首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
选取南京丘陵地区29处样点,分别搜集表土及捕捉器样品,开展两种采样方式下孢粉组合与植被关系研究。结果表明,南京低山丘陵地区花粉类型以松属、栎属、枫杨属、榆属、蔷薇科、菊科、禾本科为主,表土花粉组合较好地反映了现代植被特征。主成分分析可以大致区分人工草坪区、农田区以及森林区的样品。农田区表土花粉浓度最低,每克仅为4 964粒,农田的翻耕以及微生物环境是造成其花粉浓度低的重要原因;森林区花粉浓度(每克29 176粒)及花粉通量(49 358粒/平方厘米/年)均很高。人类活动的增强可能会造成孢粉浓度的下降。在探究本地区历史时期人类活动时,可运用孢粉浓度以及与农作物相关的孢粉类型的变化来分析。所有捕捉器样品的乔木花粉百分比均低于其对应的表土样品,其中以松属尤为明显。  相似文献   

2.
齐晨  姜江  叶彩华  尤焕苓  乔媛  沙祎  白帆 《生态学报》2023,43(7):2650-2662
花粉是我国北方引发过敏性鼻炎最主要过敏原,花粉症发病期与花粉浓度高峰期吻合。基于北京地区2012至2020年花粉季多站、逐日分类花粉浓度观测数据分析,得出北京地区花粉浓度在3月上旬至5月中旬(可进一步划分为3月中旬至4月上旬和4月下旬至5月上旬两个高峰期)和8月中旬至9月中旬分别存在两个高峰期,第一个高峰期内优势致敏花粉种类为柏科、杨柳科和松科,第二个高峰期内优势致敏花粉种类为桑科、菊科蒿属和藜科。根据优势致敏花粉年浓度峰值日期观测数据,使用与花粉采样站点位置相匹配的逐日气象观测数据累积值,基于作物模型概念和模糊逻辑原理建立了北京地区主要气传致敏花粉年浓度峰值日期预测模型。经检验,柏科、杨柳科、松科、桑科、菊科蒿属和藜科花粉模型预测准确率分别为87.8%、80.0%、64.4%、86.7%、78.8%和81.8%。基于北京地区主要气传致敏花粉年浓度峰值日期预测模型可为本地花粉症防治提供理论参考。  相似文献   

3.
软质与硬质地表对树木花粉日飘散变化的影响   总被引:1,自引:1,他引:0  
郄光发  杨颖  王成  牟少华 《生态学报》2010,30(15):3974-3982
以油松(Pinus tabulaeformis)、白玉兰(Magnolia denudata)、白皮松(Pinus bungeana)、臭椿(Ailanthus altissima)为被试树种,对比研究了春季静风晴朗天气中软质与硬质两种地表条件下不同树种在距树10m高度1.5m处花粉浓度的日变化特征。研究结果表明:(1)4个树种在相同地表环境的花粉浓度日变化趋势基本一致,但同一树种花粉浓度的日变化特征在软、硬两种地表条件下的差异明显。软质地面一天内空气中花粉浓度最大值出现14:00时前后,04:00时花粉浓度最低,这与全天内空气温度的变化正好一致,而与空气相对湿度的变化恰好相反。硬质地表近地空间空气中的花粉浓度则呈现"双峰型"日变化特征,两次峰值分别出现在14:00时和20:00时,硬质地面花粉浓度20:00时晚高峰的出现时间与硬质地面温度日峰值一致。(2)分析硬质地表20:00时花粉浓度高峰出现的原因可能与硬质地面的散热特性有关,硬质地面夜间释放积蓄热量的过程会在一定程度上增强近地面空气的对流运动,并辅助空气中的花粉粒子不断飘散,形成花粉浓度晚高峰。(3)相对于软质地面来讲,硬质地表对空气中花粉飘散的影响作用持续时间更长,这也在一定程度上延长了致敏花粉的危害时间,加剧了致敏花粉的污染程度。研究还进一步在花粉致敏树种栽植、地表覆盖方式等方面进行了讨论;同时建议花粉症患者根据花粉污染发生规律合理规避花粉浓度聚集高峰期出行,从而有效缓解致敏花粉对易感人群的健康威胁。  相似文献   

