首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postactivation potentiation (PAP), a mechanism by which the torque of a muscle twitch is increased following a conditioning contraction, is well documented in muscular physiology, but little is known about its effect on the maximal rate of torque development and functional significance during voluntary movements. The objective of this study was to investigate the PAP effect on the rate of isometric torque development of electrically induced and voluntary contractions. To that purpose, the electromechanical responses of the thumb adductor muscles to a single electrical stimulus (twitch), a train of 15 pulses at 250 Hz (HFT(250)), and during ballistic (i.e., rapid torque development) voluntary contractions at torque levels ranging from 10 to 75% of maximal voluntary contraction (MVC) were recorded before and after a conditioning 6-s MVC. The results showed that the rate of torque development was significantly (P < 0.001) increased after the conditioning MVC, but the effect was greater for the twitch ( approximately 200%) compared with the HFT(250) ( approximately 17%) or ballistic contractions (range: 9-24%). Although twitch potentiation was maximal immediately after the conditioning MVC, maximal potentiation for HFT(250) and ballistic contractions was delayed to 1 min after the 6-s MVC. Furthermore, the similar degree of potentiation for the rate of isometric torque development between tetanic and voluntary ballistic contractions indicates that PAP is not related to the modality of muscle activation. These observations suggest that PAP may be considered as a mechanism that can influence our contractions during daily tasks and can be utilized to improve muscle performance in explosive sports.  相似文献   

2.
The force enhancement of a twitch after a maximal conditioning muscle contraction [i.e., postactivation potentiation (PAP)] is reduced with aging, but its influence on the summation of force in response to repetitive stimulation at different frequencies is not known. The purpose of this work was to compare the electrically evoked mechanical responses of the tibialis anterior muscle between young and elderly adults after a 6-s maximal voluntary contraction (MVC). The results showed that, immediately after the conditioning MVC, twitch torque and its maximal rate of development and relaxation were significantly enhanced in both groups, but the magnitude of potentiation was greater in young (148.0 +/- 14.2, 123.7 +/- 16.5, and 185.4 +/- 36.5%, respectively) compared with elderly adults (87.4 +/- 15.2, 63.8 +/- 9.9, and 62.9 +/- 11.0%, respectively). This age-related difference in potentiation of the twitch disappeared completely 1 min after the conditioning MVC. The potentiation of torque and speed-related parameters in response to two- and three-pulse trains, delivered at a constant interval of 10 ms (100 Hz), was less than for a single pulse for both groups. In young adults, the magnitude of PAP on the successive individual mechanical contributions within a train of stimuli declined progressively such that the third contribution did not differ significantly from the same contribution before the conditioning MVC. In contrast, the second and third contributions did not potentiate (P > 0.05) in elderly adults. Although these contributions did potentiate significantly at a lower frequency of stimulation (20 Hz) in the two groups, the difference in PAP between young and elderly adults still persisted. This overall attenuation of potentiation with aging, however, appears to have a moderate influence on the decrement of the muscular performance.  相似文献   

3.
Twitch tension and maximal unloaded velocity of human knee extensor muscles were studied under conditions of low phosphate content of the phosphorylatable light chains (P-light chains) of myosin and elevated phosphate content, following a 10-s maximal voluntary isometric contraction (MVC). After the MVC, twitch tension was significantly potentiated, with greater potentiation observed at a shorter muscle length (p less than 0.05). The MVC was associated with at least a twofold increase in phosphate content of the fast (LC2F) and two slow (LC2S and LC2S') P-light chains, but this increase was unrelated to muscle length. No significant differences in knee extension velocity were observed between conditions where P-light chains had low or elevated phosphate content. Positive but nonsignificant correlations were noted between the extent of twitch potentiation and phosphate content of individual P-light chains as well as the percentage of type II muscle fibres in vastus lateralis muscle. No significant relationships were determined for myosin light chain kinase activity and either P-light chain phosphorylation or type II fibre percentage. These data suggest that, unlike other mammalian fast muscles, P-light chain phosphorylation of mixed human muscles is not strongly associated with altered contractile performance.  相似文献   

