首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unilamellar liposomes often are employed in investigations of lipid-protein interactions and the delivery of drugs in therapies for disease. Also, related lipid-containing nanoparticles have been developed as elements of a new class of mRNA vaccines. We show that only unilamellar films form in equilibrium lipid dispersions, at temperature values {T*} that depend on the identities of the lipids (e.g., T* ≈ 29 °C for DMPC). Thermodynamic analysis confirms that films at air-water surfaces can be used to monitor the properties of the lipid vesicles that form in the dispersion. When T > T*, critical exponents describing film properties as T approaches T* are μ ≈ 1.4 and ν ≈ 0.7, which are close to values for the interfacial tension and the correlation length of density fluctuations at fluid interfaces. These results, and observations that within the bilayer the lateral diffusion of fluorescent lipid probes demonstrates increases at T*, suggest that unilamellar vesicles at T* are a transition state between two different multilamellar structures. We generalize the thermodynamic arguments to explain the linkage between lipid structures in the surface and bulk dispersion within more complex samples, showing that dispersions containing total lipid extracts of cell membranes have properties similar to those in dispersions containing single lipids. Information from various independent studies indicates that T* noted for bilayer membranes of a population of cells is identical to the temperature at which the growth or gestation of the cells occurs in vivo. Examples include whole-cell lipid extracts obtained from bacteria, and poikilothermic and homeothermic animals.  相似文献   

2.
3.
Macroscopic consequences of the formation of diacylglycerol by phospholipase C (PC-PLC) in giant 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) unilamellar vesicles (GUVs, diameter 10-100 microm) were studied by phase contrast and fluorescence microscopy. PC-PLC caused a series of fast stepwise shrinkages of fluid SOPC GUVs, continuing until the vesicle disappeared beyond the optical resolution of the microscope. The presence of N-palmitoyl-sphingomyelin (mole fraction X = 0.25) in the GUVs did not affect the outcome of the PC-PLC reaction. In addition to hydrolysis, PC-PLC induced adhesion of vicinal vesicles. When multilamellar SOPC vesicles were used only a minor decrease in their diameter was evident suggesting that PC-PLC can exert its hydrolytic activity only in the outer monolayer. A series of stepwise shrinkages was observed also for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) GUVs above their main phase transition temperature, T(m), i.e., when the bilayer is in the liquid crystalline state. However, this process was not observed for DMPC GUVs in the gel state, below T(m). These results are supported by the enhanced activity of PC-PLC upon exceeding T(m) of DMPC large unilamellar vesicles (diameter approximately 0.1 microm) used as a substrate. Studies on SOPC monolayers revealed that PC-PLC can exert its hydrolytic activity only at surface pressures below approximately 30 mN/m. Accordingly, the lack of changes in the gel state DMPC GUVs could be explained by the equilibrium lateral pressure in these vesicles exceeding this critical value.  相似文献   

4.
Mixtures of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl-phosphatidylcholine (DHPC) in water form disks also called bicelles and different bilayer organizations when the mol ratio of the two lipids and the temperature are varied. The spontaneous alignment in a magnetic field of these bilayers above the transition temperature T(m) of DMPC is an attractive property that was successfully used to investigate protein structure by NMR. In this article, we have attempted to give an overview of all structural transformations of DMPC/DHPC mixtures that can be inferred from broad band (31)P-NMR spectroscopy between 5 and 60 degrees C. We show that above a critical temperature, T(v), perforated vesicles progressively replace alignable structures. The holes in these vesicles disappear above a new temperature threshold, T(h). The driving force for these temperature-dependent transformations that has been overlooked in previous studies is the increase of DHPC miscibility in the bilayer domain above T(m). Accordingly, we propose a new model (the "mixed bicelle" model) that emphasizes the consequence of the mixing. This investigation shows that the various structures of DMPC in the presence of increasing mol ratios of the short-chain DHPC is reminiscent of the observation put forward by several laboratories investigating solubilization and reconstitution of biological membranes.  相似文献   

5.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (T(m)=24 degrees C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at T(m) but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at T(m). These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above T(m) in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above T(m), because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   

