首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
1. Rat liver slices were employed to study the relative rates of incorporation of a mixture of [2-(3)H]- or [1,3-(3)H]-glycerol and [1-(14)C]glycerol into lipids. 2. With 0.1mm-glycerol approx. 82% of the newly synthesized lipid, calculated from (14)C incorporation, was present as neutral lipid, 13% as phosphatidylcholine and 5% as phosphatidylethanolamine. Increasing the glycerol concentration to 40mm caused a decrease in the percentage of neutral lipid to 59% and a corresponding increase in the percentage of phosphatidylcholine to 36% of the newly synthesized lipid. 3. The (d.p.m. of 2-(3)H)/(d.p.m. of 1-(14)C) ratio in glycerolipid was considerably higher than that in precursor glycerol throughout the range of experimental conditions. In contrast the incorporation of a mixture of [1,3-(3)H]glycerol and [1-(14)C]glycerol into lipid occurred with little or no change in the (3)H/(14)C ratio. 4. Respiring rat liver mitochondria were found to oxidize a mixture of sn-[2-(3)H]- and sn-[1-(14)C]-glycerol 3-phosphate with a resultant increase in the (3)H/(14)C ratio of the remaining sn-glycerol 3-phosphate. This increase is due to a (3)H isotope effect of the mitochondrial sn-glycerol 3-phosphate dehydrogenase (EC 1.1.99.5), which discriminates against sn-[2-(3)H]glycerol 3-phosphate during oxidation. 5. A method is described for the simultaneous determination of the relative contributions of the glycerol phosphate and dihydroxyacetone phosphate pathways of glycerolipid biosynthesis in rat liver slices. The method involves measurement of the (d.p.m. of 2-(3)H)/(d.p.m. of 1-(14)C) ratio in both sn-glycerol 3-phosphate and glycerolipid after incubation of rat liver slices with a mixture of [2-(3)H]glycerol and [1-(14)C]glycerol for various times. 6. By using this method it was shown that 40-50% of the glycerol incorporated into lipid by rat liver slices proceeded via the sn-glycerol 3-phosphate pathway and 50-60% was incorporated via dihydroxyacetone phosphate.  相似文献   

2.
Untransformed BHK-21-c13 fibroblasts as well as 4 polyoma-transformed strains were incubated with D-[U-14C,3-3H]glucose. This substrate generates intracellular labeled glycerol, and also [4-3H]NADPH via the phosphogluconate oxidative pathway. The latter selectively transfers hydrogen to C-2 of glycerol in glycerolipid via the acyl dihydroxyacetone phosphate pathway. After incubation, the distribution of radioactivity and the ratios of 3H/14C at the three positions of recovered glycerol were determined in sn-glycerol 3-phosphate, saponifiable glycerolipids, alkyl ether glycerolipids, and plasmalogens. In each of the cell types examined, 3H in the sn-1 position of glycerol in the recovered ether-containing glycerolipids was negligible, yet this position contained most of the recovered 3H in sn-glycerol 3-phosphate and saponifiable glycerolipids. The 3H/14C ratio in position 2 of glycerol, measured at various incubation times, was from 5- to 200-fold greater in the saponifiable glycerolipids than in free sn-glycerol 3-phosphate. The ratio in position 2 of ether-containing glycerolipids was the same or greater than that in the saponifiable glycerolipids in all of the cell types employed. A similar pattern in the 3H/14C ratio was observed when BHK-21-c13 cells were incubated with D-[U-14C,1-3H]glucose. These observations demonstrate significant participation of the acyl dihydroxyacetone phosphate pathway in glycerolipid synthesis in BHK cells.  相似文献   

3.
The ability in vitro of yeast mitochondrial and microsomal fractions to synthesize lipid de novo was measured. The major phospholipids synthesized from sn-[2-(3)H]glycerol 3-phosphate by the two microsomal fractions were phosphatidylserine, phosphatidylinositol and phosphatidic acid. The mitochondrial fraction, which had a higher specific activity for total glycerolipid synthesis, synthesized phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid, together with smaller amounts of neutral lipids and diphosphatidylglycerol. Phosphatidylcholine synthesis from both S-adenosyl[Me-(14)C]methionine and CDP-[Me-(14)C]choline appeared to be localized in the microsomal fraction.  相似文献   