4.
Contractile adaptations in the human triceps surae after isometric exercise   总被引:2,自引:0,他引:2  
Ultrastructural and twitch contractile characteristics of the human triceps surae were determined in seven healthy but very sedentary subjects before and after 16 wk of unilateral isometric training at 100% maximal voluntary contraction. After training, twitch contraction time decreased by approximately 20%. One-half relaxation time, peak twitch torque, and percent fiber type in any of the muscles of the triceps surae complex were not changed by training. Type I and type II fiber areas increased in the soleus by approximately 30%, but only type II fibers showed an increased in area in the lateral gastrocnemius (40%). Despite such changes in fiber area, the volume density of the sarcoplasmic reticulum-transverse tubular (SR) network averaged 3.2 +/- 0.6 and 5.9 +/- 0.9% in type I and type II fibers, respectively, before and after training in the two heads of the gastrocnemius. Type I SR fraction increased to 3.5 +/- 1.2% after training in the soleus; however, correlations were not significant between the change in the volume density of SR and the change in twitch contraction time (R = 0.46, P = 0.45) or the change in one-half relaxation time (R = -0.68, P = 0.08). The results demonstrate that isometric training at 100% maximal voluntary contraction induced changes in twitch contraction time that were not directly related to changes in the volume density of SR in fibers of the triceps surae.  相似文献   

5.
Recently it was demonstrated that postactivation potentiation (PAP), which refers to the enhancement of the muscle twitch torque as a result of a prior conditioning contraction, increased the maximal rate of torque development of tetanic and voluntary isometric contractions (3). In this study, we investigated the effects of PAP and its decay over time on the load-velocity relation. To that purpose, angular velocity of thumb adduction in response to a single electrical stimulus (twitch), a high-frequency train of 15 pulses at 250 Hz (HFT(250)), and during ballistic voluntary shortening contractions, performed against loads ranging from 10 to 50% of the maximum torque, were recorded before and after a conditioning 6-s maximal voluntary contraction (MVC). The results showed an increase of the peak angular velocity for the different loads tested after the conditioning MVC (P < 0.001), but the effect was greatest for the twitch ( approximately 182%) compared with the HFT(250) or voluntary contractions ( approximately 14% for both contraction types). The maximal potentiation occurred immediately following the conditioning MVC for the twitch, whereas it was reached 1 min later for the tetanic and ballistic voluntary contractions. At that time, the load-velocity relation was significantly shifted upward, and the maximal power of the muscle was increased ( approximately 13%; P < 0.001). Furthermore, the results also indicated that the effect of PAP on shortening contractions was not related to the modality of muscle activation. In conclusion, the findings suggest a functional significance of PAP in human movements by improving muscle performance of voluntary dynamic contractions.  相似文献   

6.
The capacity for twitch potentiation in the gastrocnemius muscle was determined following maximal voluntary contractions (MVC) in 11 elderly (means +/- SD; 66.9 +/- 5.3 years) and 12 young (25.7 +/- 3.8 years) men. Potentiation was observed by applying selective stimulation to the muscle belly, 2 s after a 5 s MVC. With this procedure, both groups showed significant (P less than 0.05) increases in twitch tension in the gastrocnemius (ratios of potentiated twitch to baseline were means = 1.68 +/- 0.40 for young vs means = 1.40 +/- 0.20 for the elderly, P less than 0.001). Time to peak tension of the twitch decreased from means = 101.5 +/- 17.9 ms to means = 88.0 +/- 15.8 ms in the young men following potentiation; the respective values for the older men were 136.7 +/- 17.9 ms and 133.1 +/- 28.6 ms. These changes resulted in a greater rate of tension development in the potentiated state. The elderly gastrocnemius thus showed qualitatively similar changes in the isometric twitch following potentiation, but reduced and prolonged responses in comparison to young adults. Slowed muscle contraction and reduced capacity for potentiation may be physiological correlates of the reported morphological changes in aged skeletal muscle.  相似文献   