6.
Phosphatidylserine (PS) extracted from pig brain and synthetic dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were used to make DPPC/DMPC and DPPC/PS large unilamellar liposomes with a diameter of approximately 1 microm. Chlorpromazine-HCl (CPZ), an amphipathic cationic psychotropic drug of the phenothiazine group, is known to partition into lipid bilayer membranes of liposomes with partition coefficients depending on the acyl chain length and to alter the bilayer structure in a manner depending on the phospholipid headgroups. The effects of adding CPZ to these membranes were studied by differential scanning calorimetry and proton cross polarization solid state magic angle spinning (13)C-nuclear magnetic resonance spectroscopy (CP-MAS-(13)C-NMR). CP-MAS-(13)C-NMR spectra of the DPPC (60%)/DMPC (40%) and the DPPC (54%)/DMPC (36%)/CPZ (10%) liposomes, show that CPZ has low or no interaction with the phospholipids of this neutral and densely packed bilayer. Conversely, the DPPC (54%)/PS (36%)/CPZ (10%) bilayer at 25 degrees C demonstrates interaction of CPZ with the phospholipid headgroups (PS). This CPZ interaction causes about 30% of the acyl chains to enter the gauche conformation with low or no CPZ interdigitation among the acyl chains at this temperature (25 degrees C). The DPPC (54%)/PS (36%)/CPZ (10%) bilayer at a sample temperature of 37 degrees C (T(C)=31.2 degrees C), shows CPZ interdigitation among the phospholipids as deduced from the finding that approximately 30% of the phospholipid acyl chains carbon resonances shift low-field by 5-15 ppm.  相似文献   

