首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The flow of the nutrient solution stimulates significantly the growth of maize plants and enhances the absorption of nitrogen, potassium, and phosphorus. Especially the content of phosphorus in the shoots and in the roots is significantly increased, but its incorporation into organic compounds is considerably decreased. The plants grown, in flowing nutrient solutions have an altered distribution of iron with a higher amount of it remaining in the roots. In the shoots there is an increase in the P/Fe ratio, the ratio between ions changes in all parts of the plants in disfavour of N, K, and Fe, the production of dry matter is higher and the synthesis of chlorophyll is inhibited.  相似文献   

2.
Summary A greenhouse experiment was conducted to study the effect of phosphorus and zinc application, in three lowland alluvial rice soils (Haplustalf) on the growth of rice and the concentration of phosphorus, zinc, copper, iron and manganese in shoots and roots. The results showed that application of phosphorus and zinc significantly increased the dry matter yield of shoots, grains and roots. Application of phosphorus caused a decrease in the concentration of zinc, copper, iron and manganese both in shoots and roots. Application of zinc also similarly lowered the concentration of phosphorus, copper and iron, but increased that of manganese in shoots and roots. The decrease in the concentration of the elements in the shoots was not due to dilution effect or to the reduced rate of translocation of the elements from the roots to tops. This has been attributed more to the changes in the availability of the elements in soil resulting from the application of phosphorus and zinc.  相似文献   

3.
Zhang  Xike  Zhang  Fusuo  Mao  Daru 《Plant and Soil》1998,202(1):33-39
This solution culture study examined the effect of the deposition of iron plaque on zinc uptake by Fe-deficient rice plants. Different amounts of iron plaque were induced by adding Fe(OH)3 at 0, 10, 20, 30, and 50 mg Fe/L in the nutrient solution. After 24 h of growth, the amount of iron plaque was correlated positively with the Fe(OH)3 addition to the nutrient solution. Increasing iron plaque up to 12.1 g/kg root dry weight increased zinc concentration in shoots by 42% compared to that at 0.16 g/kg root dry weight. Increasing the amount of iron plaque further decreased zinc concentration. When the amounts of iron plaque reached 24.9 g/kg root dry weight, zinc concentration in shoots was lower than that in shoots without iron plaque, implying that the plaque became a barrier for zinc uptake. While rice plants were pre-cultured in –Fe and +Fe nutrient solution in order to produce the Fe-deficient and Fe-sufficient plants and then Fe(OH)3 was added at 20, 30, and 50 mg Fe/L in nutrient solution, zinc concentrations in shoots of Fe-deficient plants were 54, 48, and 43 mg/kg, respectively, in contrast to 32, 35, and 40 mg/kg zinc in shoots of Fe-sufficient rice plants. Furthermore, Fe(OH)3 addition at 20 mg Fe/L and increasing zinc concentration from 0.065 to 0.65 mg Zn/L in nutrient solution increased zinc uptake more in Fe-deficient plants than in Fe-sufficient plant. The results suggested that root exudates of Fe-deficient plants, especially phytosiderophores, could enhance zinc uptake by rice plants with iron plaque up to a particular amount of Fe.  相似文献   

4.
Experiments were done to study the effects of nitrite nitrogen on nutrient absorption and organic acid content of tomatoes (Keystone) grown in sand culture. The effects of root aeration, magnesium and iron supply on the symptoms of nitrite toxicity were also studied. Nutrient solutions were standardised to pH 4.5 and contained from 0–250 ppm nitrite nitrogen. Increasing the concentration of nitrite nitrogen decreased dry matter yields, total acidity, the concentration of nitrogen, phosphorus and potassium in tomato plants, and increased the chlorosis of leaves and the lignification of roots. Shortage of iron, magnesium, and poor root aeration caused toxicity symptoms to appear at a smaller concentration of nitrite nitrogen and increased the severity of the symptoms.  相似文献   

