyoma DNA and some regions of the host genome may be co-ordinately replicated.  相似文献   

17.
Requirements for bacteriophage T4 DNA synthesis have been investigated in situ by use of plasmolyzed infected cells. When such cells are incubated with dATP, dGTP, dTTP, hydroxymethyldeoxycytidine triphosphate, and rATP, significant semiconservative synthesis of DNA occurs. This DNA hybridizes preferentially to T4 DNA. T4 amber mutants defective in genes 44 and 45, which display a DNA-negative phenotype in vivo, are unable to synthesize DNA in situ. By contrast, T4 amber mutants bearing lesions in genes 41 and 62, which also display a DNA-negative phenotype in vivo, do allow DNA synthesis in situ, the extent of synthesis being 80 to 90% that of the wild-type synthesis under the same conditions. Cells infected with gene 42 mutants (dCMP hydroxymethylase) are unable to synthesize DNA in situ even though exogenous nucleotides are provided. Also one gene 1 mutant (deoxynucleotide kinase) was found to synthesize DNA in situ, but two other gene 1 mutants did not. These results point to possible roles of hydroxymethylase and kinase in DNA metabolism, in addition to provision of essential DNA precursors, as has recently been suggested by Wovcha et al. (1973).  相似文献   

18.
We investigated deoxyribonucleoside triphosphate metabolism in S49 mouse T-lymphoma cells synchronized in different phases of the cell cycle. S49 wild-type cultures enriched for G1 phase cells by exposure to dibutyryl cyclic AMP (Bt2cAMP) for 24 h had lower dCTP and dTTP pools but equivalent or increased pools of dATP and dGTP when compared with exponentially growing wild-type cells. Release from Bt2cAMP arrest resulted in a maximum enrichment of S phase occurring 24 h after removal of the Bt2cAMP, and was accompanied by an increase in dCTP and dTTP levels that persisted in colcemid-treated (G2/M phase enriched) cultures. Ribonucleotide reductase activity in permeabilized cells was low in G1 arrested cells, increased in S phase enriched cultures and further increased in G2/M enriched cultures. In cell lines heterozygous for mutations in the allosteric binding sites on the M1 subunit of ribonucleotide reductase, the deoxyribonucleotide pools in S phase enriched cultures were larger than in wild-type S49 cells, suggesting that feedback inhibition of ribonucleotide reductase is an important mechanism limiting the size of deoxyribonucleoside triphosphate pools. The M1 and M2 subunits of ribonucleotide reductase from wild-type S49 cells were identified on two-dimensional polyacrylamide gels, but showed no significant change in intensity during the cell cycle. These data are consistent with allosteric inhibition of ribonucleotide reductase during the G1 phase of the cycle and release of this inhibition during S phase. They suggest that the increase in ribonucleotide reductase activity observed in permeabilized S phase-enriched cultures may not be the result of increased synthesis of either the M1 or M2 subunit of the enzyme.  相似文献   

19.
The deoxyribonucleoside triphosphate (dNTP) pools that support the replication of mitochondrial DNA are physically separated from the rest of the cell by the double membrane of the mitochondria. Perturbed homeostasis of mitochondrial dNTP pools is associated with a set of severe diseases collectively termed mitochondrial DNA depletion syndromes. The degree of interaction of the mitochondrial dNTP pools with the corresponding dNTP pools in the cytoplasm is currently not clear. We reviewed the literature on previously reported simultaneous measurements of mitochondrial and cytoplasmic deoxyribonucleoside triphosphate pools to investigate and quantify the extent of the influence of the cytoplasmic nucleotide metabolism on mitochondrial dNTP pools. We converted the reported measurements to concentrations creating a catalog of paired mitochondrial and cytoplasmic dNTP concentration measurements. Over experiments from multiple laboratories, dNTP concentrations in the mitochondria are highly correlated with dNTP concentrations in the cytoplasm in normal cells in culture (Pearson R = 0.79, p = 3 × 10?7) but not in transformed cells. For dTTP and dATP there was a strong linear relationship between the cytoplasmic and mitochondrial concentrations in normal cells. From this linear model we hypothesize that the salvage pathway within the mitochondrion is only capable of forming a concentration of approximately 2 μM of dTTP and dATP, and that higher concentrations require transport of deoxyribonucleotides from the cytoplasm.  相似文献   

20.
Seven different tissue culture cells have been cultured with and without mycoplasma (M. hyorhinis) in the presence of various precursors of RNA. Total cellular RNA was isolated and analysed by electrophoresis on polyacrylamide gels. The results obtained with mycoplasma-infected cells can be summarized as follows:
1. 1. When cells are labelled with [8-3H]guanosine or [5-3H]uridine there is some incorporation into host cell 28S and 18S rRNA, but it is less than into mycoplasma 23S and 16S rRNA. [8-3H]guanosine or [5-3H]uridine are also incorporated into host cell and mycoplasma tRNA and mycoplasma 4.7S RNA, but the incorporation into host cell 5S rRNA and low molecular weight RNA components (LMW RNA) is reduced.
2. 2. [5-3H]uracil is not incorporated into host cell RNA but into mycoplasma tRNA, 4.7S RNA, a mycoplasma low molecular weight RNA component M1 and 23S and 16S rRNA.
3. 3. [3H]methyl groups are incorporated into mycoplasma tRNA, 23S and 16S rRNA, but not into host cell 28S, 18S, 5S rRNA nor into mycoplasma 4.7S RNA.
4. 4. With [32P]orthophosphate or [3H]adenosine as precursors, the labelling is primarily in the host RNA.
Mycoplasma infection influences the labelling of RNA primarily by an effect on the utilization of the exogenously added radioactive RNA precursors, since the generation time of mycoplasma infected cells is about the same as that of uninfected cells. Mycoplasma infection may completely prevent the identification of LMW RNA components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号