首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
In this paper, we applied a new theoretical model of uterine contraction to a large panel of human pregnant and nonpregnant myometrial strips, treated or not by corticotrophin-releasing hormone (CRH). This model is based on a fine analysis of the contraction curves. This analysis yielded four mathematical parameters (beta, theta, tau 1, and tau 2) related to excitability, duration of plateau phase, and time constants for relaxation describing, respectively, the different portions of the contraction cycle. This leads to specific differences in spontaneous contractile activity between pregnant and nonpregnant states. The relaxing effect of CRH in the pregnant state is presumably correlated with the origin of the strips (the lower uterine segment). Besides our observation of a specific receptor-dependent relaxing effect of CRH in both pregnant and nonpregnant myometrium, we could identify highly significant effects at given CRH concentration for beta in nonpregnant myometrium and for theta, tau 1, and tau 2 in pregnant myometrium. In addition, highly significant differences were found between pregnant and nonpregnant myometrium. Also, we discovered a strong correlation between theta and tau 1, specifically in the pregnant state. Although the biochemical signification of these results remains to be elucidated, they contribute to emphasize the complex network of CRH action at the myometrial level. Furthermore, our approach could pave the way toward a better analysis of the efficacy of the uterine contractile behavior.  相似文献   

4.
A rise in intracellular calcium is the primary trigger for contractile activity in pregnant human myometrium. It is hypothesized that key proteins involved in myometrial calcium homeostasis are gestationally regulated and play an important role in the preparation for labor. The aims of the study were to investigate the role of sarcoplasmic reticulum Ca ATPases (SERCAs) in regulating spontaneous contractile activity in myometrium, and to determine the expression of SERCA isoforms 2a and 2b, and the plasma membrane Ca ATPase (PMCA), at term and during labor. Western blot analysis demonstrated that the expression of SERCA 2a and 2b significantly increased in myometrium of women in labor compared with those not in labor. The augmentation of contractile activity in laboring myometrium in the presence of a SERCA 2 inhibitor, cyclopiazonic acid (CPA), demonstrated the functional significance of this observation. It is interesting that the application of CPA in the presence of a calcium-activated potassium channel inhibitor to term nonlabor myometrium mimicked the response of myometrium from women in active labor to CPA alone. We conclude that the activity of SERCA isoforms becomes increasingly important in the maintenance of regular contractile activity during labor and may compensate for the functional loss of other calcium control pathways at term.  相似文献   

5.
Nitric oxide (NO) is a potent inhibitor of spontaneous contractions of the human non-pregnant myometrium; however, the precise mechanism by which NO causes the myometrial smooth muscles to relax remains unclear. The aim of this study was to determine the influence of methylene blue (MB) on myometrial contractions and the response of the myometrium to DEA/NO in vitro. Concentration-response curves to DEA/NO were constructed in the absence and presence of MB (5x10(-6), 10(-4) and 10(-2) mol/l) and 5x10(-3) mol/l cystamine. Cystamine did not counteract the DEA/NO-induced relaxation of the myometrial strips. MB itself, excluding the lowest concentration, caused noticeable changes in spontaneous activity. The changes involved a concentration-dependent increase in the frequency of contractions, and a decrease in their amplitude. In conclusion, our results confirm that NO relaxes the human myometrium via a cGMP-independent mechanism. The results obtained in the presence of MB may be misleading because of its complex influence on myometrial contractile activity.  相似文献   

6.
Premature delivery remains a serious risk factor in pregnancy, with currently licensed tocolytics unable to offer significant improvement in neonatal outcome. Further understanding of the regulators of uterine contractility is required to enable the development of novel and more effective tocolytic therapies. The transglutaminase family is a class of calcium-dependent, transamidating enzymes, of which tissue transglutaminase 2 is a multifunctional enzyme with roles in cell survival, migration, adhesion, and contractility. The aim of the present study was to investigate the role of this enzyme in regulating the contractility of pregnant human myometrium. Tissue strips from biopsy samples obtained at elective cesarean section were either allowed to contract spontaneously or induced to contract with oxytocin, phenylephrine, or bradykinin. Activity integrals, used to measure contractile activity, were taken following cumulative additions of the reversible, polyamine transglutaminase inhibitors cystamine and mono-dansylcadaverine and the irreversible, site-specific transglutaminase inhibitors N-benzyloxycarbonyl-l-phenylalanyl-6-dimethylsulfonium-5-oxo-L-norleucine and 1,3-dimethyl-2[(oxopropyl)thio]imidazolium. The ability of cystamine and mono-dansylcadaverine to affect oxytocin-mediated calcium mobilization within primary cultured myometrial cells was also measured utilizing a calcium indicator. All inhibitors attenuated myometrial contractions in a concentration-dependent manner independent of the method of contraction stimulus. Similarly cultured myometrial cells preincubated with cystamine and mono-dansylcadaverine displayed an altered calcium response to oxytocin stimulation. Our findings demonstrate a potential role for tissue transglutaminase 2 in regulating uterine contractility in pregnant human myometrium that may be associated with the calcium signaling cascade required for contraction.  相似文献   