4.
In the yeast Saccharomyces cerevisiae lipid particles harbor two acyltransferases, Gat1p and Slc1p, which catalyze subsequent steps of acylation required for the formation of phosphatidic acid. Both enzymes are also components of the endoplasmic reticulum, but this compartment contains additional acyltransferase(s) involved in the biosynthesis of phosphatidic acid (K. Athenstaedt and G. Daum, J. Bacteriol. 179:7611-7616, 1997). Using the gat1 mutant strain TTA1, we show here that Gat1p present in both subcellular fractions accepts glycerol-3-phosphate and dihydroxyacetone phosphate as a substrate. Similarly, the additional acyltransferase(s) present in the endoplasmic reticulum can acylate both precursors. In contrast, yeast mitochondria harbor an enzyme(s) that significantly prefers dihydroxyacetone phosphate as a substrate for acylation, suggesting that at least one additional independent acyltransferase is present in this organelle. Surprisingly, enzymatic activity of 1-acyldihydroxyacetone phosphate reductase, which is required for the conversion of 1-acyldihydroxyacetone phosphate to 1-acylglycerol-3-phosphate (lysophosphatidic acid), is detectable only in lipid particles and the endoplasmic reticulum and not in mitochondria. In vivo labeling of wild-type cells with [2-3H, U-14C]glycerol revealed that both glycerol-3-phosphate and dihydroxyacetone phosphate can be incorporated as a backbone of glycerolipids. In the gat1 mutant and the 1-acylglycerol-3-phosphate acyltransferase slc1 mutant, the dihydroxyacetone phosphate pathway of phosphatidic acid biosynthesis is slightly preferred as compared to the wild type. Thus, mutations of the major acyltransferases Gat1p and Slc1p lead to an increased contribution of mitochondrial acyltransferase(s) to glycerolipid synthesis due to their substrate preference for dihydroxyacetone phosphate.  相似文献   

5.
Rates of phosphatidate synthesis from dihydroxyacetone phosphate via acyl dihydroxyacetone phosphate or glycerol phosphate are compared in homogenates of 13 tissues, most of which are deficient in glycerol phosphate dehydrogenase (EC 1.1.1.8). In all tissues examined, dihydroxyacetone phosphate entered phosphatidate more rapidly via acyl dihydroxyacetone phosphate than via glycerol phosphate. Tissues with a relatively low rate of phosphatidate synthesis via glycerol phosphate, showed no compensating increase in the rate of synthesis via acyl dihydroxyacetone phosphate. The rates at which tissue homogenates synthesize phosphatidate from dihydroxyacetone phosphate via glycerol phosphate increase as glycerol phosphate dehydrongenase increase. Both glycerol phosphate dehydrogenase and glycerol phosphate: acyl CoA acyltransferase (EC 2.3.1.15) are more active than dihydroxyacetone phosphate : acyl CoA acyltransferase (EC 2.3.1.42). Thus, all the tissue homogenates possessed an apparently greater capability to synthesize phosphatidate via glycerol phosphate than via acyl dihydroxyacetone phosphate, but did not express this potential. This result is discussed in relation to in vivo substrate limitations.  相似文献   

6.
Chemical and enzymatic methods have been developed to measure small quantities (10(-8) - 10(-10) mol) of acyldihydroxyacetone phosphate in animal tissues. Lipids extracted from tissue samples with acidic CHCl3/methanol were subjected to solvent partitioning at two different pH values for partial purification of this keto-lipid from other lipids. This lipid was then estimated radiometrically either by chemical reduction with NaB3H4 or by enzymatic reduction with [4B-3H]NADPH using a partially purified acyldihydroxyacetone-phosphate reductase (EC 1.1.1.101). Thin-layer chromatography revealed the presence of a number of 3H-labeled lipids in the NaB3H4-reduced product and further purification of the product was necessary to estimate the amount of acyl[2-3H]glycerol 3-phosphate formed. The enzymatic reduction was very specific for acyl/alkyldihydroxyacetone phosphate. The amounts (nmol/g) of these keto-lipids estimated in different tissues by the enzymatic method were 10.06 +/- 0.64 (guinea pig liver), 4.3 +/- 0.15 (rat liver), 2.1 (rat testis), 1.5 (rad kidney) and 1.2 (rat brain). Monoacylglycerol 3-phosphate, i.e., lysophosphatidic acid, which was co-purified with acyldihydroxyacetone phosphate, was found to be present in relatively larger amounts in tissues. The amounts (nmol/g) of this lipid, estimated by enzymatically measuring the amounts of sn-glycerol 3-phosphate released after alkaline methanolysis of the partially purified lipid extracts, were 143 (guinea pig liver), 58 (rat liver), 53 (rat kidney) and 92 (rat brain). Stearic acid (18:0) was found to be the major (65%) fatty acid present in the lysophosphatidate purified from guinea pig liver.  相似文献   

