首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two Escherichia coli cytotoxins (verotoxins 1 and 2) have been previously implicated in the cytopathology of the Hemolytic Uremic Syndrome. We have examined the glycolipid binding specificity of verotoxin (VT)2. This toxin specifically binds to globotriosyl ceramide (galactose alpha 1-4 galactose beta 1-4 glucosyl ceramide). Removal, or substitution of the terminal a galactose residue with N-acetyl galactosamine in beta 1-3 linkage, deletes binding activity. The toxin does not recognize similar terminal a galactose residues on a glycoglycerolipid. Thus the binding specificity of VT2 is the same as previously reported for VT1. Liposomes containing globotriosyl ceramide are able to specifically remove VT1 and VT2 cytotoxicity and cell lines selected in vitro for resistance to VT1 are cross resistant to VT2.  相似文献   

2.
Globotetraosylceramide is recognized by the pig edema disease toxin   总被引:20,自引:0,他引:20  
The pig edema disease toxin has been shown by a tlc glycolipid binding assay to bind specifically to globotetraosylceramide (Gb4, GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4GlcCer.). Binding was reduced for globotriosylceramide (Gb3, Gal alpha 1-4Gal beta 1-4GlcCer) and more markedly for the Forssman antigen (GalNAc alpha 1-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4GlcCer). Paragloboside, blood group A glycolipids, glycolipids terminating in Gal NAc beta 1-4Gal-, and glycolipids in which globoside was present as an internal sequence did not bind the toxin. Isogloboside (GalNAc beta 1-3Gal alpha 1-3Gal beta 1-4GlcCer) was efficiently recognized. This toxin is genetically related to the verotoxin (or Shiga-like) family of toxins for which Gb3 has been shown to be the receptor. The difference in susceptibility of cell lines to the cytotoxicity of the pig edema disease toxin and the Shiga and Shiga-like toxins is consistent with the difference in receptor glycolipid binding.  相似文献   

3.
The N-acetylglucosaminyltransferases probably involved in the biosynthesis in vitro of Ii core glycosphingolipids have been solubilized from a membrane preparation of mouse lymphoma P-1798 and partially characterized. The detergent-extracted membrane supernatant contains both beta 1-3- and beta 1-6-N-acetylglucosaminyltransferase activities that transfer [3H]GlcNAc from UDP-[3H]GlcNAc to the terminal galactose of neolactotetraosylceramide (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-ceramide; nLcOse4ceramide), to form the Ii core structures. The linkage of [3H]N-acetylglucosamine incorporated into the terminal galactose of nLcOse4Cer was determined from identification of 2,4,6-tri-O-methyl[3H]galactose and 2,3,4-tri-O-methyl[3H]galactose after hydrolysis of the permethylated enzymatic products, GlcNAc beta-[3H]Gal-GlcNAc-Gal-Glc-ceramide. In addition to the presence of beta-N-acetylglucosaminyltransferases, we have detected a galactosyltransferase activity in this soluble supernatant fraction that catalyzes the transfer of [14C]galactose from UDP-[14C]galactose to lactotriaosylceramide (GlcNAc beta 1-3Gal beta 1-4Glc-ceramide; LcOse3ceramide) to form nLcOse4ceramide, the acceptor in the N-acetylglucosaminyltransferase-catalyzed reaction.  相似文献   

4.
Eukaryotic cell surface glycolipids can act as both the primary interface between bacteria and their host and secondly as a targeting mechanism for bacterial virulence factors. The former is characterized by redundancy in adhesin-receptor interactions and the latter by a higher affinity, more restrictive glycolipid binding specificity for targeting. Interactions of verotoxin with its glycolipid receptor globotriaosylceramide and Helicobacter pylori binding to a variety of different glycolipids, which can be environmentally regulated, provide examples of these differing modes of glycolipid receptor function. Verotoxins are involved in endothelial targeting in the microangiopathies of hemorrhagic colitis and hemolytic uremic syndrome (HUS). The highly restricted binding specificity and crystal structure of the verotoxin B subunit have allowed theoretical modeling of the Gb3 binding site of the verotoxin B subunit pentamer which provides an approach to intervention. Studies of the role of glycolipid function in verotoxin-induced disease have concentrated on the distribution of Gb3 and its ability to mediate the internalization of the toxin within the target cell. The distribution of Gb3 within the renal glomerulus plays a central role in defining the age-related etiology of HUS following gastrointestinal infection with VT producing Escherichia coli. H. pylori, on the other hand, instigates a less distinct but more complex disseminated gastric inflammation. Studies on the role of glycolipid receptors in H. pylori infection have been bogged down in establishing the importance of each binding specificity defined. In addition, the physiological condition of the organism within the various binding assays has not been extensively considered, such that spurious non-physiological interactions may have been elucidated. The identification and cloning of a Le(b) binding adhesin and the identification of cell surface hsp70 as a mediator of sulfoglycolipid binding under stress conditions may now allow a more molecular approach to define the role of glycolipid recognition in this infection.  相似文献   