7.
It is very well known that progesterone induces uterine relaxation on myometrium contractile activity. However, little attention has been paid to the effect induced by its metabolites on human uterine contractility. Therefore, we set out to analyze the potential relaxing effect of some 5alpha- and 5beta-reduced progesterone derivatives on the spontaneous contractility of myometrium from pregnant women. Samples were obtained by caesarian section at 38-40 weeks of pregnancy. Spontaneous uterine contractions were recorded in vitro in the presence of progesterone, or progestins independently, at different non-cumulative microM concentrations. The progestins elicited an immediate relaxing effect that was concentration-dependent. With the exception of two 5alpha-reduced progestins (5alpha and 3beta,5alpha), the remaining progestins used in the present study were more potent than progesterone. The potency order with respect to their IC50 values was: 3alpha,5alpha (35 microM) > 5beta (81 microM) > 3beta,5beta (156 microM) > 3alpha,5beta (205 microM) > P4 (225 microM) > 5alpha (19 mM) > 3beta,5alpha (28 mM). When tissues were washed, the contractile activity was recovered. This rapid and reversible relaxing effect was not blocking by antiprogestin RU 486, suggesting that is not through receptor-mediated genomic action. The metabolites from progesterone may also determine the pattern of motility, ensuring the necessary quiescent environment to prevent abortion during gestation.  相似文献   

8.
In guinea pig, primate and man, nitric oxide (NO)-induced regulation of myometrial smooth muscle contraction is distinct from other smooth muscles because cyclic guanosine 3',5'-cyclic monophosphate (cGMP) accumulation is neither necessary nor sufficient to relax the tissue. To further our understanding of the mechanism of action of NO in myometrium, we employed the NO donors, S-nitroso-N-acetylpenicillamine (SNAP), and 3-morpholinosyndonimine (SIN-1) proposed to relax airway smooth muscle by disparate mechanisms involving elevation in intracellular calcium ([Ca(2+)](i)) or cGMP accumulation, respectively. Treatment of guinea pig myometrial smooth muscle with either NO donor at concentrations thought to produce maximal relaxation of smooth muscles resulted in significant elevations in cGMP that were accompanied by phosphorylation of the cGMP-dependent protein kinase substrate vasodilator-stimulated phosphoprotein (VASP), shown here for the first time to be present and phosphorylated in myometrium. Stimulation of myometrial strips with oxytocin (OT, 1 microM) produced an immediate increase in contractile force that persisted in the continued presence of the agonist. Addition of SNAP (100 microM) in the presence of OT relaxed the tissue completely as might be expected of an NO donor. SIN-1 failed to relax the myometrium at any concentration tested up to 300 microM. In Fura-2 loaded myometrial cells prepared from guinea pig, addition of SNAP (100 microM) in the absence of other agonists caused a significant, reproducible elevation of intracellular calcium while SIN-1 employed under the same conditions did not. Our data further support the notion that NO action in myometrium is distinct from that in other smooth muscles and underscores the possibility that discrete regional changes in [Ca(2+)](i), rather than cGMP, signal NO-induced relaxation of the muscle.  相似文献   

9.

Background  

PGF2alpha exerts a significant contractile effect on myometrium and is central to human labour. THG113.31, a specific non-competitive PGF2alpha receptor (FP) antagonist, exerts an inhibitory effect on myometrial contractility. The BKCa channel is ubiquitously encountered in human uterine tissue and plays a significant role in modulating myometrial cell membrane potential and excitability. The objective of this study was to investigate potential BKCa channel involvement in the response of human myometrium to THG113.31.  相似文献   