7.
Acute hydrazine exposure elevated rat liver triacylglycerol content and produced a rapid rise in triacylglycerol production from sn-[1,3-14C]glycerol 3-phosphate by liver homogenate and microsomal fractions. Hydrazine treatment also increased the incorporation of [1,3-14C]glycerol into hepatic triacylglycerol by the intact animal. Homogenates of hepatocyte monolayers exposed to hydrazine in vitro also exhibited an increased capacity to form triacylglycerol from sn-[1,3-14C]glycerol 3-phosphate. Hydrazine-dependent increases in hepatic triacylglycerol production measured in vitro correlated well with an increase in microsomal phosphatidate phosphohydrolase (EC 3.1.3.4) activity. Therefore, the fatty liver associated with hydrazine exposure may be explained in part by a rise in the enzymatic capacity of hepatic triacylglycerol biosynthesis.  相似文献   

8.
The effects on glycerolipid synthesis of a series of compounds including many drugs were investigated in cell-free preparations and slices of rat liver. p-Chlorobenzoate, p-chlorophenoxyisobutyrate, halofenate, D-amphetamine, adrenaline, procaine and N-[2-(4-chloro-3-sulphamoylbenzoyloxy)ethyl]norfenfluramine had little inhibitory effect on any of the systems investigated. Two amphiphilic anions, clofenapate and 2-(p-chlorophenyl)-2-(m-trifluoromethylphenoxy)acetate, both inhibited glycerol phosphate acyltransferase and diacylglycerol acyltransferase at approx. 1.6 and 0.7 mm respectively. Clofenapate (1 mm) also inhibited the incorporation of glycerol into lipids by rat liver slices without altering the relative proportions of the different lipids synthesized. The amphilic amines, mepyramine, fenfluramine, norfenfluramine, hydroxyethylnorfenfluramine, N-(2-benzoyloxyethyl)norfenfluramine, cinchocaine, chlorpromazine and demethylimipramine inhibited phosphatidate phosphohydrolase by 50% at concentrations between 0.2 and 0.9 mm. The last four compounds inhibited glycerol phosphate acyltransferase by 50% at concentrations between 1 and 2.6 mm. None of the amines examined appeared to be an effective inhibitor of diacylglycerol acyltransferase. Norfenfluramine, hydroxyethylnorfenfluramine and N-(2-benzoyloxyethyl)norfenfluramine produced less inhibition of glycerol incorporation into total lipids than was observed with equimolar clofenapate. The major effect of these amines in liver slices was to inhibit triacylglycerol and phosphatidylcholine synthesis and to produce a marked accumulation of phosphatidate. The results are discussed in terms of the control of glycerolipid synthesis. They partly explain the observed effects of the various drugs on lipid metabolism. The possible use of these compounds as biochemical tools with which to investigate the reactions of glycerolipid synthesis is considered.  相似文献   

9.
The phagocytosis of beta-glucan particles by human neutrophils and the associated activation of NADPH O2- forming oxidase were accompanied by an increased hydrolysis of phosphoinositides by phospholipase C, hydrolysis of phosphatidylcholine by phospholipase D, accumulation of diglyceride (DG) mass, and [Ca2+]i rise. The reaction of phospholipid hydrolysis played a minor role in the formation of DG, which was mainly formed by de novo synthesis from glucose. The activation of this pathway was shown by the stimulation of the incorporation of [U-14C]glucose into DG, which occurred very rapidly after the challenge of neutrophils with beta-glucan particles. This DG derived from glucose was found almost completely as 1-acyl-2-acyl-glycerol (DAG). On the basis of the finding that phosphatidic acid was the precursor of DAG, an increase in the incorporation of [U-14C]acetate into DAG did not occur, and the [14C]radioactivity was in the glycerol backbone, the synthesis of DAG from [U-14C]glucose occurred very likely via dihydroxyacetone phosphate and glycerol 3-phosphate, stepwise acylation to phosphatidic acid, and dephosphorylation by phosphatidate phosphatase.  相似文献   