7.
Ultrastructural and twitch contractile characteristics of the human triceps surae were determined in six healthy but very sedentary subjects before and after 16 weeks of isometric training at 30% maximal voluntary contraction (MVC). Following training, twitch contraction time was approximately 16% shorter, although no differences were observed in one-half relaxation time or peak twitch torque. Percent fibre type was not changed by training. The mean area of type I and type II fibres in the soleus increased by approximately 30% but only type II fibres showed an increase in area in the lateral gastrocnemius (30%). Despite such changes in fibre area the volume density of the sarcoplasmic reticulum-transverse tubular network averaged 3.2 +/- 0.6% and 5.9 +/- 0.9% in type I and type II fibres respectively, before and after training in the two heads of the gastrocnemius. The results indicate that contractile adaptations to isometric training at 30% MVC were limited to twitch contraction time and were not directly related to changes in percent fibre distribution or the volume of sarcoplasmic reticulum and transverse tubules in either type I or type II fibres. The data further demonstrate that substantial fibre hypertrophy is achieved by training with low-intensity contractions.  相似文献   

8.
Endurance time of a submaximal sustained contraction is longer when the muscle is fatigued in a shortened position. The aim of the present study was to compare central and peripheral mechanisms of fatigue after an isometric contraction of the knee extensor muscles performed at 20% maximal voluntary contraction (MVC) at two knee angles (35 degrees , short length vs. 75 degrees , long length; 0 degrees = full extension) until exhaustion. Eleven men (24 +/- 4 yr) attended two experimental randomized sessions. Endurance time was greater at 35 degrees compared with 75 degrees (974 +/- 457 vs. 398 +/- 144 s; P < 0.001) despite a similar reduction in knee extensor MVC (-28.4 +/- 16.0%, P < 0.001 vs. -27.6 +/- 18.8%, P < 0.001, respectively). Voluntary activation level was similarly depressed after the fatiguing contraction performed at the two muscle lengths (-19 +/- 16.7% at 35 degrees , P < 0.01 vs. -13.7 +/- 14.5% at 75 degrees , P < 0.01). After the fatiguing contraction, peak twitch potentiation was observed only at the short length (+31.8 +/- 17.6% at 35 degrees , P < 0.01 vs. +6.4 +/- 21.3% at 75 degrees , P > 0.05), whereas M-wave properties were similarly altered for the two angles. These results suggest that 1) central fatigue at task failure for a sustained isometric contraction was not dependent on the muscle length, and 2) the longer endurance time of a sustained isometric contraction performed at a shortened length is related to potentiation. It is suggested that the greater endurance time of a sustained isometric contraction observed at 35 degrees is related to the occurrence of potentiation at this short length, because central fatigue is similar at task failure for both tasks.  相似文献   

9.
The effects of aging on motoneuron firing rates and muscle contractile properties were studied in tibialis anterior muscle by comparing results from six young (20.8 +/- 0.8 yr) and six old men (82.0 +/- 1.7 yr). For each subject, data were collected from repeated tests over a 2-wk period. Contractile tests included maximal voluntary contraction (MVC) with twitch interpolation and stimulated twitch contractions. The old men had 26% lower MVC torque (P < 0.01) than did the young men, but percent activation was not different (99.1 and 99.3%, respectively). Twitch contraction durations were 23% longer (P < 0.01) in the old compared with the young men. During a series of repeated brief steady-state contractions at 10, 25, 50, 75, and 100% MVC, motor unit firing rates were recorded. Results from approximately 950 motor unit trains in each subject group indicated that at all relative torque levels mean firing rates were 30-35% lower (P < 0.01) in the old subjects. Comparisons between young and old subjects' mean firing rates at each of 10%, 50%, and MVC torques and their corresponding mean twitch contraction duration yielded a range of moderate-to-high correlations (r = -0.67 to -0.84). That lower firing rates were matched to longer twitch contraction durations in the muscle of old men, and relatively higher firing rates were matched with shorter contraction times from the young men, indirectly supports the neuromuscular age-related remodeling principle.  相似文献   