10.
Present study was undertaken to study the effect of 28-days exposure of female adult rats to cadmium (Cd) in drinking water @ 3, 10 and 30 parts per million (ppm) on myometrial responsiveness to different spasmogens and unravel the possible mechanism of alterations in myometrial activity. Cadmium and Ca2+ levels in blood and uterus were measured by atomic absorption spectroscopy while isometric tension in myometrial strips was measured using data acquisition system-based physiograph. Dose-dependent increase in levels of cadmium was observed in both blood and uterus while calcium was increased only in the uterus as compared to those in control. Significant increase in absolute tension and mean integral tension along with non-significant increase in frequency of myometrial contraction was observed in rats of Cd-treated groups. As compared to the control, cadmium decreased and increased the effects of calcium chloride, 80 mM KCl, histamine (0.1 μM) and oxytocin (10?2 IU/ml) in lower-dose (3 ppm) and higher-dose groups (10 and 30 ppm), respectively. Cadmium potentiated and inhibited the relaxant response to phenylephrine in myometrium of rats at lower-dose (3 ppm) and highest-dose (30 ppm) Cd-treated groups, respectively. Results of our study revealed that Cd accumulates in the myometrium of rats and alters its responsiveness to oxytocin, histamine, 80 mM KCl, calcium chloride and phenylephrine, and these effects are differentially mediated depending on levels of exposure possibly through voltage-dependent calcium channel (VDCC) and Ca2+-mimicking pathways.  相似文献   

11.
Our results indicate that indomethacin inhibits cyclic AMP phosphodiesterase in the myometrium of the pregnant rhesus monkey under in vitro as well as in vivo conditions. Kinetic data on extracts of myometrium from pregnant rhesus monkeys indicated two cyclic AMP phosphodiesterase activities. The apparent Km value for the high affinity enzyme averaged 3.9 muM and for the low affinity enzyme 23 muM; the Vmax values averaged 0.56 and 1.4 nmoles cyclic AMP hydrolized per mg protein min-1 respectively. When indomethacin was added to the myometrial extracts, the activity of the high Km phosphodiesterase was competitively inhibited, with an average Ki of 200 muM; the low Km enzyme was noncompetitively inhibited with an average Ki of 110 muM. Experiments on myometrial slices demonstrated that 10 muM indomethsacin potentiated the effect of PGE1 and epinephrine on cyclic AMP levels, presumably by inhibiting the phophodiesterase activity. The uterine relaxing effect of indomethacin is generally attributed to the inhibition of prostaglandin synthetase activity. However, treatment of pregnant rhesus monkeys with therapeutic doses of indomethacin resulted in a significant inhibition of myometrial cyclic AMP phosphodiesterase activity in association with uterine relaxation and prolongation of gestation.  相似文献   

12.
Persistent, postmating endometritis affects approximately 15% of mares and results in reduced fertility and sizable economic losses to the horse-breeding industry. Mares that are susceptible to postmating endometritis have delayed uterine clearance associated with reduced uterine contractility. Unfortunately, the mechanism for reduced uterine contractility remains an enigma. The present study examined the hypothesis that mares with delayed uterine clearance have an intrinsic contractile defect of the myometrium. Myometrial contractility was evaluated in vitro by measuring isometric tension generated by longitudinal and circular uterine muscle strips in response to KCl, oxytocin, and prostaglandin F(2alpha) (PGF(2alpha)) for young nulliparous mares, older reproductively normal mares, and older mares with delayed uterine clearance. In addition, intracellular Ca(2+) regulation was evaluated using laser cytometry to measure oxytocin-stimulated intracellular Ca(2+) transients of myometrial cells loaded with a Ca(2+)-sensitive fluorescent dye, fluo-4. For all contractile agonists, myometrium from mares with delayed uterine clearance failed to generate as much tension as myometrium from older normal mares. Oxytocin-stimulated intracellular Ca(2+) transients were similar for myometrial cells from mares with delayed uterine clearance and from older normal mares, suggesting that the contractile defect did not result from altered regulation of intracellular Ca(2+) concentration. Furthermore, no apparent age-dependent decline was observed in myometrial contractility; KCl-depolarized and oxytocin-stimulated longitudinal myometrium from young normal mares and older normal mares generated similar responses. However, circular myometrium from young normal mares failed to generate as much tension as myometrium from older normal mares when stimulated with oxytocin or PGF(2alpha), suggesting possible age-related alterations in receptor-second messenger signaling mechanisms downstream of intracellular Ca(2+) release. In summary, for mares with delayed uterine clearance, an intrinsic contractile defect of the myometrium may contribute to reduced uterine contractility following breeding.  相似文献   