10.
A procedure for stereoanalysis of radiochemically labeled glycerophospholipids is described. It is based on the study of the labeled alpha-glycerophosphate which retains its original configuration when liberated upon alkaline hydrolysis of the lipids. The labeled alpha-glycerophosphate is oxidized enzymatically with sn-3-glycerophosphate dehydrogenase and the product, dihydroxyacetone phosphate, is degraded with alkali to inorganic phosphate. The nonoxidizable alpha-glycerophophate (sn-1-glycerophosphate), the beta-glycerophosphate, and the inorganic phosphate derived from sn-3-glycerophosphate are quantitated after separation by thin-layer chromatography. The procedure gave the expected results when applied to [3H]glycerol-and 32P-labeled phosphatidylcholine, bis( monoacylglycero)phosphate, and phosphatidylglycerol from natural resources. Bis(monoacylglycero)phosphate, known also as lysobisphosphatidic acid, was synthesized from ]32P]diphosphatidylglycerol and from phosphatidyl[1',3'-3H]glycerol in lysosomal preparations of rat liver according to Poorthuis and Hostetler (1978. J. Lipid Res. 19: 309-315). Stereoanalysis proved that the product was in both cases a derivate of sn-1-glycerophospho-sn-1'-glycerol.  相似文献   

11.
1. The regional and subcellular distribution of the incorporation of sn-[(14)C]glycerol 3-phosphate into rat brain lipids in vitro was investigated and compared with the relative specific activity of various chemical and enzyme markers. The similarity between the subcellular distribution of this incorporation and of NADPH-cytochrome c reductase activity indicated that the synthesis of phosphatidic acid via this route correlated with the presence of endoplasmic reticulum. 2. Experiments in which various amounts of the microsomal fraction were added to fixed amounts of nuclear, myelin, nerve-ending and mitochondrial preparations clearly demonstrated that the endoplasmic-reticulum contamination of these fractions was entirely responsible for the incorporation of sn-[(14)C]glycerol 3-phosphate. 3. The presence of CMP or CTP inhibited the incorporation of sn-[(14)C]glycerol 3-phosphate into the whole homogenate. Similar effects were observed with individual fractions, except for the mitochondria. With the mitochondrial fraction the effect of these cytidine nucleotides varied with the preparation, stimulating in some preparations and inhibiting with other preparations. The presence of CDP-choline stimulated the incorporation into the whole homogenate and to a lesser extent into the subcellular fractions. 4. These results indicate that the various organelles of the central nervous system are more dependent on endoplasmic reticulum for the production of glycerolipids de novo than has previously been appreciated.  相似文献   

12.
1. Male rats were fed for 14 days on diets containing (by wt.) 53% of starch, or on diets in which 20% of the starch was replaced by sucrose, corn oil or lard. 2. The hepatic activities of the microsomal glycerol phosphate acyltransferase, dihydroxyacetone phosphate acyltransferase, phosphatidate cytidylyltransferase, diacylglycerol acyltransferase and choline phosphotransferase, and of the soluble phosphatidate phosphohydrolase, were measured. 3. The soluble phosphatidate phosphohydrolase activity was higher in those rats fed on lard than in those fed on the starch diet. Choline phosphotransferase activity was higher in the rats fed on corn oil than in those fed on the starch diet. 4. The rate of hepatic glycerolipid synthesis was measured in vivo 1 min after injection of [1,3-3H]glycerol and [1-14C]palmitate into the portal veins. 5. The relative rate of phosphatidylcholine synthesis in vivo was increased after feeding with corn oil and the higher specific activity of choline phosphotransferase may contribute to this result. The equivalent rate of triacylglycerol synthesis was increased by feeding with lard rather than corn oil, and the increased activity of phosphatidate phosphohydrolase may partly explain this. The latter changes probably contribute to the increased concentration of triacylglycerol which other authors have observed in the livers and sera of animals fed on saturated and monounsaturated fats.  相似文献   