4.
本文报道在沈阳地区1965—1985年间于空气中间断收集大气花粉5年,共收花粉玻片1100张,花粉45780粒,属于24科37属或种。其中9种(或属)超过千粒,为优势种类花粉。每年沈阳市大气中花粉出现两个高峰,一个为春季(四、五月),另一个为夏秋季(七八月)。通过长期观察发现,花粉种类和数量每年虽有不同,伹差异不大,唯有豚草花粉消长明显。大气中花粉种类及数量的变化往往受到气温、国家有关绿化政策以及社会风气的影响。花粉与过敏症关系十分密切,我们采用17种花粉制成浸液为病人皮试和治疗。皮试结果阳性率最高的为蒿属花粉,其次为其它夏秋花粉,春季花粉阳性率不高,致敏性不强。用花粉浸液对过敏症者进行免疫治疗,收到一定的疗效。  相似文献   

5.
北京城区气传花粉季节分布特征   总被引:7,自引:2,他引:5  
研究北京城区气传花粉种类、数量及季节消长规律,为防治花粉症及建设合理城市绿地提供有效资料.应用Burkard采样器于2010年12月31日至2011年12月31日对北京城区气传花粉浓度进行监测,并对花粉浓度进行统计学分析.研究结果显示,2011年北京城区的花粉季节从3月20日起始,至10月18日截止,持续213d,占全年天数的58%;全年花粉含量月分布呈现两个高峰,第1个高峰为3-4月,主要花粉为木犀科、杨属、柳属等树木花粉,占全年花粉总量的30%;第2个高峰为8-9月,主要花粉为菊科、藜科及苋科等莠草花粉,占全年花粉总量的50%;2011年度北京城区最具代表性的气传花粉来自于菊科,比重占了收集到气传花粉的35%.研究结果还表明,秋季的气传花粉致敏性强,所以北京花粉症的高发季节主要集中在秋季,以8-9月为最高,其中有95%的病人在此期间出现花粉症症状.花粉浓度及飘散规律受当地植被状况及气候等多种因素影响,因此,北京城区空气中气传花粉飘散种类、数量及季节分布规律的调查结果,可以为本地区花粉症防治及绿化品种的选择提供可靠依据.  相似文献   

6.
新疆石河子南山地区表土花粉研究   总被引:3,自引:0,他引:3  
张卉  张芸  杨振京  阎平  孔昭宸  阎顺 《生态学报》2013,33(20):6478-6487
天山作为亚洲大陆最大的山系之一,横贯于新疆的中部,成为分隔南、北疆自然地理区系的山系,它对花粉的传播、保存、搬运与沉积具有重大作用。根据对西北干旱区域新疆石河子南山地区一条沿着海拔高度从2400 m到300 m的样带所采集的23个表土花粉样品的孢粉组合图式和现代植被样方调查资料,探讨了北坡垂直带的植被与表土花粉之间的关系。该区表土孢粉谱可分为4个孢粉组合带,分别对应森林植被带、森林草原植被带、蒿属荒漠带和典型荒漠带。比较特殊的是典型荒漠带被划分为两个亚带,一个亚带是以蒿属、藜科占主要成分的典型荒漠带,另一亚带蒿属、藜科含量较高并含有大量沼泽蕨和芦苇植硅体,兼具典型荒漠和湿地特征。在海拔400 m以上,孢粉组合与现代植被的对应关系较好,带Ⅰ中较高含量的云杉花粉验证了以云杉为主的森林植被带。带Ⅱ中以云杉为主的乔木植物和含量较高的藜科、蒿属和蓼属等草本植物为主的孢粉组合特征与森林-草原植被带的植被特征较为类似。云杉属花粉在海拔低于1350 m的地方即林带下方所占的比例很小,一方面由于距林地的距离较远,另一方面,可能是山风气流对云杉花粉往下搬运的能力较弱所致。带Ⅲ的蒿属花粉含量较高,与该带植被中绢蒿较多有一定的关系,带Ⅳ以藜科为主的花粉组合特征代表了这个植被带的荒漠植被类型。但是在海拔400 m之下,带Ⅳ的亚带Ⅳ2的高含量的沼泽蕨和芦苇植硅体的孢粉组合在一定程度上还代表了古湿地环境。通过该部分表土花粉组合特征与草滩湖剖面孢粉谱的对比,验证了当地农业种植选址的生态可行性,同时就开垦程度对环境的影响进行了初步探讨。另外,亚带Ⅳ2的蒿属/藜科(Artemisia/Chenopodiaceae(A/C))比值比亚带Ⅳ1高,可能与该样点受人为扰动较大有关。  相似文献   