13.
The phenomenon of contractile agonist-dependent relaxation by isoproterenol (ISO) of active tension elicited by acetylcholine (ACh), histamine (HIS), serotonin (5-HT), and potassium chloride-substituted Krebs-Henseleit solution (KCl) was studied in 210 tracheal smooth muscle (TSM) strips from 28 mongrel dogs in vitro. All TSM strips were contracted to similar active tensions [target tension (TT) = 50% of the maximal active tension elicited by 127 mM KCl] with ACh, HIS, 5-HT, or KCl and relaxed with either ISO, forskolin (FSK), N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (db-cAMP), or 3-isobutyl-1-methylxanthine (IMX). The concentrations of ISO causing 50% relaxation from TT (RC50) were ACh (2.9 +/- 1.1 x 10(-6) M) greater than 5-HT (8.4 +/- 1.5 x 10(-8) M) approximately KCl (8.1 +/- 2.1 x 10(-8) M) greater than HIS (1.6 +/- 0.2 x 10(-8) M). FSK and IMX relaxed TSM in the same rank order of potency as ISO. In contrast to the contractile agonist-dependent relaxation elicited by ISO, FSK, and IMX, db-cAMP was nearly equipotent in relaxing similarly contracted strips. These results are consistent with contractile agonist-specific interaction with cAMP production by ISO and FSK. These data demonstrate that the phenomenon of contractile agonist-dependent relaxation by ISO is not related specifically to the beta-adrenoceptor.  相似文献   

14.

Background

We tested the hypothesis that the stretch-activated, four-transmembrane domain, two pore potassium channels (K2P), TREK-1 and TRAAK are gestationally-regulated in human myometrium and contribute to uterine relaxation during pregnancy until labor.

Methodology

We determined the gene and protein expression of K2P channels in non-pregnant, pregnant term and preterm laboring myometrium. We employed both molecular biological and functional studies of K2P channels in myometrial samples taken from women undergoing cesarean delivery of a fetus.

Principal Findings

TREK-1, but not TREK-2, channels are expressed in human myometrium and significantly up-regulated during pregnancy. Down-regulation of TREK-1 message was seen by Q-PCR in laboring tissues consistent with a role for TREK-1 in maintaining uterine quiescence prior to labor. The TRAAK channel was unregulated in the same women. Blockade of stretch-activated channels with a channel non-specific tarantula toxin (GsMTx-4) or the more specific TREK-1 antagonist L-methionine ethyl ester altered contractile frequency in a dose-dependent manner in pregnant myometrium. Arachidonic acid treatment lowered contractile tension an effect blocked by fluphenazine. Functional studies are consistent with a role for TREK-1 in uterine quiescence.

Conclusions

We provide evidence supporting a role for TREK-1 in contributing to uterine quiescence during gestation and hypothesize that dysregulation of this mechanism may underlie certain cases of spontaneous pre-term birth.  相似文献   

15.
Platelet-activating factor contracts human myometrium in vitro   总被引:3,自引:0,他引:3  
The myometrial contractile responses to synthetic 1-0-octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (platelet-activating factor, PAF) and to oxytocin were evaluated in vitro on uterine (lower segment) strips obtained from pregnant women at term (39th week), undergoing elective cesarean section. Contractility was measured isometrically in an isolated organ bath using a superfusion technique. PAF in a concentration range between 5 and 100 nM as well as oxytocin (0.1-10 mU/ml) induced a dose-dependent contraction which could be categorized in two patterns, depending on whether spontaneous activity was present. In resting strips, oxytocin induced a prompt (0.5-1 min) development of active tension, followed by a prolonged (6-18 min), slow contraction and a final relaxation. However, at variance with oxytocin, PAF-induced contractions were rhythmic (3-8/hr), and characterized by a prompt (0.5-2 min) development of tension, followed by a brief (0.5-2 min) plateau, and a final, rapid relaxation. In spontaneously active strips, both stimuli induced a marked potentiation of the contractile activity. PAF response was dependent on both cyclooxygenase- and lipoxygenase-derived products as inferred from the abrogating effects of indomethacin and FPL 55712. A receptor-mediated mechanism of action was inferred from the occurrence of specific desensitization to PAF (but not to oxytocin), and from the blocking effect of CV 3988, a specific PAF receptor antagonist. The present study indicates that PAF stimulates the contraction of human myometrium in vitro and suggests that this mediator may have a role in labor.  相似文献   