13.
Embryos of Cuphea lanceolata have more than 80 mol% of decanoic acid ('capric acid') in their triacylglycerols, while this fatty acid is virtually absent in phosphatidylcholine (PtdCho). Seed development was complete 25-27 days after pollination, with rapid triacylglycerol deposition occurring between 9 and 24 days. PtdCho amounts increased until day 15 after pollination. Analysis of embryo lipids showed that the diacylglycerol (DAG) pool consisted of mainly long-chain molecular species, with a very small amount of mixed medium-chain/long-chain glycerols. Almost 100% of the fatty acid at position sn-2 in triacylglycerols (TAG) was decanoic acid. When equimolar mixtures of [14C]decanoic and [14C]oleic acid were fed to whole detached embryos, over half of the radioactivity in the DAG resided in [14C]oleate, whereas [14C]decanoic acid accounted for 93% of the label in the TAG. Microsomal preparations from developing embryos at the mid-stage of TAG accumulation catalysed the acylation of [14C]glycerol 3-phosphate with either decanoyl-CoA or oleoyl-CoA, resulting in the formation of phosphatidic acid (PtdOH), DAG and TAG. Very little [14C]glycerol entered PtdCho. In combined incubations, with an equimolar supply of [14C]oleoyl-CoA and [14C]decanoyl-CoA in the presence of glycerol 3-phosphate, the synthesized PtdCho species consisted to 95% of didecanoic and dioleic species. The didecanoyl-glycerols were very selectively utilized over the dioleoylglycerols in the production of TAG. Substantial amounts of [14C]oleate, but not [14C]decanoate, entered PtdCho. The microsomal preparations of developing embryos were used to assess the acyl specificities of the acyl-CoA:sn-glycerol-3-phosphate acyltransferase (GPAT, EC 2.3.1.15) and the acyl-CoA:sn-1-acyl-glycerol-3-phosphate acyltransferase (LPAAT, EC 2.3.1.51) in Cuphea lanceolata embryos. The efficiency of acyl-CoA utilization by the GPAT was in the order decanoyl = dodecanoyl greater than linoleoyl greater than myristoyl = oleoyl greater than palmitoyl. Decanoyl-CoA was the only acyl donor to be utilized to any extent by the LPAAT when sn-decanoylglycerol 3-phosphate was the acyl acceptor. sn-1-Acylglycerol 3-phosphates with acyl groups shorter than 16 carbon atoms did not serve as acyl acceptors for long-chain (greater than or equal to 16 carbon atoms) acyl-CoA species. On the basis of the results obtained, we propose a schematic model for triacylglycerol assembly and PtdCho synthesis in a tissue specialized in the synthesis of high amounts of medium-chain fatty acids.  相似文献   

14.
Bis(monoacylglycero)phosphate (BMP) has the unique stereoconfiguration of 3-acyl-sn-glycero-1-phosphoryl-1'-sn-[3'-acylglycerol] (Brotherus, J., Renkonen, O., Herrmann, J., and Fischer, W. (1974) Chem. Phys. Lipids 13, 178-182) which differs from other known mammalian phospholipids that have the sn-glycero-3-phosphoryl configuration. This stereochemistry may contribute to its physiologic function. Here we describe studies using the macrophage-like cell line RAW 264.7 designed to determined how this unique stereoconfiguration occurs. These studies show that the stereoconfiguration of BMP produced from exogenous phosphatidylglycerol (PG) by RAW 264.7 cells has the expected stereoconfiguration of 3-acyl-sn-glycero-1-phosphoryl-1'-sn-[3'-acylglycerol]. Experiments using diacyl-sn-[2-3H]glycero-3-phosphoryl-sn-1'-[2-3H]glycerol demonstrate that this unique stereoconfiguration is not produced due to an oxidation/reduction mechanism involving the sn-2-glycerol carbon. When dioleoyl-sn-[1-14C]glycero-3-phosphoryl-rac-glycerol was converted to 14C-labeled BMP, the 14C label was found esterified to the phosphate moiety. These results suggest that a stereospecific enzyme is capable of reorienting the radiolabeled glycerol backbone of this PG substrate, effectively changing the stereochemistry of the lipid. We also show that this enzyme is stereoselective with regard to the base glycerol moiety of the substrate PG used. Finally, we propose a new pathway for the synthesis of BMP from PG.  相似文献   