5.
The highest shoot dry matter production by barley crop was recorded in the highest soil moisture level when no potassium was applied. But in lower soil moisture levels the potassium application showed response. In these soils the potassium use efficiency of the crop was found to increase with increasing soil moisture levels, but to decrease with the application of potassium. As these soils contain a lot of micaceous minearals a considerable amount of potassium is released during crop growth if sufficient soil moisture is provided. In addition to the released potassium, potassium applied through fertilizers reduces yield.  相似文献   

6.
Summary The effects of increasing amount of nitrate nitrogen on the growth, dry matter production, ionic balance and the appearance of iron chlorosis in two soybean cultivars were studied. More nitrogen increased the dry matter production of the Fe-efficient cultivar Hawkeye and decreased that of the Fe-inefficient cultivar T-203. The plants of Hawkeye showed no iron deficiency symptoms whereas all the plants of the Fe-inefficient cultivar T-203 developed Fe deficiency after about one week following emergence. The degree of chlorosis in the cultivar T-203 was more pronounced as the amount of nitrate applied increased.Deceased  相似文献   

7.
Effects of Fe-EDDHA (Sequestrene 138), Fe-polyflavonoid (Rayplex), and an experimental iron lignosulfonate on dry matter yields, Fe content, and plant chlorosis of grain sorghum were studied under controlled conditions, using a normal and an Fe-deficient soil (DTPA extract). Application rates of 20, 40, and 80 ppm Fe were employed. Dry matter yields increased due to Fe applications. The lignosulfonate (Fe-LS) produced maximum dry matter yields followed by Fe-EDDHA and the polyflavonoid (Fe-PF) material. At the 80 ppm rate Fe-EDDHA and Fe-PF produced moderate and slight toxic effects, respectively. No toxic effect was noted with the Fe-LS material. Fe-EDDHA was found to be the most effective for correcting iron chlorosis, while the other two sources were similar in this respect. Except for the Fe-LS applied to the normal soil, all other treatments increased Fe content of plant shoots. In the Fe-deficient soil, Fe application lowered the Ca, Mg, Zn, and Mn concentrations in the plants. In the case of the normal soil, concentrations of these elements increased at the 20 ppm rate and underwent no further changes with higher rates. Treatments did not influence K and P concentrations of plants.Additional index words: Micronutrients, Iron compounds.  相似文献   

8.
By comparing maize plants cultivated in standing nutrient solution with those from solutions flowing at different flow rates it has been established that absorption of nitrogen, potassium and especially of phosphorus was increased owing to the flow. There was likewise a relative rise in the distribution of nutrients to the overground parts of the plants. The content expressed per unit dry matter was increased only in the case of phosphorus; with nitrogen and potassium it was slightly lower than in the standing solution. Increasing amounts of iron were required under the conditions of flowing nutrient solutions to prevent chlorosis of the plants. The production of dry matter,NAR andRGR was also increased because of the flow. The flow considerably changed the habitus of the primary roots of the maize plants. The roots were longer, thinner and on the whole they contained relatively less dry matter (RWR). The lengthening of the roots is explained as a response to stimulation by the solution flow—the rheotropism.  相似文献   

9.
The influence of P on N2 fixation and dry matter production of young pea ( Pisum sativum L. cv. Bodil) plants grown in a soil-sand mixture was investigated in growth cabinet experiments. Nodule dry weight, specific C2H2 reduction and P concentration in shoots responded to P addition before any growth response could be observed. The P concentration in nodules responded only slightly to P addition. A supply of P to P-deficient plants increased both the nodule dry weight, specific C2H2 reduction and P concentration in shoots relatively faster than it increased shoot dry weight and P concentration in nodules. Combined N applied to plants when N2 fixation had commenced, increased shoot dry weight only at the highest P levels. This indicates that the smaller plant growth at the low P levels did not result from N deficiency. The reduced nodulation and N2 fixation in P-deficient plants seem to be caused by impaired shoot metabolism and not by a direct effect of P deficiency of the nodules.  相似文献   