10.
We aimed to examine whether the influence of conditioning contraction intensity on the extent of postactivation potentiation (PAP) is muscle dependent. Eleven healthy males performed both thumb adduction and plantar flexion as a conditioning contraction. The conditioning contraction intensities were set at 20%, 40%, 60%, 80%, or 100% of the maximal voluntary isometric contraction (MVC).Before and after the conditioning contraction, twitch torque was measured for the respective joint to calculate the extent of PAP. In plantar flexion, the extent of PAP became significantly larger as the conditioning contraction intensity increased up to 80% MVC (p < 0.05). In contrast, the extent of PAP in thumb adduction increased significantly only up to 60% MVC (p < 0.05), but not at higher intensities.These results indicate that the influence of the conditioning contraction intensity on the extent of PAP is muscle dependent. Our results suggest that a conditioning contraction with submaximal intensity can sufficiently evoke sizable PAP in the muscle where most of muscle fibers are recruited at submaximal intensities, thereby attenuating muscle fatigue induced by the conditioning contraction.  相似文献   

11.
The aim of the study was to examine alterations in contractile and neural processes in response to an isometric fatiguing contraction performed with EMG feedback (constant-EMG task) when exerting 40% of maximal voluntary contraction (MVC) torque with the knee extensor muscles. A task with a torque feedback (constant-torque task) set at a similar intensity served as a reference task. Thirteen men (26+/-5 yr) attended two experimental sessions that were randomized across days. Endurance time was greater for the constant-EMG task compared with the constant-torque task (230+/-156 s vs. 101+/-32s, P<0.01). Average EMG activity for the knee extensor muscles increased from 33.5+/-4.5% to 54.7+/-21.7% MVC EMG during the constant-torque task (P<0.001), whereas the torque exerted during the constant-EMG task decreased from 42.8+/-3.0% to 17.9+/-5.6% MVC torque (P<0.001). Comparable reductions in knee extensors MVC (-15.7+/-8.7% for the constant-torque task vs. -17.5+/-9.8% for the constant-EMG task, P>0.05) and voluntary activation level were observed at exhaustion. In contrast, excitation-contraction coupling process, assessed with an electrically evoked twitch and doublet, was altered significantly more at the end of the constant-EMG task despite the absence of M-wave changes for both tasks. Present results suggest that prolonged contractions using EMG biofeedback should be used cautiously in rehabilitation programs.  相似文献   

12.
This study compared twitch contractile properties of plantar flexor muscles among three groups of 12 subjects each: endurance and power trained athletes and untrained subjects. The posterior tibial nerve was stimulated by supramaximal square wave pulses of 1-ms duration. Power trained athletes had higher twitch maximal force, maximal rates of force development and relaxation and also maximal voluntary contraction (MVC) force. The trained subjects had a smaller twitch maximal force: MVC force ratio and shorter twitch contraction and half-relaxation times than the untrained subjects with no significant differences between the two groups. Thus, the short time for evoked twitches in the athletes compared to the untrained subjects would seem unrelated to the type of training. It is concluded that power training induces a more evident increase of muscle force-generating capacity and speed of contraction and relaxation than endurance training. Accepted: 24 April 1999  相似文献   

13.
Alterations of neuromuscular function after an ultramarathon.   总被引:5,自引:0,他引:5  
Neuromuscular fatigue of the knee extensor (KE) and plantar flexor (PF) muscles was characterized after a 65-km ultramarathon race in nine well-trained runners by stimulating the femoral and tibial nerves, respectively. One week before and immediately after the ultramarathon, maximal twitches were elicited from the relaxed KE and PF. Electrically evoked superimposed twitches of the KE were also elicited during maximal voluntary contractions (MVCs) to determine maximal voluntary activation. MVC and maximal voluntary activation decreased significantly after the ultramarathon (-30.2 +/- 18.0% and -27.7 +/- 13.0%, respectively; P < 0.001). Surprisingly, peak twitch increased after the ultramarathon from 15.8 +/- 6.3 to 19.7 +/- 3.3 N. m for PF (P < 0.01) and from 131.9 +/- 21.2 to 157.1 +/- 35.9 N for KE (P < 0.05). Also, shorter contraction and half-relaxation times were observed for both muscles. The compound muscle action potentials (M wave) were not significantly altered by the ultramarathon with the exception of the soleus, which showed a slightly higher M-wave amplitude after the running. From these results, it can be concluded that 65 km of running 1) severely depressed the maximal voluntary force capacity mainly because of a decrease in maximal voluntary activation, 2) potentiated the twitch mechanical response, and 3) did not change significantly the M-wave characteristics.  相似文献   