15.
The stereochemical course of the formation of the alkyl ether bond in alkyl ether lipids was investigated through the synthesis of stereospecifically labeled acyl R- or S-[1-3H]dihydroxyacetone 3-phosphate (DHAP) starting from L-glyceraldehyde. It was demonstrated directly that the formation of the alkyl ether bond results in the stereospecific exchange of the pro-R C-1 hydrogen of DHAP with a proton of water. The configuration of the hydrogen that is retained on C-1 after formation of the alkyl ether bond was also investigated. The alkyl ether lipid was degraded, and the DHAP backbone isolated as glycerol, converted to DHAP via glycerol 3-phosphate and treated with either aldolase or triose phosphate isomerase. The results demonstrated that the retained hydrogen on C-1, which was pro-S in the starting substrate, was pro-S in the product alkyl ether.  相似文献   

16.
In renal tubules isolated from fed rabbits glycerol is not utilized as a glucose precursor, probably due to the rate-limiting transfer of reducing equivalents from cytosol to mitochondria. Pyruvate and glutamate stimulated an incorporation of [14C]glycerol to glucose by 50- and 10-fold, respectively, indicating that glycerol is utilized as a gluconeogenic substrate under these conditions. Glycerol at concentration of 1.5 mM resulted in an acceleration of both glucose formation and incorporation of [14C]pyruvate and [14C]glutamate into glucose by 2- and 9-fold, respectively, while it decreased the rates of these processes from lactate as a substrate. In the presence of fructose, glycerol decreased the ATP level, limiting the rate of fructose phosphorylation and glucose synthesis. As concluded from the 'cross-over' plots, the ratios of both 3-hydroxybutyrate/acetoacetate and glycerol 3-phosphate/dihydroxyacetone phosphate, as well as from experiments performed with methylene blue and acetoacetate, the stimulatory effect of glycerol on glucose formation from pyruvate and glutamate may result from an acceleration of fluxes through the first steps of gluconeogenesis as well as glyceraldehyde-3-phosphate dehydrogenase. As inhibition by glycerol of gluconeogenesis from lactate is probably due to a marked elevation of the cytosolic NADH/NAD+ ratio resulting in a decline of flux through lactate dehydrogenase.  相似文献   

17.
1. Brown adipose tissue of the hamster possesses high specific activities of soluble, cytoplasmic NAD-linked, as well as mitochondrial flavin-coupled, glycerol-3-phosphate dehydrogenases. The ratio of the two enzyme activities is high (close to 1), when compared with other tissues of the hamster. 2. In the presence of rotenone, NADH is oxidised very poorly by homogenates of brown adipose tissue. A high rate of oxidation is obtained upon further addition of dihydroxyacetone phosphate, which itself is negligible oxidised. When followed fluorimetrically glycerol 3-phosphate can also be observed to induce NADH oxidation, but only after a significant lag time. Similar results are obtained with isolated mitochondria plus high-speed supernatant. With high-speed supernatant alone, only dihydroxyacetone phosphate has any effect, whereas with isolated mitochondria neither dihydroxyacetone phosphate nor glycerol 3-phosphate induce any NADH disappearance. 3. Respiration induced by NADH plus dihydroxyacetone phosphate in homogenates equals 56% of the respiration induced by glycerol 3-phosphate alone. 4. Respiration induced by NADH plus dihydroxyacetone phosphate, as well as that induced by glycerol 3-phosphate, is inhibited by the same concentrations of inhibitors as are required for inhibition of the mitochondrial dehydrogenase i.e. EDTA, long-chain unsaturated fatty acids, long-chain fatty acyl CoA esters. 5. In isolated brown adipocytes in the presence of rotenone, norepinephrine significantly inhibits respiration induced by glycerol 3-phosphate. 6. The results obtained are discussed with respect to the role of glycerol 3-phosphate as an electron sink for cytosolic reducing equivalents to maintain a low level of extramitochondrial NADH. A means of maintaining a level of glycerol 3-phosphate adequate for triglyceride synthesis is also considered.  相似文献   