10.
Lead (Pb) contamination of soils is a widespread problem. Mycorrhizal inoculation and synthetic chelators such as ethylenediaminetetraacetic acid (EDTA) may be useful for improving phytoremediation efficiency in Pb-contaminated soils. A greenhouse experiment was performed to study the influence of inoculation with arbuscular mycorrhizal fungus (AMF), Glomus mosseae, and addition of EDTA on phytoremediation of Pb by sunflowers (Helianthus annuus) in a calcareous soil. The experiment was a completely randomized design in a factorial arrangement with five levels of Pb, two levels of mycorrhizal treatments, and two levels of EDTA. Inoculation increased root colonization as Pb levels increased, but the addition of EDTA decreased it. Shoot and root dry matter yields increased by inoculation; however, they decreased with EDTA and Pb levels in co-application treatments. Pb concentration in shoots was significantly higher than that in roots, indicating a translocation factor greater than 1. Inoculation or addition of EDTA significantly increased Pb in roots and its translocation to shoots. The uptake index (UI) value increased in co-application of EDTA and AMF and the individual application of them; it is, therefore, concluded that both AMF and EDTA are effective in phytoremediation of Pb by sunflowers in the studied soil.  相似文献   

11.
在热带地区的水稻栽培中,常遇到水稻青铜病(bronzing)的危害.已知它是由水田中高浓度的亚铁离子所引起,故又叫铁害.但至今没有可靠的生理诊断指标用于抗性品种的筛选.本文研究了铁害与应激乙烯释放的关系,试图以应激乙烯的释放作为铁害的生理诊断指标.试验用两种方法模拟水稻致病.第一种方法是将水稻离体叶片的剪口端浸入FeSO4溶液中,靠叶片蒸腾作用吸收Fe++而致病.另一种方法是在水培培养液中加入FeSO4通过水稻根系吸收Fe++而致病.研究结果表明,当处理离体叶片时,发病强度和应激乙烯释放量呈显著相关,但叶片内铁含量的增加与发病强度和应激乙烯释放都没有相关性.而处理完全植株时,叶片中乙烯释放几乎不受影响.当部分或全部切除根时,叶片中乙烯释放则可被亚铁离子激发。表明水稻根系限制了Fe++的吸收速率,而Fe++进入叶组织的速率又决定应激乙烯的释放和组织的伤害程度.因此,叶片应激乙烯的释放作为铁害的生理诊断指标只有在当根系受到某种伤害时才可能适用,譬如移栽和毒性土壤等因素造成的根系的伤害.  相似文献   

12.
The root systems of wheat seedlings ( Triticum aestivum L. cv. SUN 9E) were pruned to two seminal roots. One of the roots was supplied with a suboptimal level of NO3, the other was deprived of N. Different levels of kinetin were supplied to the NO3-deprived roots. Root respiration and the increment of C and N in the roots were measured to determine the C/N ratio of the phloem sap feeding the NO3-deprived roots. Thus, it was possible to determine retranslocation of N from the shoots to the roots, as affected by the rate of kinetin application. It was calculated that the C/N ratio of phloem sap feeding roots growing without kinetin was ca 61. Kinetin application increased this ratio to ca 75, partly due to decreased translocation of N from the shoots back to the roots. Kinetin application decreased the proportion of N that was retranslocated to the roots after translocation to the shoots. Kinetin increased the rate of NO3 uptake per root and the rate of N incorporation in both roots and shoots by ca 60%, but had no effect on shoot dry matter production. In control plants at most 70% of the N incorporated in the NO3-fed roots could have been imported from the shoots, whilst kinetin application reduced this value to ca 40%. Thus root growth was not fully dependent on a supply of N via the phloem.
It is concluded that cytokinins affect the pattern of N-translocation in wheat plants by increasing incorporation of N in dry matter of the shoot, thus leaving less for export. Cytokinins did not play a major role in the regulation of shoot growth and the shoot to root ratio of the present plants.  相似文献   