5.
The globotriaosylceramide (Gb3) verotoxin (VT) interaction is one of several examples of glycolipid receptors where the ceramide (or lipid) free oligosaccharides fail to show the expected binding parameters. We present a novel, yet simple strategy to synthesize monovalent, water soluble glycosphingolipid mimics which retain receptor function. Replacing the fatty acid chain with rigid, three dimensional hydrocarbon frames, such as adamantane, gives a novel class of neohydrocarbon glycoconjugates. Such adamantyl conjugates derived from Gb3 showed significantly enhanced solubility in water compared to natural Gb3. Adamantyl-Gb3 showed a thousand fold enhanced inhibitory activity (IC50 = 1 microM) for VT-Gb3 binding as compared to a lipid free Gb3 oligosaccharide derivative, alphaGal1-4betaGal1-4betaGlc1-O-CH2CH(CH2SO2C 4H9)2 (IC50 > 2 mM). This represents a new approach to the generation of antagonists of glycolipid receptors.  相似文献   

6.
Five kinds of sphingoglycolipids were isolated from Turbo cornutus. Four of them were a series of novel glycolipids consisting only of galactose. The structures of these glycolipids were studied by methylation analysis, periodate oxidation, enzymatic degradation, and proton magnetic resonance spectroscopy. Three glycolipids were characterized as galactosyl(beta 1 leads to 1)ceramide, galactosyl(beta 1 leads to 6)galactosyl(beta 1 leads to 1)ceramide, and galactosyl(beta 1 leads to 6)galactosyl(beta 1 leads to 6)galactosyl(beta 1 leads to 1)ceramide. Data indicating that the 4th glycolipid might be the tetragalactosyl derivative of this series were obtained. The carbohydrate moiety of the 5th glycolipid, in contrast, was composed of fucose, galactose, glucose and N-acetylglycosamine in a molar ratio of 1 : 2 : 1 : 1.  相似文献   

7.
The aglycone has been largely ignored in consideration of glycoconjugate function. Evidence is reviewed which suggests that the role of the lipid in glycolipid carbohydrate function may be particularly significant. The lipid moiety can promote or reduce carbohydrate exposure of membrane glycolipids. Theoretical calculation has indicated that the plane of the plasma membrane can restrict the permitted conformations of a given glycolipid oligosaccharide. Thus the lipid moiety may influence the relative conformation of such carbohydrate sequences. Evidence of ceramide regulation of glycolipid function can be found in studies of enzyme substrate specificity, antiglycolipid recognition and bacterial/host cell interactions. Studies of verotoxin binding to its glycolipid receptor globotriaosyl ceramide indicate that modulation of receptor function by glycolipid fatty acid content plays an important role inin vitro binding assays, cell cytotoxicity and intracellular routing.  相似文献   

