首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past year, the crystal structure of a dimeric version of the Escherichia coli Lac repressor bound to operator DNA was determined at 2.6A resolution, providing a closer view of the operator-bound conformation of the repressor. Refined NMR studies of the DNA-binding portion of the repressor complexed to operator DNA have revealed further details of the unique DNA-binding interactions of the repressor. The structural studies have been complemented by continued biochemical studies, with the overall goal of understanding the mechanism of allosteric regulation.  相似文献   

2.
BACKGROUND: Lactose repressor protein (Lac) controls the expression of the lactose metabolic genes in Escherichia coli by binding to an operator sequence in the promoter of the lac operon. Binding of inducer molecules to the Lac core domain induces changes in tertiary structure that are propagated to the DNA-binding domain through the connecting hinge region, thereby reducing the affinity for the operator. Protein-protein and protein-DNA interactions involving the hinge region play a crucial role in the allosteric changes occurring upon induction, but have not, as yet, been analyzed in atomic detail. RESULTS: We have used nuclear magnetic resonance (NMR) spectroscopy and restrained molecular dynamics (rMD) to determine the structure of the Lac repressor DNA-binding domain (headpeice 62; HP62) in complex with a symmetrized lac operator. Analysis of the structures reveals specific interactions between Lac repressor and DNA that were not found in previously investigated Lac repressor-DNA complexes. Important differences with the previously reported structures of the HP56-DNA complex were found in the loop following the helix-turn-helix (HTH) motif. The protein-protein and protein-DNA interactions involving the hinge region and the deformations in the DNA structure could be delineated in atomic detail. The structures were also used for comparison with the available crystallographic data on the Lac and Pur repressor-DNA complexes. CONCLUSIONS: The structures of the HP62-DNA complex provide the basis for a better understanding of the specific recognition in the Lac repressor-operator complex. In addition, the structural features of the hinge region provide detailed insight into the protein-protein and protein-DNA interactions responsible for the high affinity of the repressor for operator DNA.  相似文献   

3.
Previous structures of Lac repressor bound to DNA used a fully symmetric "ideal" operator sequence that is missing the central G-C base-pair present in the three natural operator sequences. Here we have determined the X-ray crystal structure of a dimeric Lac repressor bound to a 22 base-pair DNA with the natural operator O1 sequence and the anti-inducer ONPF, at 4.0 A resolution. The natural operator is bent in the same way as the symmetric sequence, due to the binding of the hinge helices of the repressor to the minor groove at the central GCGG sequence of O1. Comparison of the structures of the repressor bound to the natural and symmetric operators shows very similar overall structures, with only slight rearrangements of the headpiece domains of the repressor. Analysis of crystals with iodinated DNA shows that the operator is uniquely positioned and allows for the sequence registration of the DNA relative to the repressor to be determined. The kink in the operator is centered between the left half-site and the central G-C base-pair of O1. Our results are most consistent with a previously proposed model in which, relative to the complex with the symmetric operator, the repressor accommodates binding to the natural operator sequence by shifting the position of the right headpiece by one base-pair step towards the center of O1.  相似文献   

4.
How Lac repressor finds lac operator in vitro.   总被引:6,自引:0,他引:6  
Filter-binding and gel mobility shift assays were used to analyse the kinetics of the interaction of Lac repressor with lac operator. A comparison of the two techniques reveals that filter-binding assays with tetrameric Lac repressor have often been misinterpreted. It has been assumed that all complexes of Lac repressor and lac operator DNA bind with equal affinity to nitrocellulose filters. This assumption is wrong. Sandwich or loop complexes where two lac operators bind to one tetrameric Lac repressor are not or are only badly retained on nitrocellulose filters under normal conditions. Taking this into account, dimeric and tetrameric Lac repressor do not show any DNA-length dependence of their association and dissociation rate constants when they bind to DNA fragments smaller than 2455 base-pairs carrying a single symmetric ideal lac operator. A ninefold increased association rate to ideal lac operator on lambda DNA is observed for tetrameric but not dimeric Lac repressor. It is presumably due to intersegment transfer involving lac operator-like sequences.  相似文献   

