首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of apoptosis has been recognized as an important event in processes such as cellular development and homeostasis, as well as degenerative conditions like cancer. Prostate cancer during its advanced stages develops androgen independent cells that ultimately overgrow and promote metastatic events. Our group employing androgen independent LNCaP cells have previously proposed, based on electrophysiological findings, that apoptosis induced cells overexpress a cell death calcium channel-like molecule. Here we report the cloning and expression in Xenopus laevis oocytes of apoptosis regulated protein 2 (ARP2), a protein overexpressed in apoptosis induced LNCaP cells capable to induce calcium inward currents and apoptosis typical morphology changes in oocytes injected with arp2 mRNA. Our results also indicate that clone arp2 cDNA (1.3Kb) shares a 99% homology with a small fragment that corresponds to 18% of the complete sequence of Prp8 cDNA (7.0 Kb), a molecule that codifies for an important protein in the assembly of the spliceosome. We propose that protein ARP2 as a fragment of protein Prp8, corresponds to a molecule with a new function in apoptosis related phenomena. (Mol Cell Biochem 269: 189–201, 2005)  相似文献   

2.
Androgen‐independent prostate cancers express high levels of Bcl‐2, and this over‐expression of Bcl‐2 protects prostate cancer cells from undergoing apoptosis. Ursolic acid (UA) has demonstrated an anti‐proliferative effect in various tumor types. The aim of this study is to evaluate the difference between UA‐induced apoptosis in androgen‐dependent prostate cancer cell line LNCaP cells and androgen‐independent prostate cancer cell line LNCaP‐AI cells and to reveal the molecular mechanisms underlying the apoptosis. We found that UA treatment in vitro can effectively induce apoptosis in LNCaP and LNCaP‐AI cells. UA can overcome Bcl‐2‐mediated resistance to apoptosis in LNCaP‐AI cells. Intrinsic apoptotic pathways can be triggered by UA treatment because c‐Jun N‐terminal kinase (JNK) is activated and subsequently provokes Bcl‐2 phosphorylation and degradation, inducing activation of caspase‐9. Although further evaluation is clearly needed, the present results suggest the potential utility of UA as a novel therapeutic agent in advanced prostate cancer. J. Cell. Biochem. 109: 764–773, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgen sensitivity.  相似文献   

5.

Background

Dysregulation of many apoptotic related genes and androgens are critical in the development, progression, and treatment of prostate cancer. The differential sensitivity of tumour cells to TRAIL-induced apoptosis can be mediated by the modulation of surface TRAIL receptor expression related to androgen concentration. Our previous results led to the hypothesis that downregulation of TRAIL-decoy receptor DcR2 expression following androgen deprivation would leave hormone sensitive normal prostate cells vulnerable to the cell death signal generated by TRAIL via its pro-apoptotic receptors. We tested this hypothesis under pathological conditions by exploring the regulation of TRAIL-induced apoptosis related to their death and decoy receptor expression, as also to hormonal concentrations in androgen-sensitive human prostate cancer, LNCaP, cells.

Results

In contrast to androgen-insensitive PC3 cells, decoy (DcR2) and death (DR5) receptor protein expression was correlated with hormone concentrations and TRAIL-induced apoptosis in LNCaP cells. Silencing of androgen-sensitive DcR2 protein expression by siRNA led to a significant increase in TRAIL-mediated apoptosis related to androgen concentration in LNCaP cells.

Conclusions

The data support the hypothesis that hormone modulation of DcR2 expression regulates TRAIL-induced apoptosis in LNCaP cells, giving insight into cell death induction in apoptosis-resistant hormone-sensitive tumour cells from prostate cancer. TRAIL action and DcR2 expression modulation are potentially of clinical value in advanced tumour treatment.  相似文献   

6.
BACKGROUND: Neuroendocrine differentiation in prostatic carcinoma has been related to regulation of proliferation and metastatic potential and correlated with prognosis. More than 80% of prostate carcinomas initially respond to androgen ablation, but most relapse, due to the heterogeneous presence of androgen-dependent and independent clones. The pathways of cellular proliferation and apoptosis are inexorably linked to minimize the occurrence of neoplasia, and disfunction of apoptosis is proposed as a pathogenic process in malignant tumors. Androgen-dependent prostatic cancer cells undergo apoptosis after androgen deprivation, but not androgen-independent ones due to a defect in the initiation step. Anyway, they retain the basic cellular machinery to undergo apoptosis. We suggest a possible role of neuroendocrine differentiation in the onset and regulation of apoptosis in prostatic neoplasia. METHODS: LNCaP, PC-3 and DU 145 prostatic cancer cell lines were induced to undergo apoptosis after treatment with etoposide alone or plus androgen ablation. We tested the role of neuropeptides bombesin and calcitonin at modulating etoposide induced apoptosis. RESULTS: Etoposide-induced apoptosis in all cancer cell lines was achieved. In LNCaP androgen ablation was also required. Apoptosis is prevented in all three lines when bombesin was added. Calcitonin addition prevents apoptosis in PC-3, LNCaP and in an etoposide dose-dependent way in DU 145. CONCLUSION: Neuropeptides bombesin and calcitonin can modulate the apoptotic response of prostate cancer cells by inducing resistance to etoposide-induced apoptosis, suggesting that neuropeptides can be used as a target of therapeutical approach in prostatic carcinoma.  相似文献   