7.
Mixed vesicles of dimyristoylphosphatidylcholine (DMPC) and a polymerizable lipid containing one diene group per chain are studied by freeze fracture electron microscopy and by the photobleaching (fluorescence recovery after photobleaching) technique. Large thin-walled vesicles of some micron in diameter become more stable after photochemical polymerization. Before polymerization bilayers of the diene lipid exhibit a liquid crystal-to-gel transition at Tg = 31 degrees C. Upon polymerization the transition remains but shifts to a slightly higher temperature (Tg* = 34 degrees C). The transitions in both cases are accompanied by a freezing in of the lateral mobilities. The mixed vesicle exhibits lateral phase separation after polymerization. Before polymerization the two lipids appear miscible at all compositions in the fluid state and at DMPC concentrations at or below 50 mol % in the solid state. After polymerization a two-dimensional solution of the polymer in DMPC is obtained at T greater than Tg*, while lateral phase segregation into DMPC-rich domains and patches of the polymer is observed at T less than Tg*. The domain structure appears identical irrespective of whether polymerization is performed at T greater than Tg or at T less than Tg. A typical value of the diameter of the polymerized lipid domains (approximately 400 A) indicates a rather small aggregation number (N less than 100 monomers). The lateral diffusion coefficient in butadiene-lipid bilayers only decreases from D1 = 3.10(-7) cm2/s to D1 = 8.10(-8) cm2/s (that is by a factor of 4) upon polymerization. This is consistent with the freeze fracture finding of a small aggregation number.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In a previous study, we observed a series of dips in the plot of E/M (the ratio of excimer to monomer fluorescence intensity) versus the mole fraction of 1-palmitoyl-2-(10-pyrenyl)decanoyl-sn-glycerol-3-phosphatidylcholine (Pyr-PC) in Pyr-PC/DMPC binary mixtures at 30 degrees C. In the present study, we have characterized the physical nature of E/M dips in Pyr-PC/DMPC binary mixtures by varying pressure, temperature, and vesicle diameter. The E/M dips at 66.7 and at 71.4 mol% PyrPC in DMPC multilamellar vesicles remain discernible at 30-43 degrees C. At higher temperatures (e.g., 53 degrees C), the depth of the dip abruptly becomes smaller. This result agrees with the idea that E/M dips appear as a result of regular distribution of pyrene-labeled acyl chains into hexagonal super-lattices at critical mole fractions. Regular distribution is a self-ordering phenomenon. Usually, in self-ordered systems, the number of structural defects increases with increasing temperature, and thermal fluctuations eventually result in an order-to-disorder transition. The effect of vesicle diameter on the E/M dip at 66.7 mol% Pyr-PC in DMPC has been studied at 37.5 degrees C by using unilamellar vesicles of varying sizes. The E/M dip is observable in large unilamellar vesicles; however, the depth of the E/M dip decreases when the vesicle diameter is reduced. When the vesicle diameter is reduced to about 64 nm, the dip becomes shallow and split. This result suggests that the curvature-induced increase in the separation of lipids in the outer monolayer decreases the tendency of regular distribution for pyrene-labeled acyl chains. Regular distribution is believed to arise from the long-range repulsive interaction between Pyr-PC molecules due to the elastic deformation of the lipid matrix around the bulky pyrene moiety. When the radius of curvature becomes small, outer monolayer lipids are more separated. Therefore, pyrene-containing acyl chains fit better into the membrane matrix, which alleviates the deformation of the lattice and diminishes the long-range repulsive interactions between pyrene-containing acyl chains. Furthermore, we have shown a striking difference in the pressure dependence of E/M at critical Pyr-PC mole fractions and at noncritical mole fractions. In the pressure range between 0.001 and 0.7 kbar at 30 degrees C, E/M decreases steadily with increasing pressure at noncritical mole fractions; in contrast, E/M changes little with pressure at critical mole fractions (e.g., 33.3 and 50.0 mol% Pyr-PC).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Three structurally related crown compounds and cryptands have been synthesized that differ by the number and linkage of coronand units and anthracene moieties. The interaction of the fluorescent dyes with sonicated dimyristoylphosphatidylcholine (DMPC) vesicles is characterized by the relative quantum yields, uptake kinetics, binding curves, lifetimes, fluorescence titrations with water- and lipid-soluble quenching agents, fluorescence anisotropy, and equilibrium cooling curves. The most lipophilic compound II, which displays a similar quantum yield as the parent fluorophore 9,10-dimethylanthracene, shows a nearly equal distribution between solid and fluid lipid and is located at the bilayer surface. The least lipophilic compound IV is excluded from the hydrocarbon phase. The anthracenophane cryptand III preferentially partitions into solid-phase lecithins with the highest affinity for the phases L epsilon and L beta. The binding constant to DMPC amounts to (5.4 +/- 1.3) X 10(2) M-1 at 0 degrees C. From fluorescence quenching titrations it is concluded that the average position of the anthracenoyl dye III discontinuously shifts during the gel to liquid crystalline transition from the glycerol backbone to the choline head group. Electron microscopy and NMR experiments revealed that the anthracenophane induces in the liquid crystalline phase the fusion of small unilamellar DMPC vesicles to unilamellar medium-sized vesicles and macrovesicles, which subsequently fuse at the transition temperature to large multilamellar coacervates. Due to its large change of fluorescence intensity, the anthracenophane cryptand is a very sensitive probe for the detection of the pretransition of symmetrically substituted and of the subtransition of asymmetrically substituted phosphatidylcholines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Giant liposomes obtained by electroformation and observed by phase-contrast video microscopy show spontaneous deformations originating from Brownian motion that are characterized, in the case of quasispherical vesicles, by two parameters only, the membrane tension sigma and the bending elasticity k(c). For liposomes containing dimyristoyl phosphatidylcholine (DMPC) or a 10 mol% cholesterol/DMPC mixture, the mechanical property of the membrane, k(c), is shown to be temperature dependent on approaching the main (thermotropic) phase transition temperature T(m). In the case of DMPC/cholesterol bilayers, we also obtained evidence for a relation between the bending elasticity and the corresponding temperature/cholesterol molecular ratio phase diagram. Comparison of DMPC/cholesterol with DMPC/cholesterol sulfate bilayers at 30 degrees C containing 30% sterol ratio shows that k(c) is independent of the surface charge density of the bilayer. Finally, bending elasticities of red blood cell (RBC) total lipid extracts lead to a very low k(c) at 37 degrees C if we refer to DMPC/cholesterol bilayers. At 25 degrees C, the very low bending elasticity of a cholesterol-free RBC lipid extract seems to be related to a phase coexistence, as it can be observed by solid-state (31)P-NMR. At the same temperature, the cholesterol-containing RBC lipid extract membrane shows an increase in the bending constant comparable to the one observed for a high cholesterol ratio in DMPC membranes.  相似文献   