16.
Phosphorylation of heat shock protein 20 (Hsp20) by protein kinase A (PKA) is now recognized as an important regulatory mechanism modulating contractile activity in the human myometrium. Thus agonists that stimulate cyclic AMP production may cause relaxation with resultant beneficial effects on pathologies that affect this tissue such as the onset of premature contractions prior to term. Here we describe for the first time that acetylation of Hsp20 is also a potent post-translational modification that can affect human myometrial activity. We show that histone deacetylase 8 (HDAC8) is a non-nuclear lysine deacetylase (KDAC) that can interact with Hsp20 to affect its acetylation. Importantly, use of a selective linkerless hydroxamic acid HDAC8 inhibitor increases Hsp20 acetylation with no elevation of nuclear-resident histone acetylation nor marked global gene expression changes. These effects are associated with significant inhibition of spontaneous and oxytocin-augmented contractions of ex vivo human myometrial tissue strips. A potential molecular mechanism by which Hsp20 acetylation can affect myometrial activity by liberating cofilin is described and further high-lights the use of specific effectors of KDACs as therapeutic agents in regulating contractility in this smooth muscle.  相似文献   

17.
Better tocolytics are required to help prevent preterm labour. The gaseotransmitter Hydrogen sulphide (H2S) has been shown to reduce myometrial contractility and thus is of potential interest. However previous studies used NaHS, which is toxic and releases H2S as a non-physiological bolus and thus alternative H2S donors are sought. GYY4137 has been developed to slowly release H2S and hence better reflect endogenous physiological release. We have examined its effects on spontaneous and oxytocin-stimulated contractility and compared them to NaHS, in human and rat myometrium, throughout gestation. The effects on contractility in response to GYY4137 (1 nM–1 mM) and NaHS (1 mM) were examined on myometrial strips from, biopsies of women undergoing elective caesarean section or hysterectomy, and from non-pregnant, 14, 18, 22 day (term) gestation or labouring rats. In pregnant rat and human myometrium dose-dependent and significant decreases in spontaneous contractions were seen with increasing concentrations of GYY4137, which also reduced underlying Ca transients. GYY4137 and NaHS significantly reduced oxytocin-stimulated and high-K depolarised contractions as well as spontaneous activity. Their inhibitory effects increased as gestation advanced, but were abruptly reversed in labour. Glibenclamide, an inhibitor of ATP-sensitive potassium (KATP) channels, abolished the inhibitory effect of GYY4137. These data suggest (i) H2S contributes to uterine quiescence from mid-gestation until labor, (ii) that H2S affects L-type calcium channels and KATP channels reducing Ca entry and thereby myometrial contractions, (iii) add to the evidence that H2S plays a physiological role in relaxing myometrium, and thus (iv) H2S is an attractive target for therapeutic manipulation of human myometrial contractility.  相似文献   

18.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

19.
Steroid hormone control of myometrial contractility and parturition   总被引:3,自引:0,他引:3  
The precise temporal control of uterine contractility is essential for the success of pregnancy. For most of pregnancy, progesterone acting through genomic and non-genomic mechanisms promotes myometrial relaxation. At parturition the relaxatory actions of progesterone are nullified and the combined stimulatory actions of estrogens and other factors such as myometrial distention and immune/inflammatory cytokines, transform the myometrium to a highly contractile and excitable state leading to labor and delivery. This review addresses current understanding of how progesterone and estrogens affect the contractility of the pregnancy myometrium and how their actions are coordinated and controlled as part of the parturition cascade.  相似文献   

20.
Prolongation of pregnancy i.e. going more than 10 days over the estimated due date, complicates up to 10% of all pregnancies and is associated with increased risk to both mother and fetus. Despite the obvious need for contractions of the uterus to end pregnancy, there have been no studies directly examining the role of uterine smooth muscle, myometrium, in the aetiology of prolonged pregnancy. This study tested the hypothesis that the intrinsic contractile characteristics of myometrium taken from women with prolonged pregnancy (>41 weeks and 3 days) was reduced compared to those delivering at term (39-41 weeks). We recruited women undergoing Caesarean Section (CS) delivery either pre-labour (n = 27) or in labour (n = 66) at term or postdates. The contractile ability of the postdates myometrium, whether spontaneous or elicited by oxytocin or high-K solution, was significantly reduced compared to term myometrium. These differences remained when adjusted for parity and other maternal characteristics. The findings remained significant when expressed per cross sectional area. Histological examination revealed no differences between the two groups. The contractile differences were however related to intracellular Ca transients suggesting an effect of [Ca] on reduced force production in the postdates group. In summary, myometrium from prolonged pregnancies contracts poorly in vitro even when stimulated with oxytocin and in active labour. Responses to high K(+) and measurements of Ca suggest that alterations in excitation contraction coupling, rather than any histological changes of the myometrium, may underlie the differences between term and postdates myometrium. We show that postdates pregnancy is associated with poor myometrial activity and suggest that this may contribute to increased myometrial quiescence and hence, prolonged gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号