7.
应用花粉分析预报板栗产量的研究   总被引:10,自引:1,他引:9       下载免费PDF全文
 1994~1996年河北省迁安县蔡园乡大气中板栗花粉散布特征研究表明,不同年份板栗花期有早有晚,大气中的花粉浓度变化悬殊;大气中板栗花粉浓度受花期气温和盛花末期前降水影响较大,受日照影响较小;盛花期花粉浓度与板栗产量的相关系数为0.998~0.999;根据两年相关关系建立的预报模式对第三年产量进行了预报,预报期比收获期提前2个月,预报结果最大误差5.7%,最小误差1.13%;多数误差均低于4%;运用花粉分析预报板栗和其它果品及农作物产量是一种投入少、预报期早、预报精度高的预测方法。  相似文献   

8.
枣不同品种花粉量和花粉萌发率的研究   总被引:11,自引:2,他引:9  
以20个枣品种为试材,测定了花粉萌发率和单药花粉量。结果表明,枣不同品种在同一时期及同一品种在不同花期花粉量和花粉萌发率差异显著,初花期单花药花粉量最多的品种达5556粒,最少的为0。花粉量与花粉萌发率之间无显著的相关性。枣树的单药花粉量在6月中下旬最高,而花粉萌发率在6月中旬出现高峰。发现了无花粉、高含仁率的优异雄性不育新种质JMS3,并进一步证明了JMS1的无花粉性状稳定。  相似文献   

9.
花粉作为城市大气污染物成分之一, 严重影响人类的居住环境和生命健康, 是政府部门和科学界共同关注的热点问题。为此, 该文基于近60年来已发表的京津冀地区气传花粉数据, 总结了该地区主要气传花粉种类及其季节性分布特征, 表明气传花粉浓度的年际变化基本遵循双峰型规律, 即春季高峰以柏科、杨柳科和桦木科等乔木植物花粉为主, 夏秋季高峰以蒿属、葎草属/大麻(Cannabis sativa)以及藜科/苋科等草本植物花粉占优势; 探讨了影响气传花粉浓度的主导气象因子、花粉症发病特点等应当注意的问题; 指出土地改造和行道树种植等人类活动可能对北京地区的气传花粉组成变化产生影响。最后, 文中强调未来气传花粉的长期监测在大气环境评估、花粉过敏防治和城市绿化建设等方面具有重要作用。  相似文献   

10.
本文报道1985年4月1日起至1986年3月31日止天津市和平区观察空气甲孢粉飘散的结果。该市全年均有花粉飘散,其中11月起至翌年2月止花粉数量很少,其它月份数量较多。一年中共出现二次高峰,即春季4月和秋季8—9月。春季花粉为木本植物的,如,白蜡树(Fraxinus L.)榆属(Ulmus L.)和杨属(Populus L.)。秋季花粉以草本植物为主,如,藜科(chenopodlaceae)、蒿属(Artemisia L.)、葎草属(Humulus L.)和禾本科(Gramineae)。经结合临床观察,花粉症患者发病日期与植物的开花期基本上是一致的。  相似文献   