5.
Flexibility of the DNA-binding domains of trp repressor   总被引:9,自引:0,他引:9  
An orthorhombic crystal form of trp repressor (aporepressor plus L-tryptophan ligand) was solved by molecular replacement, refined to 1.65 A resolution, and compared to the structure of the repressor in trigonal crystals. Even though these two crystal forms of repressor were grown under identical conditions, the refined structures have distinctly different conformations of the DNA-binding domains. Unlike the repressor/aporepressor structural transition, the conformational shift is not caused by the binding or loss of the L-tryptophan ligand. We conclude that while L-tryptophan binding is essential for forming a specific complex with trp operator DNA, the corepressor ligand does not lock the repressor into a single conformation that is complementary to the operator. This flexibility may be required by the various binding modes proposed for trp repressor in its search for and adherence to its three different operator sites.  相似文献   

6.
We constructed expression libraries for Lac repressor mutants with amino acid exchanges in positions 1, 2, 5 and 9 of the recognition helix. We then analysed the interactions of residues 5 and 9 with operator variants bearing single or multiple symmetric base-pair exchanges in positions 3, 4 and 5 of the ideal fully symmetric lac operator. We isolated 37 independent Lac repressor mutants with five different amino acids in position 5 of the recognition helix that exhibit a strong preference for particular residues in position 2 and, to a lesser extent, in position 1 of the recognition helix. Our results suggest that residue 5 of the recognition helix (serine 21) contributes to the specific recognition of base-pair 4 of the lac operator. They further suggest that residue 9 of the recognition helix (asparagine 25) interacts non-specifically with a phosphate of the DNA backbone, possibly between base-pairs 2 and 3.  相似文献   

7.
Lac repressor, lambda cro protein and their operator complexes are structurally, biochemically and genetically well analysed. Both proteins contain a helix-turn-helix (HTH) motif which they use to bind specifically to their operators. The DNA sequences 5'-GTGA-3' and 5'-TCAC-3' recognized in palindromic lac operator are the same as in lambda operator but their order is inverted form head to head to tail to tail. Different modes of aggregation of the monomers of the two proteins determine the different arrangements of the HTH motifs. Here we show that the HTH motif of lambda cro protein can replace the HTH motif of Lac repressor without changing its specificity. Such hybrid Lac repressor is unstable. It binds in vitro more weakly than Lac repressor but with the same specificity to ideal lac operator. It does not bind to consensus lambda operator.  相似文献   

8.
We constructed and characterized four Tet repressor (TetR) variants with engineered cysteine residues which can form disulfide bonds and are located in regions where conformational changes during induction by tetracycline (tc) might occur. All TetR mutants show nearly wild-type activities in vivo, and the reduced proteins also show wild-type activities in vitro. Complete and reversible disulfide bond formation was achieved in vitro for all four mutants. The disulfide bond in NC18RC94 immobilizes the DNA reading head with respect to the protein core and prevents operator binding. Formation of this disulfide bond is possible only in the tc-bound, but not in the operator-bound conformation. Thus, these residues must have different conformations when bound to these ligands. The disulfide bonds in DC106PC159' and EC107NC165' immobilize the variable loop between alpha-helices 8 and 9 located near the tc-binding pocket. A faster rate of disulfide formation in the operator-bound conformation and a lack of induction after disulfide formation show that the variable loop is located closer to the protein core in the operator-bound conformation and that a movement is necessary for induction. The disulfide bond in RC195VC199' connects alpha-helices 10 and 10' of the two subunits in the dimer and is only formed in the tc-bound conformation. The oxidized protein shows reduced operator binding. Thus, this bond prevents formation of the operator-bound conformation. The detection of conformational changes in three different regions is the first biochemical evidence for induction-associated global internal movements in TetR.  相似文献   