7.
8.
We investigated the effects of androgen receptor (AR) down regulation with a small interference RNA molecule (siRNA_AR(start)) on androgen sensitive LNCaP and androgen independent LNCaPabl prostate cancer cells, the latter representing an in vitro model for the development of therapy resistance in prostate cancer. Although LNCaPabl cells express increased levels of AR in comparison with androgen sensitive LNCaP cells, the protein was significantly down regulated in response to siRNA_AR(start) treatment. This AR down regulation resulted in a marked cell growth inhibition in both cell lines. By contrast, DU-145 prostate cancer cells, which lack AR expression, were not inhibited by the siRNA_AR(start). In consequence to AR down regulation, both cell lines, LNCaP and LNCaPabl, shared a highly similar gene expression profile in terms of major changes in cell cycle regulatory genes. The cell cycle inhibitor p21(Waf1/Cip1) as well as cyclin D1 were significantly up regulated by siRNA_AR(start) treatment, considering a switch in cyclin expression towards cell cycle retardation. Control molecules had moderate effects on cell proliferation and gene expression, respectively. In summary, we found that AR inhibition with siRNA induces cell growth retardation in androgen sensitive as well as in androgen independent prostate cancer cells and thus may represent an interesting approach to combat hormone-refractory prostate cancer.  相似文献   

9.
Activin, a member of the TGFbeta superfamily, is expressed in the prostate and inhibits growth. We demonstrate that the effects of activin and androgen on regulation of prostate cancer cell growth are mutually antagonistic. In the absence of androgen, activin induced apoptosis in the androgen-dependent human prostate cancer cell line LNCaP, an effect suppressed by androgen administration. Although activin by itself did not alter the cell cycle distribution, it potently suppressed androgen- induced progression of cells into S-phase of the cell cycle and thus inhibited androgen-stimulated growth of LNCaP cells. Expression changes in cell cycle regulatory proteins such as Rb, E2F-1, and p27 demonstrated a strong correlation with the mutually antagonistic growth regulatory effects of activin and androgen. The inhibitory effect of activin on growth was independent of serine, serine, valine, serine motif phosphorylation of Smad3. Despite their antagonistic effect on growth, activin and androgen costimulated the expression of prostate-specific antigen through a Smad3-mediated mechanism. These observations indicate the existence of a complex cross talk between activin and androgen signaling in regulation of gene expression and growth of the prostate.  相似文献   

10.
11.
12.
13.
14.
Regucalcin (RGN/SMP30) was discovered in 1978 and is a unique calcium‐binding protein contains no EF‐hand motif calcium‐binding domain. Its name, regucalcin, was proposed as it suppresses activation of enzymes related to calcium signalling. The regucalcin gene (rgn) is localized on the X chromosome. Regucalcin plays its role of suppressor protein in intracellular signalling pathways, including of protein kinases and protein phosphatase activities, protein synthesis, and DNA and RNA synthesis in liver cells. Overexpression of endogenous regucalcin has a suppressive effect on cell proliferation in modelled rat hepatoma H4‐II‐E cells, which are induced by various signalling stimulations in vitro. This suppressive effect is independent of apoptosis. Endogenous regucalcin plays a suppressive role on overproduction of proliferating cells in regenerating rat liver in vivo. Regucalcin mRNA expression is uniquely down‐regulated in development of carcinogenesis in liver of rats in vivo. Regucalcin mRNA and protein expressions are also depressed in human hepatoma HepG2 cells, MCF‐7 breast cancer cells, and prostate cancer LNCaP cells. Depression of regucalcin expression may be associated with activity progression of carcinogens. Regucalcin may be a key molecule suppressor protein in cell proliferation and carcinogenesis.  相似文献   