11.
The understanding of airborne pollen transportation is crucial for the reconstruction of the paleoenvironment. Under favorable conditions, a considerable amount of long-distance-transported pollen can be deposited far from its place of origin. In extreme arid regions, in most cases, such situations occur and increase the difficulty to interpret fossil pollen records. In this study, three sets of Cour airborne pollen trap were installed on the northern slope of Tianshan Mountains to collect airborne Picea schrenkiana (spruce) pollen grains from July 2001 to July 2006. The results indicate that Picea pollen disperses extensively and transports widely in the lower atmosphere far away from spruce forest. The airborne Picea pollen dispersal period is mainly concentrated between mid-May and July. In desert area, weekly Picea pollen began to increase and peaked suddenly in concentration. Also, annual pollen indices do not decline even when the distance increased was probably related to the strong wind may pick up the deposited pollen grains from the topsoil into the air stream, leading to an increase of pollen concentration in the air that is irrelevant to the normal and natural course of pollen transport and deposition. This, in turn, may lead to erroneous interpretations of the pollen data in the arid region. This study provided insight into the shift in the Picea pollen season regarding climate change in arid areas. It is recorded that the pollen pollination period starts earlier and the duration became longer. The results also showed that the temperature of May and June was positively correlated with the Picea pollen production. Furthermore, the transport of airborne Picea pollen data is useful for interpreting fossil pollen records from extreme arid regions.  相似文献   

12.
Schrenk spruce (Picea schrenkiana Fisch. et Mey.) is widely distributed in the Tianshan Mountains. In this study, four Schrenk spruce trees were continuously monitored with dendrometers from 27 April to 30 September 2014 on the northern slopes of the Tianshan Mountains in northwest China. The goal of this monitoring study was to determine the main growing season of Schrenk spruce and to analyze intra-annual radial growth variability and its relation to daily meteorological factors. Our studies have shown that the critical growing season of Schrenk spruce is from late May to late July and that the rapid growth stage is from mid-June to early July. Meanwhile, in the growing season, changes in the radial growth of Schrenk spruce were negatively correlated with daily temperature, evaporation, sunshine hours and vapor pressure deficit (VPD), and were positively correlated with precipitation and relative humidity (RH). The correlation coefficient between radial growth and RH can be as high as 0.750 (Pearson, p < 0.0001, n = 60). Dates in which precipitation occurred corresponded to periods of rapid growth. The results of the climate-growth analysis show that changes in radial growth reflect the effect of water stress on tree growth, whether or not the changes are positively or negatively correlated with the above climatic factors. This indicates that moisture plays a major role in the growth of Schrenk spruce. We suggest that precipitation between late May to late June is a limiting factor for radial growth of Schrenk spruce on the northern slopes of the Tianshan Mountains.  相似文献   

13.
A record-breaking heat wave affected the European continent in summer 2003. In Switzerland, the temperature in June, July and August exceeded the 1961–1990 mean by about 5 °C. These extreme temperatures had significant effects on the pollen production and on the airborne pollen loads. Especially affected was the grass pollen season, which started 1–2 weeks earlier than in the mean. During May and the first part of June the grass pollen production and dispersion was favoured by the warm and dry weather and many days with high pollen concentrations were registered. First water deficiencies occurred in June so that the grasses ceased to grow. The grass pollen season ended 7–33 days earlier than normal. For many of our stations of the Swiss pollen network this had never occurred as early as in 2003. The other herbaceous plants were not affected as much as the grasses. We measured very high Chenopodium and Plantago pollen concentrations, about normal concentrations of Urtica and Rumex and slightly lower Artemisia pollen concentrations than normal. The summer 2003 was exceptional and its reoccurrence is at the moment statistically extremely unlikely. But models of climatologists show that in the future, climate variations will increase and that in the period 2071–2100 about every second summer could be as warm or warmer and as dry or dryer than 2003.  相似文献   