9.
Tight binding mutants of Lac repressor exhibit complex repression phenomena. In this work, in vivo Lac operator binding of three such mutants of E. coli Lac repressor (X86: ser 61-leu, l12: pro 3-tyr and the double mutant l12X86: pro 3-tyr, ser 61-leu) was analyzed. Repression of beta-galactosidase synthesis controlled by ideal lac operator and its 27 symmetric operator variants containing each possible base-pair at each single half-operator position in the presence of the tight-binding Lac repressor mutants was determined. The average increase of repression with all operator variants was about 3 fold with the X86 mutant. It was about 4 fold with the l12 mutant and about 2 fold with the double mutant l12X86 as compared to wildtype Lac repressor. The X86 mutant showed the same increase of affinity to all operator variants, whereas the l12 and l12X86 mutants exhibited lower repression with some variants than with most others. These results suggest that the X86 mutant has gained no additional specificity. In contrast the l12 mutant and the l12X86 mutant exhibit a relaxed specificity for certain base pairs in positions 1 and 3 of lac operator. This suggests that the extreme N-terminus of Lac repressor may interact with the inner base-pairs in the minor groove.  相似文献   

10.
Unexpected features seen by high resolution X-ray crystallography at the interface of the trp repressor and the 'traditional' trp operator provoked the claim that the DNA fragment used in the crystal structure is not the true operator, and therefore that the crystal structure of the trp repressor-operator complex does not portray a specific interaction. An alternative sequence was proposed mainly on the basis of mutational studies and gel retardation analysis of short target duplexes (Staacke et al., 1990a,b). We have reexamined the sequence consensus in trpR-repressible promoters and analyzed the mutagenesis experiments of others including Staacke et al. (1990a) and found them fully consistent with the interactions of the traditional operator sequence seen in the crystal structure, and stereochemically inconsistent with the above referenced alternative model. Moreover, an in vitro trp repressor-DNA binding analysis, employing both novel DNA constructs devised to avoid previously encountered artifacts as well as full-length promoter sequences, indicates that the traditional operator used in the crystal structure is the preferred target of the trp repressor.  相似文献   

11.
The crystal structures of corepressor-bound and free Escherichia coli purine repressor (PurR) have delineated the roles of several residues in corepressor binding and specificity and the intramolecular signal transduction (allosterism) of this LacI/GalR family member. From these structures, residue W147 was implicated as a key component of the allosteric response, but in many members of the LacI/GalR family, position 147 is occupied by an arginine. To understand the role of this tryptophan at position 147, three proteins, substituted by phenylalanine (W147F), alanine (W147A), or arginine (W147R), were constructed and characterized in vivo and in vitro, and their structures were determined. W147F displays a decreased affinity for corepressor and is a poor repressor in vivo. W147A and W147R, on the other hand, are super repressors and bind corepressor 13.6 and 7.9 times more tightly, respectively, than wild-type. Each mutant PurR-hypoxanthine-purF operator holo complex crystallizes isomorphously to wild-type. Whereas the apo corepressor binding domain (CBD) of W147F crystallizes under those conditions used for the wild-type protein, neither the apo CBD of W147R nor W147A crystallizes, although screened extensively for new crystal forms. Structures of the holo repressor mutants have been solved to resolutions between 2.5 and 2.9 A, and the structure of the apo CBD of W147F has been solved to 2.4 A resolution. These structures provide insight into the altered biochemical properties and physiological functions of these mutants, which appear to depend on the sometimes subtle preference for one conformation (apo vs holo) over the other.  相似文献   

12.
This paper shows that 19F-nuelear magnetic resonance spectroscopy on 3-fluoro-tyrosine and 5-fluorotryptophan-substituted wild-type lactose operon repressors from Escherichia coli can be used to examine the interactions with lac operator DNA.A survey of inducer and salt concentration effects on the repressor-operator complex is presented. The data lead us to a scheme for the interactions between the repressor, operator and inducer, in both binary and ternary complexes, that accommodate the results published by others.The complex between the tetrameric repressor and one 36 base-pair operator DNA fragment results in the simultaneous broadening of the resonances from all four N-terminal DNA binding domains. The actual contacts made by these binding domains are similar but probably not identical.The binding of the inducer molecule to the tetrameric repressor results in an allosteric change that can be monitored by the increased intensity of the resonances from individual tyrosine residues in the N-terminal binding domain. This increased N-terminal tyrosine resonance intensity in the complex is transmitted to repressor subunits that have not yet bound an inducer molecule.  相似文献   

