首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Worldwide bacterial resistance to traditional antibiotics has drawn much research attention to naturally occurring antimicrobial peptides (AMPs) owing to their potential as alternative antimicrobials. Structural studies of AMPs are essential for an in-depth understanding of their activity, mechanism of action, and in guiding peptide design. Two-dimensional solution proton NMR spectroscopy has been the major tool. In this article, we describe the applications of natural abundance 13C NMR spectroscopy that provides complementary information to 2D 1H NMR. The correlation of 13Cα secondary shifts with both 3D structure and heteronuclear 15N NOE values indicates that natural abundance carbon chemical shifts are useful probes for backbone structure and dynamics of membrane peptides. Using human LL-37-derived peptides (GF-17, KR-12, and RI-10), as well as amphibian antimicrobial and anticancer peptide aurein 1.2 and its analog LLAA, as models, we show that the cross peak intensity plots of 2D 1H-13Cα HSQC spectra versus residue number present a wave-like pattern (HSQC wave) where key hydrophobic residues of micelle-bound peptides are located in the troughs with weaker intensities, probably due to fast exchange between the free and bound forms. In all the cases, the identification of aromatic phenylalanines as a key membrane-binding residue is consistent with previous intermolecular Phe-lipid NOE observations. Furthermore, mutation of one of the key hydrophobic residues of KR-12 to Ala significantly reduced the antibacterial activity of the peptide mutants. These results illustrate that natural abundance heteronuclear-correlated NMR spectroscopy can be utilized to probe backbone structure and dynamics, and perhaps to map key membrane-binding residues of peptides in complex with micelles. 1H-13Cα HSQC wave, along with other NMR waves such as dipolar wave and chemical shift wave, offers novel insights into peptide-membrane interactions from different angles.  相似文献   

2.
1H, 13C and 15N chemical shift referencing in biomolecular NMR   总被引:25,自引:2,他引:23  
Summary A considerable degree of variability exists in the way that 1H, 13C and 15N chemical shifts are reported and referenced for biomolecules. In this article we explore some of the reasons for this situation and propose guidelines for future chemical shift referencing and for conversion from many common 1H, 13C and 15N chemical shift standards, now used in biomolecular NMR, to those proposed here.Abbreviations TMS tetramethylsilane - TSP 3-(trimethylsilyl)-propionate, sodium salt - DSS 2,2-dimethyl-2-silapentane-5-sulfonate, sodium salt - TFE 2,2,2-trifluoroethanol - DMSO dimethyl sulfoxide  相似文献   

3.
Assignments have been obtained for most of the 1H-NMR lines of melittin bound to fully deuterated dodecylphosphocholine micelles by combined use of two-dimensional spin echo correlated spectroscopy and one-dimensional NMR methods. Nuclear Overhauser enhancement measurements showed that the mobility of the entire polypeptide chain is reduced by binding of melittin to the detergent micelle and that the amino-terminal and carboxy-terminal halves of the primary structure constitute separate, compact domains within the conformation of micelle-bound melittin. p2H titration experiments showed that the presence of positive charges on the four amino groups of melittin had little influence on the conformation of the micelle-bound polypeptide. Titration of tetrameric melittin with detergent provided evidence that melittin assumes similar conformations as a self-aggregated tetramer and as a monomer bound to micelles.  相似文献   

4.
Micellar complexes of melittin with fully deuterated detergents have been studied by high resolution 1H nuclear magnetic resonance (NMR). The synthesis of deuterated micelles is described and it is shown that the 1H NMR spectrum of micelle-bound melittin is well resolved and suitable for detailed analysis by conventional high-resolution NMR methods. A preliminary characterization of micelle-bound melittin shows that interaction with the micelle results in different conformational and dynamic features for the hydrophobic and hydrophilic regions of the melittin amino acid sequence. The present experiments on melittin and preliminary results with other polypeptides and proteins demonstrate that in favourable cases high-resolution 1H NMR studies of the complexes formed between membrane proteins and deuterated micelles provides a viable method for conformational studies of membrane-bound proteins.  相似文献   