15.
人同源盒基因NKX3.1对前列腺癌细胞的诱导凋亡作用   总被引:3,自引:0,他引:3  
构建人同源盒基因NKX3.1 cDNA真核表达载体,研究其在前列腺癌细胞PC-3、LNCaP 中的表达及对细胞的促凋亡作用.以人前列腺癌细胞LNCaP细胞中的总RNA为模板,RT-PCR扩增NKX3.1基因全长编码片段,将NKX3.1 cDNA重组到真核表达载体pcDNA3.1(+)中; 将pcDNA3.1-NKX3.1表达载体瞬时转染前列腺癌细胞PC-3和LNCaP 细胞,用RT-PCR和Western印迹检测NKX3.1 cDNA在转录水平和蛋白水平的表达;绘制细胞生长曲线,观察NKX3.1对前列腺癌细胞增殖的抑制作用;用DNA/ladder和流式细胞术检测NKX3.1对前列腺癌细胞凋亡的影响,进一步用RT PCR检测凋亡相关基因caspase3、caspase8、caspase9、Apaf1、survivin和Bcl2表达的变化.人同源盒基因NKX3.1 cDNA真核表达载体pcDNA3.1-NKX3.1经酶切及测序鉴定正确. pcDNA3.1-NKX3.1转染PC-3和LNCaP细胞后,经RT-PCR和Western印迹证明能有效表达NKX3.1.生长曲线显示,前列腺癌细胞转染NKX3.1 cDNA后细胞增殖受到抑制;前列腺癌细胞转染NKX3.1 cDNA 48 h后,DNA电泳呈现具有凋亡特征的DNA ladder;流式细胞术检测出现明显凋亡峰;RT-PCR检测凋亡相关基因.结果显示,caspase3、caspase8、caspase9基因表达明显增加,Bcl2基因表达明显减少.本研究成功构建了真核表达载体pcDNA3.1 NKX3.1, 转染PC3和LNCaP细胞后能有效表达,并对细胞具有诱导凋亡作用  相似文献   

16.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

17.
18.
Li M  Jiang X  Liu D  Na Y  Gao GF  Xi Z 《Autophagy》2008,4(1):54-60
Androgen plays a critical role in the development and progression of prostate cancer. However, the regulatory role of androgen in the autophagic process and the function of the increased autophagosomes following androgen deprivation remain poorly understood. We found that autophagosomes, which were induced upon serum deprivation in LNCaP cells, can be significantly suppressed by dihydrotestosterone (DHT). Pharmacological inhibition of autophagy by 3-methyladenine led to increased apoptosis of LNCaP cells in serum-free medium compared to the medium with DHT or serum. Additionally, depletion of Beclin 1 to inhibit autophagy by small interfering RNA resulted in a slower proliferation of LNCaP cells in the medium depleted of serum than in the medium with DHT. Altogether, these findings suggested that LNCaP cells can resort to the autophagic pathway to survive under androgen deprivation conditions, which can be a novel mechanism involved in the transition of prostate cancer cells from an androgen-dependent to an androgen-independent cell type.  相似文献   

19.
20.
Androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, 80-90% of the patients who receive androgen ablation therapy ultimately develop recurrent tumors in 12-33 months after treatment with a median overall survival time of 1-2 years after relapse. LNCaP is a commonly used cell line established from a human lymph node metastatic lesion of prostatic adenocarcinoma. We previously established two relapsed androgen receptor (AR)-rich androgen-independent LNCaP sublines 104-R1 (androgen depleted for 12 months) and 104-R2 cells (androgen depleted for 24 months) from AR-positive androgen-dependent LNCaP 104-S cells. LNCaP 104-R1 and 104-R2 mimics the AR-positive hormone-refractory relapsed tumors in patients receiving androgen ablation therapy. Androgen treatment stimulates proliferation of 104-S cells, but causes growth inhibition and G1 cell cycle arrest in 104-R1 and 104-R2 cells. We investigated the protein expression profile difference between LNCaP 104-S vs. LNCaP 104-R1, 104-R2, PC-3, and DU-145 cells as well as examined the sensitivity of these prostate cancer cells to different chemotherapy drugs and small molecule inhibitors. Compared to 104-S cells, 104-R1 and 104-R2 cells express higher protein levels of AR, PSA, c-Myc, Skp2, BCL-2, P53, p-MDM2 S166, Rb, and p-Rb S807/811. The 104-R1 and 104-R2 cells express higher ratio of p-Akt S473/Akt, p-EGFR/EGFR, and p-Src/Src, but lower ratio of p-ERK/ERK than 104-S cells. PC-3 and DU-145 cells express higher c-Myc, Skp2, Akt, Akt1, and phospho-EGFR but less phospho-Akt and phospho-ERK. Overexpression of Skp2 increased resistance of LNCaP cells to chemotherapy drugs. Paclitaxel, androgen, and inhibitors for PI3K/Akt, EGFR, Src, or Bcl-2 seem to be potential choices for treatment of advanced prostate cancers. Our study provides rationale for targeting Akt, EGFR, Src, Bcl-2, and AR signaling as a treatment for AR-positive relapsed prostate tumors after hormone therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号