13.
The lengths of roots and shoots, fresh and dry matter yield, and the contents of insoluble saccharides and free amino acids were reduced with the rise in NaCl concentration. However, under combination of NaCl with Ca2+ ions, these parameters generally raised. Contents of soluble saccharides, proline and quaternary ammonium compounds increased with increasing NaCl concentration, but under addition of CaCl2 or CaSO4, contents of these compounds were decreased. Low concentrations of NaCl stimulated soluble proteins, production, but higher concentrations decreased the content of soluble proteins. Addition of Ca2+ in the media did not improve the soluble protein production. Insoluble proteins content was increased with the rise of salinity level, but these effects were more pronounced with NaCl and CaCl2 or CaSO4 than with NaCl only.  相似文献   

14.
Mesorhizobium strain RC3, isolated from chickpea nodules, tolerated chromium up to 500 μg/ml and reduced it by 90% at pH 7 after 120 h. It produced plant growth-promoting substances, both in the presence and absence of chromium. Strain RC3 produced 35 μg indole acetic acid/ml in Luria Bertani broth with 100 mg tryptophan/ml, which decreased with an increase in chromium concentration. Chromium application to soil at 136 mg/kg was toxic to chickpea plants but when RC3 at 136 mg/kg was also added, it increased the dry matter accumulation, number of nodules, seed yield and grain protein by 71, 86, 36 and 16%, respectively, compared to non-inoculated plants. Nitrogen in roots and shoots were increased by 46 and 40%, respectively, at 136 mg Cr/kg. The bio-inoculant decreased the uptake of chromium by 14, 34 and 29% in roots, shoots and grains, respectively.  相似文献   

15.
Abstract Young willow plants (Salix‘aquatica gigantea’) were grown in hydroponic culture media, and 14C–labelled sodium bicarbonate was fed to the roots. Uptake of 14C-label in the leaves and shoots was assayed after two different feeding periods (6 h, 48 h). Even during the shortest feeding period, 14C-label had been transferred to the leaves and shoots. Compared with the longer feeding period, after the 6 h feeding period more label was in the form of acid-labile products, whereas after the 48 h feeding period most of the label was in acid-stable products. A second experiment was designed to test whether carbon uptake by roots affects the growth of young willow plants. Uniform rooted cuttings were grown in hydroponic cultures at five different levels of bicarbonate: 0, 0.015, 0.147 0.737, and 1.473 mol m?3 NaHCO3. After a 4-week growing period we determined the biomass of leaves, shoots, roots and cuttings. Production of total dry matter (shoots, leaves and roots) increased with increasing bicarbonate concentration. Saturation of dry matter production was reached at 0.737 mol m?3 NaHCO3, but a higher concentration of NaHCO3 (1.470 mol m?3) caused a slight decrease in the dry matter production. At 0.737 mol m?3 NaHCO3 the total dry weight increased by 31.1%, which suggests that uptake of dissolved carbon dioxide through the roots might affect carbon budgeting in young willow plants.  相似文献   

16.
Roots of wheat seedlings (Triticum aestivum L. cv. Weibulls Starke) were cooled (+1°C) for 24 h while the shoots were kept at 25°C. The treatment induced an increased water deficit in the leaves. Fresh weight, dry weight, and the uptake and distribution of potassium and calcium were measured before and after cooling. Growth, measured both as fresh weight and dry weight increase, was reduced during the cold treatment. Afterwards (at 20°C), growth recovered to nearly pre-stress rates. Analysis of the potassium fluxes in and out of the roots by 86Rb techniques showed that influx, and to a lesser extent efflux, were inhibited at low temperature. The result was a net potassium uptake rate of one-third that of unstressed plants. After the cooling period the potassium influx increased to the rate of control plants. The potassium efflux increased to one and one-half times the rate of unstressed wheat so that net uptake was negative. The increase in potassium efflux was explained by a higher permeability of the root cell membranes after cooling. The net uptake of calcium was reduced to one-third by root cooling. Contrary to potassium uptake, calcium uptake increased under post-stress conditions, partly due to a low efflux rate. During root cooling there was a redistribution of dry matter from the leaves down towards the lower part of the shoot. Afterwards the original distribution of dry matter was reestablished. The net flow of potassium and calcium followed a similar pattern as dry matter, suggesting a growth-regulated flow.  相似文献   