13.
14.
The lac repressor-operator system is a model system for understanding protein-DNA interactions and allosteric mechanisms in gene regulation. Despite the wealth of biochemical data provided by extensive mutations of both repressor and operator, the specific recognition mechanism of the natural lac operators by lac repressor has remained elusive. Here we present the first high-resolution structure of a dimer of the DNA-binding domain of lac repressor bound to its natural operator 01. The global positioning of the dimer on the operator is dramatically asymmetric, which results in a different pattern of specific contacts between the two sites. Specific recognition is accomplished by a combination of elongation and twist by 48 degrees of the right lac subunit relative to the left one, significant rearrangement of many side chains as well as sequence-dependent deformability of the DNA. The set of recognition mechanisms involved in the lac repressor-operator system is unique among other protein-DNA complexes and presents a nice example of the adaptability that both proteins and DNA exhibit in the context of their mutual interaction.  相似文献   

15.
16.
A model for residues 93-236 of the lambda repressor (1gfx) was predicted, based on the UmuD(') crystal structure, as part of four intact repressor molecules bound to two adjacent operator sites. The structure of region 136-230 in 1gfx was found to be nearly identical to the independently determined crystal structure of the 132-236 fragment, 1f39, released later by the PDB. Later, two more tetrameric models of the lambda repressor tetramer bound to two adjacent operator sites were constructed by us; in one of these, 1j5g, the N-domain and C-domain coordinates and hence monomer-monomer and dimer-dimer interactions are almost the same as in 1gfx, but the structure of the linker region is partly based on the linker region of the LexA dimer in 1jhe; in the other, 1lwq, the crystalline tetramer for region 140-236 has been coopted from the crystal structure deposited in 1kca, the operator DNA and N-domain coordinates of which are same as those in 1gfx and 1j5g, but the linker region is partly based on the LexA dimer structures 1jhe and 1jhh. Monomer-monomer interactions at the same operator site are stabilized by exposed hydrophobic side chains in beta-strands while cooperative interactions are mostly confined to beta(6) and some adjacent residues in both 1gfx and 1j5g. Mutational data, existence of a twofold axis relating two C-domains within a dimer, and minimization of DNA distortion between adjacent operator sites allow us to roughly position the C-domain with respect to the N-domain for both 1gfx and 1j5g. The study correlates these models with functional, biochemical, biophysical, and immunological data on the repressor in the literature. The oligomerization mode observed in the crystal structure of 132-236 may not exist in the intact repressor bound to the operator since it is shown to contradict several published biochemical data on the intact repressor.  相似文献   

17.
The three-dimensional structure of the lambda repressor C-terminal domain (CTD) has been determined at atomic resolution. In the crystal, the CTD forms a 2-fold symmetric tetramer that mediates cooperative binding of two repressor dimers to pairs of operator sites. Based upon this structure, a model was proposed for the structure of an octameric repressor that forms both in the presence and absence of DNA. Here, we have determined the structure of the lambda repressor CTD in three new crystal forms, under a wide variety of conditions. All crystals have essentially the same tetramer, confirming the results of the earlier study. One crystal form has two tetramers bound to form an octamer, which has the same overall architecture as the previously proposed model. An unexpected feature of the octamer in the crystal structure is a unique interaction at the tetramer-tetramer interface, formed by residues Gln209, Tyr210 and Pro211, which contact symmetry-equivalent residues from other subunits of the octamer. Interestingly, these residues are also located at the dimer-dimer interface, where the specific interactions are different. The structures thus indicate specific amino acid residues that, at least in principle, when altered could result in repressors that form tetramers but not octamers.  相似文献   