11.
The quenching efficiency of iodide as a penetrating fluorescence quencher for a membrane-associated fluorophore was utilized to measure the molecular packing of lipid bilayers. The KI quenching efficiency of tryptophan-fluorescence from melittin incorporated in DMPC bilayer vesicles peaks at the phase transition temperature (24 degrees C) of DMPC, whereas acrylamide quenching efficiency does not depend on temperature. The ability of iodide to penetrate the hydrocarbon region of the bilayer was examined by measuring the fluorescence quenching of the pyrene-phosphatidylcholine incorporated into DMPC vesicles (pyrene was attached to the 10th carbon of the sn-2 chain). The quenching efficiency of pyrene by iodide again shows a maximum at the lipid phase transition. We conclude that iodide penetrates the membrane hydrocarbon region at phase transition through an increased number of bilayer defects. The magnitude of change in quenching efficiency of iodide during lipid phase transition provides a sensitive technique to probe the lipid organization in membranes.  相似文献   

12.
The passive leakage of glucose across bilayers of dimyristoylphosphatidylcholine (DMPC), cholesterol (variable), and dicetyl phosphate (constant 5.9 mol%) has been measured as efflux over 30 min from multilamellar vesicles. Bilayer cholesterol was varied from 20 mol% to 40 mol%. Glucose permeation rates were measured from 10 degrees C to 36 degrees C, and showed a maximum in permeability at 24 degrees C, the DMPC phase transition temperature. Increasing the bilayer cholesterol content above 20 mol% reduced that permeability peak. These results are quite consistent with a large number of similar bilayer permeability studies over the past 25 years. However, they are not consistent with a previous study of these same systems, which reported increased glucose permeability with temperature, without any maximum at or near the lipid chain melting temperature (K. Inoue, Biochim. Biophys. Acta 339 (1974) 390-402).  相似文献   

13.
Several integral membrane proteins can be inserted sequentially into preformed unilamellar vesicles (ULV's) composed of dimyristoylphosphatidylcholine (DMPC) and cholesterol in a gel phase. Thus, proteoliposomes of DMPC, cholesterol, and bacteriorhodopsin from Halobacterium halobium rapidly incorporate UDPglucuronosyltransferase (EC 2.4.1.17) from pig liver microsomes, cytochrome oxidase from beef heart mitochondria, and additional bacteriorhodopsin, added sequentially. This process of spontaneous incorporation can be regulated to produce complex artificial membranes that contain phospholipids and proteins at ratios (mol/mol) equivalent to what is found in biological membranes. The ability of the lipid-protein bilayers to incorporate additional integral membrane proteins is not affected by annealing of the proteoliposomes at 37 degrees C nor by the order of addition of the proteins. Bacteriorhodopsin-containing vesicles formed by the sequential addition of integral membrane proteins demonstrate light-driven proton pumping. Therefore, they have retained a vesicular structure. Vesicles containing one or two different proteins will fuse with each other at 21 degrees C or with ULV's devoid of proteins. Incorporation of bacteriorhodopsin or UDPglucuronosyltransferase into proteoliposomes containing DMPC, with or without cholesterol as impurity, also occurs above the phase transition for DMPC. The presence of a protein in a liquid-crystalline bilayer provides the necessary condition for promoting the spontaneous incorporation of other membrane proteins into preformed bilayers.  相似文献   

14.
The phase heterogeneity of giant unilamellar dinervonoylphosphocholine (DNPC) vesicles in the course of the main phase transition was investigated by confocal fluorescence microscopy observing the fluorescence from the membrane incorporated lipid analog, 1-palmitoyl-2-(N-4-nitrobenz-2-oxa-1,3-diazol)aminocaproyl-sn-glycero-3-phosphocholine (NBDPC). These data were supplemented by differential scanning calorimetry (DSC) of DNPC large unilamellar vesicles (LUV, diameter approximately 0.1 and 0.2 microm) and multilamellar vesicles (MLV). The present data collected upon cooling reveal a lack of micron-scale gel and fluid phase coexistence in DNPC GUVs above the temperature of 20.5 degrees C, this temperature corresponding closely to the heat capacity maxima (T(em)) of DNPC MLVs and LUVs (T(em) approximately 21 degrees C), measured upon DSC cooling scans. This is in keeping with the model for phospholipid main transition inferred from our previous fluorescence spectroscopy data for DMPC, DPPC, and DNPC LUVs. More specifically, the current experiments provide further support for the phospholipid main transition involving a first-order process, with the characteristic two-phase coexistence converting into an intermediate phase in the proximity of T(em). This at least macroscopically homogenous intermediate phase would then transform into the liquid crystalline state by a second-order process, with further increase in acyl chain trans-->gauche isomerization.  相似文献   