14.
Relationships between weather parameters andairborne pollen loads of Pinus inBrisbane, Australia have been investigated overthe five-year period, June 1994–May 1999.Pinus pollen accounts for 4.5% of the annualairborne pollen load in Brisbane where thePinus season is confined to the winter months,July–early September. During the samplingperiod loads of 11–>100 grains m3 wererecorded on 24 days and 1–10 grains m3 on204 days. The onset and peak dates wereconsistent across each season, whereas the enddates varied. The onset of the Pinuspollen season coincided with the coolestaverage monthly temperatures (< 22°C),lowest rainfall (< 7mm), and four weeks afterdaily minimum temperatures fell to 5–9°Cin late autumn. Correlations obtained betweendaily airborne Pinus pollen counts andtemperature/rainfall parameters show thatdensities of airborne Pinus pollen arenegatively correlated with maximum temperature(p < 0.0001), minimum temperature (p < 0.0001)and rainfall (p < 0.05) during the mainpollination period. The mean duration of eachpollen season was 52 days; longer seasons wereshown to be directly related to lower averageseasonal maximum temperatures (r2 = 0.85,p = 0.025). These results signify that maximumand minimum temperatures are the majorparameters that influence the onset andduration of the Pinus pollen season inthe environs of Brisbane. Respiratory allergyis an important health issue in Brisbane,Australia, but it remains unknown whether ornot airborne Pinus pollen is acontributing factor.  相似文献   

15.
To test models predicting biological reponse to future climate change, it is essential to find climatically-sensitive, easily monitored biological indicators that respond to climate change. Routine monitoring of airborne pollen, now undertaken on a near-global basis, could be adapted for this purpose. Analysis of spatial and seasonal variations in pollen levels in New Zealand suggests that the timing of onset and peak abundance of certain pollen taxa should be explored as possible bio-indicators of climate change. The onset of the airborne grass pollen season during the summer of 1988/89 varied consistently with latitude, and hence temperature, with the season in Southland commencing 8--9 days after Northland. However, these patterns were only apparent after sampling sites were separated into two groups reflecting predominantly urban or rural pollen sources. A less consistent north to south trend was apparent in the frequency of high (30 grains/m3) grass pollen levels, with high levels frequent in North Island localities in November, December and January and in southern localities during December and January. The successive onset of pollen seasons for the principal tree species during the spring-to-early summer warming interval may also be a useful bio-indicator of climate change. As well as assisting forecasts of the onset of the pollinosis season, these biogeographical patterns, reflecting climatic variation with latitude, suggest that routine aeropalynological monitoring might provide early signals of vegetation response to climate change. These conclusions are supported by recent investigations of long-term aeropalynological datasets in Europe that indicate earlier onset of pollen seasons in response to recent global warming.  相似文献   

16.
Adem Bicakci 《Biologia》2006,61(4):457-461
In this study, pollen grains were identified using Durham sampler in the atmosphere of Sakarya in 2000 and 2001. During these two years, a total of 10 805 pollen grains were recorded. A total of 5 386 pollen grains per cm2 were recorded in 2000 and a total of 5 419 pollen grains per cm2 in 2001. Pollen fall in the years 2000–2001 comprised grains belonging to 40 taxa and some unidentified pollen grains. Of these taxa, 22 belonged to arboreal and 18 taxa to non arboreal plants. Total pollen grains consisted of 69.45% grains from arboreal plants, 28.11% grains from non-arboreal plants and 2.44% unidentified pollen grains. In the region investigated, Gramineae, Pinus sp., Quercus sp., Cupressaceae/Taxaceae, Salix sp., Platanus sp., Populus sp., Carpinus sp., Fagus sp., Chenopodiaceae/Amaranthaceae, Xanthium sp., Moraceae, Corylus sp., Fraxinus sp., and Urticaceae released the greatest amount of pollen. The season of maximum pollen fall was from March to May, with a prevalence of arboreal pollen in the first months, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