8.
The Gal alpha 1-3Gal structural determinant has been found to have a unique distribution in mammals. Although this determinant is abundantly expressed by erythrocytes and nucleated cells of many mammals, it has not been detected in human cells. However, our previous studies (Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, I. (1984) J. Exp. Med. 160, 1519-1531; Galili, U., Clark, M. R., and Shohet, S. B. (1986) J. Clin. Invest. 77, 27-33) have suggested that this epitope is present in small amounts and may be involved in immune-mediated destruction of senescent human erythrocytes. To have a means for exploring this possibility and for studying the species and tissue distribution of this epitope we have raised a monoclonal antibody (Gal-13) which specifically binds to glycoconjugates with a nonreducing terminal Gal alpha 1-3Gal disaccharide. Mice were immunized with rabbit erythrocytes, which express an abundance of glycoconjugates with Gal alpha 1-3Gal epitopes. Clones were screened with a solid-phase binding assay (enzyme-linked immunosorbent assay) for antibodies which bound to ceramide pentahexoside (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3-Gal beta Gal beta 1-4Glc1-1Cer) but not to ceramide trihexoside (Gal alpha 1-4Gal beta 1-4Glc1-1Cer). Gal-13 bound to a number of neutral glycosphingolipids from rabbit and bovine erythrocytes. These glycosphingolipids have previously been shown to be a family of linear and branched polylactosamine structures, which have non-reducing terminal Gal alpha 1-3Gal epitopes. The antibody did not bind to the human blood group B glycolipid, Gal alpha 1-3(Fuc alpha 1-2)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc1-1Cer, and, therefore, branching at the penultimate galactose blocks Gal-13 binding. However, after removal of the fucose from the B antigen Gal-13 recognized the resulting derivative. Other Gal alpha 1-3Gal glycosphingolipids with an isogloboside or globoside core structure were not recognized by Gal-13 suggesting that the antibody binds to Gal alpha 1-3Gal carried by a lactosamine core structure. Gal-13 has been used to demonstrate that the Gal alpha 1-3Gal ceramide pentahexoside has been evolutionarily conserved in red cells of animals up to the stage of New World monkeys but is not found in Old World monkey red cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Two glucuronic acid-containing glycosphingolipids were purified from larvae of the green-bottle fly, Lucilia caesar by DEAE-Sephadex and Iatrobeads column chromatography. Structures of these acidic glycolipids, glycolipids X and Y, were elucidated by means of sugar analysis, permethylation, enzymatic hydrolysis, negative-ion fast atom bombardment mass spectrometry, and NMR studies. Glycolipid X was determined to have the following structure: GlcA beta 1-3Gal beta 1-3GalNAc alpha 1-4 GalNAc beta 1-4 GlcNAc beta 1-3Man beta 1-4Glc beta 1-1 ceramide. The other acidic glycolipid, glycolipid Y contains a phosphoethanolamine residue linked through the 6-hydroxy group of the N-acetyl-glucosamine unit of glycolipid X. The ceramide moieties were composed of saturated fatty acids (16:0-22:0) and tetradeca- and hexadeca-4-sphingenines. Based on the structural similarity of the ceramide moieties it appears likely that glycolipid X is an intermediate from which glycolipid Y is synthesized by addition of a phosphoethanolamine residue.  相似文献   

10.
The glycolipid transfer protein purified from pig brain facilitates the transfer of various glycosphingolipids and glyceroglycolipids (Yamada, K., Abe, A. and Sasaki, T. (1985) J. Biol. Chem. 260, 4615-4621). In this paper, the transfer of Man beta 1----4Glc beta 1-Cer and Man alpha 1----4Man beta 1-Cer isolated from a bivalve, Corbicula japonica, the transfer of 3-[Glc alpha 1-]-sn-1,2-diacylglycerol and 3-[Glc alpha 1----2Glc alpha 1-]-sn-1,2-diacylglycerol prepared from Streptococcus lactis, and the transfer of 3-[Glc beta 1-]-rac-1,2-dipalmitylglycerol have been investigated. The transfer of these lipids from liposomes to mitochondria was assayed by the decrease of these lipids in the donor liposomes. These lipids were determined by chromatographic isolation of the lipids, acid hydrolysis of the isolated lipids, and subsequent determination of glucose in the hydrolysate. The glycolipid transfer protein facilitated the transfer of ManGlcCer and ManManGlcCer. The transfer protein did not facilitate the transfer of Glc alpha-diacylglycerol or Glc alpha Glc alpha-diacylglycerol. However, the transfer of Glc beta-dipalmitylglycerol was facilitated by the protein. These results strongly suggest that the glycolipid transfer protein has the specificity to the presence of beta-linked glucose or galactose directly linked to either ceramide or diacylglycerol.  相似文献   