18.
The glycerophosphate backbone for triglyceride synthesis is commonly believed to be created through the conversion of dihydroxyacetone phosphate (DHAP) by glycerophosphate dehydrogenase (GPD) to sn-glycerol 3-phosphate (GP), which is then converted by glycerophosphate acyltransferase (GPAT) to 1-acyl-GP. Consistent with this, GPD and GPAT are highly induced during differentiation of mouse 3T3-L1 preadipocytes. While the acyl dihydroxyacetone phosphate (acyl-DHAP) pathway for glycerolipid synthesis is commonly believed to be involved only in glycerol ether lipid synthesis, we report here that during conversion of 3T3-L1 preadipocytes to adipocytes, the specific activity of peroxisomal DHAP acyltransferase (DHAPAT) is increased by 9-fold in 6 days, while acyl-DHAP:NADPH reductase is induced by 5-fold. A parallel increase in the catalase (the peroxisomal marker enzyme) activity is also seen. In contrast, the specific activity of alkyl-DHAP synthase, the enzyme catalyzing the synthesis of the ether bond, is decreased by 60% during the same period. Unlike microsomal GPAT, the induced DHAPAT is found to have high activity at pH 5.5 and is resistant to inhibition by sulfhydryl agents, heat, and proteolysis. On subcellular fractionation, DHAPAT is found to be associated with microperoxisomes whereas GPAT activity is mainly present in microsomes. Northern blot analyses reveal that induction of DHAPAT can be largely explained through increases in DHAPAT mRNA. A comparison of microsomal and peroxisomal glycerolipid synthetic pathways, using D-[3-(3)H, U-(14)C]glucose as the precursor of the lipid glycerol backbone shows that about 40-50% of triglyceride is synthesized via the acyl-DHAP pathway. These results indicate that the acyl-DHAP pathway is important not only for the synthesis of ether lipids, but also for the synthesis of triacylglycerol and other non-ether glycerolipids.  相似文献   

19.
Diphosphatidyl[1',2',3'-14C]glycerol (cardiolipin) is converted to bis(monoacylglyceryl)phosphate when incubated in vitro with rat lysosomes at pH 4.4. The stereochemical configuration of the product is unknown. This reaction probably takes place via lysophosphatidylglycerol, one of the major products of diphosphatidylglycerol hydrolysis by lysosomes. Phosphatidyl[1',2',3'-14C]glycerol was introduced into mitochondrial membranes by incubating mitochondria with [U-14C]sn-glycerol-3-phosphate and cytidine diphosphate diacylglycerol. Membrane-bound phosphatidyl[1',2',3'-14C]glycerol is also converted to bis(monoacylglycerol)phosphate when incubated with lysosomes in a reaction that is dependent on the concentration of lysosomal protein and on incubation time. These results support our previous proposal (Poorthuis, B. J. H. M., and K. Y. Hostetler, 1976. J. Biol. Chem. 251: 4596-4602) that bis(monoacylglyceryl)phosphate formation may require the interaction of lysosomes with other membranes that contain the substrates for the reaction. The stereochemistry of bis(monoacylglyceryl)phosphate biosynthesis is discussed.  相似文献   

20.
The formation of phosphatidic acid from sn-glycerol 3-phosphate was studied in neuronal nuclear fraction N1 and a microsomal fraction P3, isolated from cerebral cortices of 15-day-old rabbits. Two assays were used, employing dithiothreitol, MgCl2, NaF and (A) sn-glycerol 3-phosphate, [14C]oleate, ATP and CoA or (B) sn-[3H]glycerol 3-phosphate and oleoyl-CoA. In both assays fraction N1 had specific rates of phosphatidic acid labelling (expressed per mumol phospholipid in the fraction) which were 5- to 6-times the corresponding values for P3. In contrast to N1, the formation of phosphatidic acid by fraction P3 was more sensitive to inhibition at high concentrations of oleoyl-CoA and was greatly dependent upon the presence of NaF. In the absence of this salt, P3 showed decreased phosphatidate formation and increased levels of radioactive monoacylglycerols. Using cerebral cortex, rough (R) and smooth (S) microsomal fractions were prepared, as was a microsomal fraction P from isolated nerve cell bodies. P had specific rates of phosphatidic acid labelling which were 2-3 times the values for P3, but were about 50% of the N1 values. This indicates a concentration of phosphatidate synthesis in the nucleus within the nerve cell. Specific rates for fraction R were higher and were similar to those of N1. In S, P3 and R the specific rates of phosphatidic acid synthesis paralleled specific RNA contents and indicated a location for phosphatidic acid synthesis within the rough endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号