5.
Summary In this study we report on the 1H, 13C and 15N NMR chemical shifts for the random coil state and nearest-neighbor sequence effects measured from the protected linear hexapeptide Gly-Gly-X-Y-Gly-Gly (where X and Y are any of the 20 common amino acids). We present data for a set of 40 peptides (of the possible 400) including Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly, measured under identical aqueous conditions. Because all spectra were collected under identical experimental conditions, the data from the Gly-Gly-X-Ala-Gly-Gly series provide a complete and internally consistent set of 1H, 13C and 15N random coil chemical shifts for all 20 common amino acids. In addition, studies were also conducted into nearest-neighbor effects on the random coil shift arising from a variety of X and Y positional substitutions. Comparisons between the chemical shift measurements obtained from Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly reveal significant systematic shift differences arising from the presence of proline in the peptide sequence. Similarly, measurements of the chemical shift changes occurring for both alanine and proline (i.e., the residues in the Y position) are found to depend strougly on the type of amino acid substituted into the X position. These data lend support to the hypothesis that sequence effects play a significant role in determining peptide and protein chemical shifts.  相似文献   

6.
Herein are reported the mainchain 1H, 13C and 15N chemical shift assignments and amide 15N relaxation data for Escherichia coli DmsD, a 23.3 kDa protein responsible for the correct folding and translocation of the dimethyl sulfoxide reductase enzyme complex. In addition, the observed amide chemical shift perturbations resulting from complex formation with the reductase subunit DmsA leader peptide support a model in which the 44 residue peptide makes extensive contacts across the surface of the DmsD protein.  相似文献   

7.
The computer program casper uses 1H and 13C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the 1H and 13C, as well as 31P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 1H and 13C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D 1H,13C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t1 incremented 1H,13C-HSQC experiment and a 1D 1H,1H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3 Hz apart. The 1H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental 1H and 13C NMR chemical shifts.  相似文献   

8.
Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide which belongs to a glucagon/secretin superfamily, the ligand of class II G protein-coupled receptors. Knowledge for the conformation of VIP bound to membrane is important because the receptor activation is initiated by membrane binding of VIP. We have previously observed that VIP-G (glycine-extended VIP) is unstructured in solution, as evidenced by the limited NMR chemical shift dispersion. In this study, we determined the three-dimensional structures of VIP-G in two distinct membrane-mimicking environments. Although these are basically similar structures composed of a disordered N-terminal region and a long α-helix, micelle-bound VIP-G has a curved α-helix. The side chains of residues Phe(6), Tyr(10), Leu(13), and Met(17) found at the concave face form a hydrophobic patch in the micelle-bound state. The structural differences in two distinct membrane-mimicking environments show that the micelle-bound VIP-G localized at the water-micelle boundary with these side chains toward micelle interior. In micelle-bound PACAP-38 (one of the glucagon/secretin superfamily peptide) structure, the identical hydrophobic residues form the micelle-binding interface. This result suggests that these residues play an important role for the membrane binding of VIP and PACAP.  相似文献   

9.
Initiation of X-chromosome inactivation in female mammals depends on the non-coding RNA Xist. We have solved the NMR structure of a 14-nucleotide hairpin with a novel AUCG tetraloop fold from a Xist A-repeat that is essential for silencing. The 1H, 13C, 15N and 31P chemical shift assignments are reported.  相似文献   

10.
We investigated the possible existence of chemical shift of water nuclei in Artemia cysts using high resolution nuclear magnetic resonance (NMR) methods. The results conducted at 60, 200, and 500 MHz revealed an unusually large chemical shift for intracellular water protons. After correcting for bulk susceptibility effects, a residual downfield chemical shift of 0.11 ppm was observed in fully hydrated cysts. Similar results have been observed for the deuterium and 17O nuclei.

We have ruled out unusual intracellular pH, diamagnetic susceptibility of intracellular water, or interaction of water molecules with lipids, glycerol, and/or trehalose as possible origins of the residual chemical shift. We conclude that the residual chemical shift observed for water nuclei (1H, 2H, and 17O) is due to significant water-macromolecular interactions.

  相似文献   

11.
Calcium-binding protein 4 (CaBP4) regulates voltage-gated Ca2+ channels in retinal rod cells and specific mutations within CaBP4 are associated with congenital stationary night blindness type 2. We report complete NMR chemical shift assignments of the Ca2+-saturated form of CaBP4 with Ca2+ bound at EF1, EF3 and EF4 (BMRB no. 18877).  相似文献   

12.
As part of our NMR structure determination of the palladin Ig3 domain, we report nearly complete NMR chemical shift assignments for the 1H, 13C, and 15N nuclei.  相似文献   