11.
Neutral glycosphingolipids from sheep-derived Fasciola hepatica liver flukes were isolated and characterized both structurally and serologically. After HPLC fractionation, glycolipids were analyzed by linkage analysis, enzymatic cleavage, and MALDI-TOF as well as electrospray ionization mass spectrometry. Obtained results revealed the presence of two types of neutral glycolipids. The first group represented mammalian-type species comprising globo- and isoglobotriaosylceramides (Gal(alpha1-4)Gal(beta1-4)Glc(1-1)ceramide and Gal(alpha1-3)Gal(beta1-4)Glc(1-1)ceramide, respectively) as well as Forssman antigen (GalNAc(alpha1-3)GalNAc(beta1-3/4)Gal(alpha1-4/3)Gal(beta1-4)Glc(1-1)ceramide). Applying Helix pomatia agglutinin, recognizing terminal alpha-linked GalNAc, to cryosections of adult flukes, the latter glycolipid could be localized to the F. hepatica gut. As Forssman antigen from the parasite and sheep host led to identical MALDI-TOF MS profiles, this glycolipid might be acquired from the definitive host. As a second group, highly antigenic glycolipids were structurally characterized as Gal(beta1-6)Gal(beta1-4)Glc(1-1)ceramide, Gal(beta1-6)Gal(alpha1-3/4)Gal(beta1-4)Glc(1-1)ceramide and Gal(beta1-6)Gal(beta1-6)Gal(alpha1-3/4)Gal(beta1-4)Glc(1-1)ceramide, the latter two structures of which exhibited both isoglobo- or globo-series core structures. Terminal Gal(beta1-6)Gal1-motifs have previously been shown to represent antigenic epitopes of neogala-series glycosphingolipids from tape worms. Using human Echinococcus granulosus infection sera, Gal(beta1-6)Gal-terminating glycolipids could be allocated to the gut in adult liver fluke cryosections. Corresponding neogala-reactive antibodies in F. hepatica infection serum were detected by their binding to E. granulosus and Taenia crassiceps neogala-glycosphingolipids. These antibodies might contribute to the known serological cross-reactivity between F. hepatica and parasitic cestode infections.  相似文献   

12.
Escherichia coli verotoxin, also known as Shiga-like toxin, binds to eukaryotic cell membranes via the glycolipid Gb(3) receptors which present the P(k) trisaccharide Galalpha(1-4)Galbeta(1-4)Glcbeta. Crystallographic studies have identified three P(k) trisaccharide (P(k)-glycoside) binding sites per verotoxin 1B subunit (VT1B) monomer while NMR studies have identified binding of P(k)-glycoside only at site 2. To understand the basis for this difference, we studied binding of wild type VT1B and VT1B mutants, defective at one or more of the three sites, to P(k)-glycoside and pentavalent P(k) trisaccharide (pentaSTARFISH) in solution and Gb(3) presented on liposomal membranes using surface plasmon resonance. Site 2 was the key site in terms of free trisaccharide binding since mutants altered at sites 1 and 3 bound this ligand with wild type affinity. However, effective binding of the pentaSTARFISH molecule also required a functional site 3, suggesting that site 3 promotes pentavalent binding of linked trisaccharides at site 1 and site 2. Optimal binding to membrane-associated Gb(3) involved all three sites. Binding of all single site mutants to liposomal Gb(3) was weaker than wild type VT1B binding. Site 3 mutants behaved as if they had reduced ability to enter into high avidity interactions with Gb(3) in the membrane context. Double mutants at site 1/site 3 and site 2/site 3 were completely inactive in terms of binding to liposomal Gb(3,) even though the site 1/site 3 mutant bound trisaccharide with almost wild type affinity. Thus site 2 alone is not sufficient to confer high avidity binding to membrane-localized Gb(3). Cytotoxic activity paralleled membrane glycolipid binding. Our data show that the interaction of verotoxin with the Gb(3) trisaccharide is highly context dependent and that a membrane environment is required for biologically relevant studies of the interaction.  相似文献   