17.
新疆表土中云杉花粉与植被的关系   总被引:18,自引:1,他引:17  
阎顺  孔昭宸  杨振京  张芸  倪健 《生态学报》2004,24(9):2017-2023
通过对新疆天山、阿尔泰山、昆仑山、塔里木盆地、准噶尔盆地不同植被带中所取的 131个表土样中云杉花粉含量进行百分比统计分析 ,从而确定了影响表土中云杉花粉含量的主要因素是距云杉林地距离、海拔高度、气流和水流等。进而指出在荒漠、荒漠草原表土中云杉花粉含量稳定在 5 %以下 ;林带内表土中云杉花粉含量稳定在 30 %以上 ;在森林线以上的亚高山、高山草甸、高山垫状植被以及高山流石滩植被中表土中云杉花粉含量主要受气流的影响 ,而平原河谷林和平原低地草甸表土中的云杉含量则受水流的制约。  相似文献   

18.
The aerobiological behaviour of Urticaceae in Trieste and the correlations with the meteorological parameters were examined. Airborne pollen was collected from 1990 to 1999 using a Hirst type spore trap (Burkard) and the data interpretation was performed according to the standard method adopted by the Italian Aeroallergen Network. The main pollen season of Urticaceae in Trieste goes from mid-April to mid-September. The highest values occur in May and June. Although different seasonal patterns are found every year, the main peak occurs on average at the beginning of May, followed by other decreasing peaks until September. Thecumulative counts vary greatly over the years, with a mean value of 18.315 p/m3. The maximum annual total pollen grains was registered in 1996 and the minimum in 1991. Spearman's correlation was used to establish the relationship between the daily pollen counts and the daily meteorological data both considering their original quantitative values and transformed values according to their day by day changes. Daily pollen concentrations present usually positive correlation with temperature, negative with rainfall and wind speed and no correlation with humidity. Better results were obtained with transformed values.  相似文献   

19.
Analysis of Airborne Pollen Fall in Edirne, Turkey   总被引:1,自引:0,他引:1  
In the atmosphere of Edirne 12691 pollen grains belonging to 42 taxa were identified by using of Durham sampler in 2000 and 2001. A total of 6 189 pollen grains per cm~2 were recorded in 2000 and a total of 6502 pollen grains per cm~2 in 2001. Total pollen grains consisted of 71.81% grains from arboreal plants, 25.88% grains from non-arboreal plants and 2.31% unidentified pollen grains. Pollen from the following taxa were also found to be prevalent in the atmosphere of Edirne: Gramineae, Pinus sp., Quercus sp., Cupressaceae/Taxaceae, Platanus sp., Salix sp., Morus sp., Populus sp., Carpinus sp., Juglans sp., Chenopodiaceae/Amaranthaceae, Fraxinus sp., Fagus sp., Ulmus sp., Ailanthus sp., Alnus sp., Ostrya sp., Helianthus sp. The season of maximum pollen fall was from April to June, with a prevalence of arboreal pollen in the first month, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

20.
In the atmosphere of Edirne 12 691 pollen grains belonging to 42 taxa were identified by using of Durham sampler in 2000 and 2001. A total of 6 189 pollen grains per cm2 were recorded in 2000 and a total of 6 502 pollen grains per cm2 in 2001. Total pollen grains consisted of 71.81% grains from arboreal plants, 25.88% grains from non-arboreal plants and 2.31% unidentified pollen grains. Pollen from the following taxa were also found to be prevalent in the atmosphere of Edirne: Gramineae, Pinus sp., Quercus sp.,Cupressaceae/Taxaceae, Platanus sp., Salix sp., Morus sp., Populus sp., Carpinus sp., Juglans sp.,Chenopodiaceae/Amaranthaceae, Fraxinus sp., Fagus sp., Ulmus sp., Ailanthus sp., Alnus sp., Ostrya sp.,Helianthus sp. The season of maximum pollen fall was from April to June, with a prevalence of arboreal pollen in the first month, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号