18.
The structure of purified phage λ repressor has been examined by high resolution electron microscopy. The repressor molecule appears predominantly as a tetramer of about 95 Å × 120 Å. We have proposed a model to account for the variety of aspects seen on the electron micrographs. Spreading DNA without protein film and use of uranyl formate staining allowed the simultaneous visualization of the DNA and the structure of the repressor molecule bound to it. Mapping the positions of λ repressor bound to whole λ DNA shows preferential binding to the region containing the operators. At high resolution multiple binding of repressor to the operator can be demonstrated. Depending on the amount of repressor present, rows of one to four repressor tetramers are seen on the DNA, confirming the model of the operator containing four binding sites for repressor. The bound repressor can consequently protect against nuclease digestion of operator pieces of approximately 30, 57, 87 and 111 base-pairs. The isolated operator appears in the electron microscope as short double-stranded DNA fragments which can be shown to rebind repressor.  相似文献   

19.
Stability of a Lac repressor mediated "looped complex"   总被引:3,自引:0,他引:3  
M Brenowitz  A Pickar  E Jamison 《Biochemistry》1991,30(24):5986-5998
The quantitation of the stability of a protein-mediated "looped complex" of the Lac repressor and DNA containing two protein-binding sites whose centers of symmetry are separated by 11 helical turns (114 bp) was accomplished by footprint and gel mobility-shift titration techniques. Lac repressor binding to this DNA was only moderately cooperative; a cooperative free energy of -1.0 kcal/mol was calculated in a model-independent fashion from the individual-site loading energies obtained from the footprint titration studies. In order to partition the cooperative binding energy into components representing the dimer-tetramer association of Lac repressor and the cyclization probability of the intervening DNA, advantage was taken of the presence of experimental measures that were in proportion to the concentration of the looped complex present in solution. One measure was the DNase I hypersensitivity observed in footprint titrations in bands located between the two binding sites. The second measure resulted from the electrophoretic resolution in the gel mobility-shift titrations of the band representing the doubly liganded "tandem complex" from the band representing the singly liganded complexes, including the looped complex. Analysis of the footprint and mobility-shift titration data utilizing this additional information showed that approximately 65% of the molecules present in solution are looped complexes at pH 7.0, 100 mM KCl, and 20 degrees C when the binding sites on the DNA are saturated with protein. Reconciliation of the observed low binding cooperativity and the high proportion of looped complexes could only be obtained when the titration data were analyzed by a model in which Lac repressor tetramers dissociate into dimers in solution. The proportion of looped complexes present in solution is highly dependent on the dimer-tetramer association constant, delta Gtet. This result is consistent with the determination by high-pressure fluorescence techniques that Lac repressor tetramers dissociate with an association free energy comparable to their DNA-binding free energies [Royer, C. A., Chakerian, A. E., & Matthews, K. S. (1990) Biochemistry 29, 4959-4966]. However, when the value of delta Gtet of -10.6 kcal/mol (at 20 degrees C) reported by Royer et al. (1990) is assumed, the titration data demand that tetramers bind DNA with much greater affinity than dimers: a result inconsistent with the destabilization of tetramers by the operator observed in the dimer-tetramer dissociation studies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A lambda-repressor mutant, S228N, which is defective in tetramer formation in the free state but retains full cooperativity, was studied in detail. Isolated single operator-bound S228N repressor shows association properties similar to those of the wild-type repressor. Fluorescence anisotropy studies with dansyl chloride-labeled repressor show a dimer-monomer dissociation constant of around 10(-5) M. The structure of the mutant repressor was studied by circular dichroism, acrylamide quenching and sulfhydryl reactivity at protein concentrations of < or =10(-6) M, where it is predominantly monomeric. The results suggest no significant perturbations in the structure of the S228N mutant repressor from that of the wild-type repressor. Urea denaturation studies also indicate no significant change in the stability of the repressor. The results were used to calculate energetics of loop formation in the cooperative binding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号