13.
Verotoxins (or Shiga-like toxins) are a family of closely related toxins elaborated by Escherichia coli. At least three toxins have been described, VT1, VT2, and SLTII, in addition to Shiga toxin itself, and all bind to globotriaosyl ceramide, Gb3. Some discrepancies exist in the literature regarding the binding of the toxins to Gb4 as monitored by TLC overlay procedures. These procedures are widely used to investigate the specificity of carbohydrate-binding ligands. Polyisobutylmethacrylate, PIBM, is generally used in TLC overlay procedures to prevent silica loss and orient carbohydrate moieties for the binding of various ligands to glycolipids. We now report that pretreatment of chromatograms with PIBM modifies binding of VT1 to include Gb4 and decreases binding to Gb3 and the P1 glycolipid. We suggest that PIBM can alter the conformation of the glycolipid oligosaccharide, and therefore caution is advised in analysis of ligand binding to glycolipids after treatment with this compound.  相似文献   

14.
Oxidation of glycolipids in liposomes by galactose oxidase   总被引:1,自引:0,他引:1  
Small unilamellar phosphatidylcholine vesicles containing globo-series glycolipids were labeled by the galactose oxidase/NaB[3H]4 procedure. The major glycolipid of human red cells, globoside, was the best substrate for galactose oxidase both in vesicles and in tetrahydrofuran-containing buffer. The oxidation rates of membrane-bound ceramide trihexoside and Forssman glycolipid were one-fourth and one-tenth, respectively, of the oxidation rate of globoside. Membrane-bound ceramide dihexoside was not a substrate for galactose oxidase, although it was readily oxidized in tetrahydrofuran-containing buffer. Soluble sialoglycoproteins and membrane-incorporated glycophorin A stimulated the oxidation of globoside-containing vesicles, whereas membrane-bound GD1a ganglioside had no effect on globoside oxidation.  相似文献   

15.
Neutral glycolipids in PC12 cells were examined. A major neutral glycosphingolipid, isolated from a chloroform/methanol extract of the cells, was found to contain only galactose and glucose at a ratio of 3:1 and identified as ceramide tetrahexoside by fast atom bombardment (FAB) mass spectrometry. Its saccharide sequence was determined by a new method developed here using endoglycoceramidase (Ito, M., and Yamagata, T. (1986) J. Biol. Chem. 261, 14278-14282). The glycosphingolipid was digested with endoglycoceramidase to produce oligosaccharide which was subsequently pyridylaminated. The fluorescence-labeled oligosaccharide was digested with a series of specific exoglycosidases and fractionated by high performance liquid chromatography. The 2-aminopyridyl oligosaccharide was hydrolyzed by alpha-galactosidase to give a 2-aminopyridyl oligosaccharide which was identified as 2-aminopyridyl lactose by high performance liquid chromatography, indicating the glycolipid structure to be Gal alpha Gal alpha Gal beta GlcCer. Ceramide trihexoside obtained by limited digestion of the intact glycolipid was clearly identical with ceramide trihexoside obtained from human erythrocytes, according to NMR spectroscopy and methylation analysis. From these and other data on the intact glycolipid, obtained by methylation analysis and NMR spectroscopy, its structure was confirmed as Gal alpha 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer, III3-Gal alpha-globotriaosylceramide. This is the first report indicating the presence of this glycosphingolipid in PC12 cells.  相似文献   