15.
Small-angle neutron scattering (SANS) measurements are performed on pure dimyristoyl phosphatidylcholine (DMPC) unilamellar vesicles (ULV) and those containing either 20 or 47 mol% cholesterol, ergosterol or lanosterol. From the SANS data, we were able to determine the influence of these sterols on ULV bilayer thickness and vesicle area expansion coefficients. While these parameters have been determined previously for membranes containing cholesterol, to the best of our knowledge, this is the first time such results have been presented for membranes containing the structurally related sterols, ergosterol and lanosterol. At both molar concentrations and at temperatures ranging from 10 to 45 degrees C, the addition of the different sterols leads to increases in bilayer thickness, relative to pure DMPC. We observe large differences in the influence of these sterols on the membrane thermal area expansion coefficient. All three sterols, however, produce very similar changes to membrane thickness.  相似文献   

16.
The effects of membrane composition on heme binding to large unilamellar vesicles were examined using 30 separate phospholipid mixtures. Although there was some variation, most lecithins with Tm values less than or equal to 20 degrees C showed overall equilibrium partition constants equal to approximately 5 x 10(5) and association and dissociation partition rate constants equal to approximately 3 x 10(6) s-1 and 7 s-1, respectively, for CO-heme binding at 30 degrees C. A sharp decrease in the association rate for CO-heme uptake was observed as the lipid vesicles changed from liquid-crystalline to the gel phase. The addition of dicetyl phosphate or dimyristoylphosphatidylglycerol, which are negatively charged at neutral pH, decreased the affinity of the vesicles for CO-heme. The association rate and equilibrium partition constants for CO-heme uptake in unsaturated lecithins were unaffected by cholesterol content at levels up to 40%/mol. The affinity of saturated dimyristoylphosphatidylcholine (DMPC) vesicles for CO-heme decreased with increasing cholesterol content at 30 degrees C. This effect appears to be related to the influence of cholesterol on the DMPC phase transition temperature (Tm) since at low temperatures (less than or equal to 20 degrees C) little CO-heme binds to vesicles composed of DMPC even in the absence of cholesterol.  相似文献   

17.
A W Scotto  D Zakim 《Biochemistry》1986,25(7):1555-1561
The presence of cholesterol in small unilamellar vesicles (ULV) of dimyristoylphosphatidylcholine (DMPC) catalyzes fusion of the vesicles at temperatures below the upper limit for the gel to liquid-crystalline phase transition of the DMPC. The extent to which ULV grow depends on the concentration of cholesterol in the vesicles and on temperature. Maximum growth occurs at 21 degrees C. It decreases as the temperature is lowered below 21 degrees C. Growth does not occur at temperatures above the phase transition. In addition, the presence of cholesterol in ULV of DMPC catalyzes the insertion of integral membrane proteins into the vesicles. Thus, bacteriorhodopsin from Halobacterium halobrium, UDPglucuronosyltransferase (EC 2.4.1.17) from pig liver microsomes, and cytochrome oxidase from beef heart mitochondria formed stable lipid-protein complexes spontaneously when added to ULV containing cholesterol at temperatures under which these vesicles would fuse. Incorporation of these proteins into the ULV of DMPC did not occur in the absence of cholesterol or in the presence of cholesterol when the temperature of the system was above that for the phase transition. It appears that cholesterol lowers the energy barrier for fusion of ULV of DMPC and for insertion of integral membrane proteins into these bilayers. Studies with bacteriorhodopsin suggest that the energy barrier for insertion of proteins into ULV containing cholesterol is smaller than the energy barrier for fusion of the ULV with each other.  相似文献   