17.
Effects of two kinds of iron fertilizer, FeSO4 and EDTA·Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA·Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA·Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA·Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA·Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.  相似文献   

18.
The general relationship between heavy metals and mineral nutrition of plants grown in polluted environments is one of the most important factors for modifying the toxic properties of these metals. To study the effect of iron and lead pollution on the growth of Matthiola flavida a factorial research was undertaken in the form of a completely randomized design with four replications in hydroponic culture. After germination, seedlings were transferred to a hydroponic culture. During the pre-treatment step, a series of plants contained enough iron (+Fe), whereas the second series was without iron (?Fe). After the pre-treatment step, both series of plants were treated with three levels of iron as FeEDDHA and two levels of lead as Pb(NO3)2. The results showed that in both series of plants, lead reduced the root growth, shoot height, shoot and root dry weight. For 5 µM lead concentration, with increasing concentration of iron in the nutrient solution, concentration of lead in the roots and shoots decreased. For 1 µM concentration of lead, increasing the iron concentration in the nutrient solution reduced the concentration of lead in the roots, but had no significant effect on the amount of lead in shoots. Lead accumulation in shoots and roots of plants with Fe was more than plants without Fe. Also, in low concentrations of iron, the amount of iron in shoot increased with the increase of lead concentration in the nutrient solution. The results showed that in lead pollution, iron has a positive effect on investigated traits.  相似文献   

19.
The effect of vesicular-arbuscular mycorrhizal fungi (VAM) on field bean and spring wheat dry matter production and on phosphorus, zinc, copper, iron and manganese uptake was determined under greenhouse conditions. Nutrient availability was varied by using different sizes of pots and by diluting the soil with sand. VAM increased plant dry matter production under all sets of growth conditions. VAM were found to directly increase the uptake of P, Zn, Cu and Fe by field beans and of P and Zn for wheat in both experiments. Increased uptake of the other nutrients measured was attributed to increased dry matter production or other factors. The effect of VAM decreased as the pot size holding the host plants decreased, but was not affected by the ratio of soil to sand if the pot size was kept constant. Nutrient uptake by beans as a proportion of total amount of nutrient present increased as the amount of nutrient decreased. Increase in root-soil contact and altered chemical equilibria are probable reasons for increased efficiency of nutrient uptake by beans as the level of available nutrient decreased. For wheat, which has a relatively fibrous root system, decreasing the nutrient availability had minimal effects on nutrient uptake in these experiments. Increases in total uptake of a particular nutrient resulting from inoculation with VAM are not necesarily indicative of a direct uptake of that nutrient by the VAM.  相似文献   

20.
Summary Patterns of variations in dry matter concentrations in tomato plants reflected production and translocation of dry matter, implying the possibility of controlling and regulating growth and development of plants by use of dry matter concentration as a useful parameter.Dry matter concentrations, analogous to nutrient concentrations, varied depending on growth conditions, and on type, age and position of plant organs.Interpretation of patterns of variations in contents and concentrations of leaf dry matter in plants, grown under widely different conditions, agreed with the source/sink hypothesis.High water applications were associated with high dry matter concentrations in upper leaves of young pot plants with low sink capacity and with low dry matter concentrations in leaves of older, trough-grown plants with high sink capacity.Accumulation of dry matter in upper leaves of plants is suggested to be associated with development of secondary sinks and, accumulation of dry matter in lateral shoots is considered as a possible explanation of apical dominance.Water regime and transpiration influenced distribution of contents of dry and fresh matter and of absorbed nutrient elements. Redistribution was influenced by water regime.The term, distribution is in the following used in connection with not only absolute values (contents) but also relative values (concentrations).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号