16.
The sialyl-fucosyl-lactosamine-epitope present in sialyl (SA)-Lex (NeuAc alpha 2-3Gal beta 1-4 [Fuc alpha 1-3]GlcNAc beta 1-3Gal beta 1-4Glc-Cer), a carcinoembryonic antigen, has been recognized recently as a ligand for the binding of leukocyte-endothelial cell adhesion molecule 1 (LECAM-1) to myeloid and tumour cell surfaces. We have recently detected the presence of an alpha 1-3 fucosyltransferase (FucT-3) activity in both embryonic chicken brain (ECB) and human colon carcinoma cells (Colo-205) which catalyses the biosynthesis in vitro of SA-Lex and SA-diLex. Fucosyltransferase activities from both sources are stimulated in the presence of divalent cations (Mn2+, Mg2+, Ca2+, Co2+ and Fe2+), although absolute metal requirement is not observed. Substrate specificity studies with this partially purified (ECB, 3000-fold; Colo-205, 100-fold) novel FucT-3 indicate the preference for terminally sialyl-substituted glycolipid acceptors, as observed by the lower Km values when sialyl-neolactotetraosyl ceramide, LM1, (Neu-Gc alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4 Glc-Cer; Km = 0.048 mM) and sialyl-norhexaosylceramide, NeuGc-nLc6, (Neu-Gc alpha 2-3Gal beta 1-4 GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer; Km = 0.032 mM) were used as substrates. Fucosyltransferase from Colo-205 requires the presence of the acyl group of the ceramide moiety and an acetyl group on glucosamine in the acceptor glycolipid since lyso-LM1 was found to be completely inactive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
The presence of glycosphingolipids in the metacestodes of the fox tapeworm, Taenia crassiceps, has been established. The normal-phase TLC pattern of the neutral-fraction glycolipids revealed groups of bands corresponding to homologous components of increasing sugar chain length. The three simplest glycolipid components have been isolated and their chemical constitution determined as being of the neogala series: Gal beta 1Cer, Gal beta 6Gal beta 1Cer and Gal beta 6Gal beta 6Gal beta 1Cer. The ceramide tetrasaccharide fraction has been found to consist of a mixture of neogalatetraosylceramide, as an elongation of the neogala series, Gal beta 6Gal beta 6Gal beta 6Gal beta 1Cer and the component Gal alpha 4Gal beta 6Gal beta 6Gal beta 1Cer (both occurring in approximately equimolar proportions). The long-chain bases of the ceramide monogalactoside, digalactoside, trigalactoside and tetragalactosides contain, as well as small amounts of sphingosine, predominantly dihydrosphingosine/phytosphingosine in the approximate ratios 1.7:1, 1.4:1, 1:1 and 2.3:1, respectively. The major ceramide fatty acids have particularly long chains, with hexacosanoic and octacosanoic acids predominating. Upon reverse-phase TCL, the glycolipid components ceramide monogalactoside, digalactoside and trigalactoside were each separable into five component bands. Parent glycolipid components therefore show component band distributions comparable to one another in being governed by similar ceramide constitutions.  相似文献   

19.
Globotriaosylceramide [(Gal alpha 1-4Gal beta 1-4Glc-ceramide (Gb3)] was separated from human kidney, and the fatty acid composition was determined. Semisynthetic Gb3 molecular species of corresponding fatty acid chain length were prepared and compared for verotoxin (VT) binding affinity by TLC overlay, and a quantitative binding assay was performed in the presence of auxiliary lipids. Our results indicate that, within the natural range, fatty acid chain length has little effect on verotoxin binding but that Gb3 molecular species containing different fatty acids can interact to provide a higher affinity toxin receptor than any of the individual component receptor species. Receptor function as assayed by TLC overlay was not always found to correlate with binding in a lipid environment. Short-chain fatty acid Gb3 molecular species could not function as VT receptors under these conditions. Evidence is presented to suggest that fatty acid chain length can have a stereoselective effect on carbohydrate conformation.  相似文献   

20.
The inhibition of the binding of 125I-labeled Clostridium botulinum type C neurotoxin to synaptosomes by unlabeled toxin indicated that there were two kinds of receptors on the synaptosomal membrane. The dissociation constants (Kd) were calculated as 79 pM and 35 nM from the concentration of unlabeled toxin that induced half-displacement of bound 125I-toxin. These values agree satisfactorily with the values obtained from direct binding experiments (Agui, T, Syuto, B., Oguma, K., Iida, H., & Kubo, S. (1983) J. Biochem. 94, 521-527). The inhibition of the binding of 125I-toxin to synaptosomes and N-acetylneuraminyl(alpha 2-3)galactosyl(beta 1-3)N-acetylgalactosaminyl(beta 1-4) [N-acetylneuraminyl(alpha 2-8) N-acetylneuraminyl(alpha 2-3)]galactosyl(beta 1-4)glucosyl(beta 1-1)ceramide (GT1b) by unlabeled heavy chain indicated that heavy chain facilitates the binding of toxin to synaptosomes and GT1b. The synaptosomal and heavy chain complex Kd values were estimated as 12 nM and 24 microM. Monoclonal antibodies C-9 and CA-12 recognized the binding sites to GT1b and synaptosomes, respectively. Antigenic determinants against the two antibodies are presumably partially overlapping, and the overlapping area seems to be essential to the reaction between toxin and C-9 antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号