18.
A spin-labeled derivative of 3,3',5-triiodo-L-thyronine, 3-[( alpha-carboxy-4-(4-hydroxy-3-iodophenoxy)-3,5-diiodophenethyl++ +] carbamoyl)-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy (SL-T3) has been synthesized. Evaluation of its binding to nuclei after incubation with rat pituitary tumor GH3 cells at 37 degrees C showed that it bound to nuclei with a 18% potency of that of T3. The dynamic interaction of SL-T3 with multilamellar vesicles prepared from dimyristoylphosphatidylcholine (DMPC) was investigated using electron spin resonance techniques. At 31 degrees C, the lateral diffusion constant of SL-T3 in DMPC membranes was found to be 3.0 X 10(-8) cm2/s as determined by the ESR line-broadening method. The temperature dependency of the ESR spectrum of SL-T3 in DMPC multilamellar vesicles showed a break at 23.5 degrees C, which is close to the main phase-transition temperature, 23.7 degrees C, of DMPC membranes. This suggests that the motion of the probe reflects the motion of phospholipids in DMPC membranes, and that the probe itself does not perturb the membrane structure. SL-T3 appears to be a useful probe for studying the motion of thyroid hormone in the plasma membrane of responsive cells.  相似文献   

19.
In a range of low ionic strength, aqueous dispersions of the anionic phospholipid DMPG (dimyristoylphosphatidylglycerol) have a transparent intermediate phase (IP, between T(m)(on) congruent with 20 degrees C and T(m)(off) congruent with 30 degrees C) between the turbid gel and fluid membrane phases, evidenced in turbidity data. Small angle x-ray scattering results on DMPG dispersions show that, besides the bilayer peak present in all phases, a peak corresponding to a mesoscopic structure at approximately 400 A is detected only in IP. The dependence of this peak position on DMPG concentration suggests a correlation in the bilayer plane, consistent with the stability of vesicles in IP. Moreover, observation of giant DMPG vesicles with phase contrast light microscopy show that vesicles "disappear" upon cooling below T(m)(off) and "reappear" after reheating. This further proves that although vesicles cannot be visualized in IP, their overall structure is maintained. We propose that the IP in the melting regime corresponds to unilamellar vesicles with perforations, a model which is consistent with all described experimental observations. Furthermore, the opening of pores across the membrane tuned by ionic strength, temperature, and lipid composition is likely to have biological relevance and could be used in applications for controlled release from nanocompartments.  相似文献   

20.
E M el-Mashak  T Y Tsong 《Biochemistry》1985,24(12):2884-2888
Temperature and electric field are known to alter the permeability of the bilayer membrane in phospholipid vesicles. A study of cation selectivity of these membrane pores is reported for multilamellar liposomes (MLV) and unilamellar large vesicles (ULV, 95 +/- 5 nm diameter) of dipalmitoylphosphatidylcholine (DPPC). The permeability of ULV to Rb+ was 1.0 X 10(-6) micrograms/s at 22 degrees C and increased to 1.1 X 10(-5) micrograms/s at the gel to liquid-crystalline transition temperature (Tm) of the bilayer, at 42 degrees C. The permeability of ULV to Rb+ continued to increase beyond the Tm and reached 1.0 X 10(-4) micrograms/s at 56 degrees C, a 100-fold increase over the permeability at 22 degrees C. In contrast, the permeability of ULV to Na+ showed a local maximum of 6.0 X 10(-6) micrograms/s at 42 degrees C and decreased at temperatures higher or lower than the Tm. For MLV, the permeability to both Rb+ and Na+ peaked dramatically at the phase transition temperature, 42 degrees C, and subsided at lower and higher temperatures. When ULV were exposed to an electric field, the permeability to Rb+, Na+, and sucrose surged at a field strength of 30 kV/cm; 30 kV/cm can induce a transmembrane potential of 210 mV. In ULV, the electrically perforated lipid bilayer exhibited selectivity for Rb+ over Na+ only at a narrow electric field range, between 31 and 33 kV/cm. For MLV, no well-defined breakdown voltage was recorded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号