13.
14.
Summary The feasibility of assigning the backbone 15N and 13C NMR chemical shifts in multidimensional magic angle spinning NMR spectra of uniformly isotopically labeled proteins and peptides in unoriented solid samples is assessed by means of numerical simulations. The goal of these simulations is to examine how the upper limit on the size of a peptide for which unique assignments can be made depends on the spectral resolution, i.e., the NMR line widths. Sets of simulated three-dimensional chemical shift correlation spectra for artificial peptides of varying length are constructed from published liquid-state NMR chemical shift data for ubiquitin, a well-characterized soluble protein. Resonance assignments consistent with these spectra to within the assumed spectral resolution are found by a numerical search algorithm. The dependence of the number of consistent assignments on the assumed spectral resolution and on the length of the peptide is reported. If only three-dimensional chemical shift correlation data for backbone 15N and 13C nuclei are used, and no residue-specific chemical shift information, information from amino acid side-chain signals, and proton chemical shift information are available, a spectral resolution of 1 ppm or less is generally required for a unique assignment of backbone chemical shifts for a peptide of 30 amino acid residues.  相似文献   

15.
Androcam is a calmodulin-like protein that acts as a testis-specific light chain to myosin VI during spermatogenesis in D. melanogaster. Modest, localized chemical shift changes that accompany Ca2+ binding to the androcam N-terminal lobe indicate that unlike calmodulin, androcam does not undergo a dramatic conformational change upon binding calcium. Here we report the 1H, 15N and 13C resonances of androcam in the high calcium (10 mM) state and show the extent of chemical shift changes for backbone resonances relative to the low calcium state.  相似文献   

16.
D Kohda  F Inagaki 《Biochemistry》1992,31(3):677-685
The interaction of mouse epidermal growth factor (mEGF) with micelles of a phospholipid analogue, perdeuterated dodecylphosphocholine (DPC), was investigated by two-dimensional 1H NMR. Sequence-specific resonance assignments of the micelle-bound mEGF have been made, and the chemical shifts were compared with those in the absence of DPC. DPC induced large chemical shift changes of the resonances from the residues in the C-terminal tail (residues 46-53) but little perturbation on the residues in the main core (residues 1-45). Starting from the three-dimensional structure in the absence of DPC, micelle-bound structures were calculated using the program XPLOR with interproton distance data obtained from NOESY spectra recorded in the presence of DPC. The C-terminal tail of mEGF was found to change conformation to form an amphiphilic structure when bound to the micelles. It is possible that induced fit in the C-terminal tail of mEGF occurs upon binding to a putative hydrophobic pocket of the EGF receptor.  相似文献   

17.
Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of 13C NMR data of RNAs. Our procedure uses five 13C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the 13C calibration and detect errors or inconsistencies in RNA 13C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure–13C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable 13C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure–chemical shift relationships with this improved list of 13C chemical shift data. This is demonstrated by a clear relationship between ribose 13C shifts and the sugar pucker, which can be used to predict a C2′- or C3′-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.  相似文献   

18.
The linear analysis of chemical shifts (LACS) has provided a robust method for identifying and correcting 13C chemical shift referencing problems in data from protein NMR spectroscopy. Unlike other approaches, LACS does not require prior knowledge of the three-dimensional structure or inference of the secondary structure of the protein. It also does not require extensive assignment of the NMR data. We report here a way of extending the LACS approach to 15N NMR data from proteins, so as to enable the detection and correction of inconsistencies in chemical shift referencing for this nucleus. The approach is based on our finding that the secondary 15N chemical shift of the backbone nitrogen atom of residue i is strongly correlated with the secondary chemical shift difference (experimental minus random coil) between the alpha and beta carbons of residue i − 1. Thus once alpha and beta 13C chemical shifts are available (their difference is referencing error-free), the 15N referencing can be validated, and an appropriate offset correction can be derived. This approach can be implemented prior to a structure determination and can be used to analyze potential referencing problems in database data not associated with three-dimensional structure. Application of the LACS algorithm to the current BMRB protein chemical shift database, revealed that nearly 35% of the BMRB entries have δ 15N values mis-referenced by over 0.7 ppm and over 25% of them have δ 1HN values mis-referenced by over 0.12 ppm. One implication of the findings reported here is that a backbone 15N chemical shift provides a better indicator of the conformation of the preceding residue than of the residue itself. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts   总被引:3,自引:3,他引:0  
A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts – RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 Å) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of 20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (< 1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1H), 0.980 (13C), 0.996 (13C), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http://redpoll.pharmacy.ualberta.ca.  相似文献   

20.
The use of 13C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically 13C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for 13Cε1 nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from 15N backbone relaxation measurements. Compared to measurements of backbone nuclei, 13Cε1 dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the 13Cε1 dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号