14.
The force-length relationship is a basic property of skeletal muscle. Knowledge of this relationship is necessary for most analyses of human movement, and in simulation models predicting movement control strategies. Studies on animal muscles have shown that force-length relationships for sub-maximal contractions are not related through a simple scaling procedure to the relationship for maximal contractions. Furthermore, potentiation might produce a shift of sub-maximal relative to maximal force-length relationships. In this study, we tested the hypothesis that human force-elbow angle relationships for sub-maximal unpotentiated contractions are shifted to larger elbow angles (i.e. larger muscle lengths) compared to the relationship for maximal voluntary contractions (MVC), and that this shift is reduced, or even abolished, for sub-maximal potentiated contractions. Force-elbow angle relationships (48-160 degrees) were obtained from healthy subjects (n=13). At each of nine tested elbow angles, the test set consisted of a single twitch (ST(pre)) and a doublet twitch (DT(pre)) stimulation of m. biceps brachii, followed by an MVC, followed by another single twitch (ST(post)) and a doublet twitch (DT(post)) stimulation. The single and doublet twitches induced sub-maximal contractions. The force-elbow angle relationships for the pre-MVC (unpotentiated) twitch contractions were shifted to larger angles compared to those obtained for MVC. The force-elbow angle relationships for the post-MVC (potentiated) twitch contractions were shifted to smaller angles compared to those obtained for the unpotentiated twitch contractions. These results support the idea that the shift to larger muscle lengths for the sub-maximal, unpotentiated force-length relationships relative to the relationship for maximal contractions may be caused by a length-dependent Ca(2+) sensitivity that may be offset, at least in part, by potentiation.  相似文献   

15.
It has been proposed that the mean power frequency (MPF) of the electromyogram (EMG) power spectrum increases gradually with force of contraction and that this increase is a function of the fiber-type content of the muscle investigated and the inter-electrode distance (IED) used when recording the EMG signals. In order to test these hypotheses, the values of the MPF of two elbow extensor muscles, triceps brachii (TB, 65% fast twitch fibers) and anconeus (AN, 65% slow twitch fibers), were compared at different levels of contraction. Subjects (n = 13) produced ten static ramp elbow extensions [0-100% maximum voluntary contraction (MVC)]. EMG signals of each muscle were recorded with two pairs of surface miniature electrodes having IEDs of 6 mm and 30 mm respectively. MPFs were obtained at each of the following levels: 10, 20, 40, 60, 80 and 100% MVC. Statistical analyses indicated that the MPF of AN increased significantly (P less than 0.05) up to 60% MVC. In contrast, the MPF values for TB showed no significant change across different levels of contraction (P greater than 0.05). Since skinfold was on average 3.2 times thicker over TB than over AN it is suggested that the low-pass filtering effect of the skin could have prevented the observation of an increase of the MPF for TB. It thus appears that changes of the MPF with the level of force, as disclosed by surface electrode recordings, is specific to each muscle. Consequently one has to account for factors such as thickness of the skinfold when it comes to the determination of the fiber-type content of different muscles within a subject.  相似文献   

16.
Alternate muscle activity between synergist muscles has been demonstrated during low-level sustained contractions [< or =5% of maximal voluntary contraction (MVC) force]. To determine the functional significance of the alternate muscle activity, the association between the frequency of alternate muscle activity during a low-level sustained knee extension and the reduction in knee extension MVC force was studied. Forty-one healthy subjects performed a sustained knee extension at 2.5% MVC force for 1 h. Before and after the sustained knee extension, MVC force was measured. The surface electromyogram was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The frequency of alternate muscle activity for RF-VL, RF-VM, and VL-VM pairs was determined during the sustained contraction. The frequency of alternate muscle activity ranged from 4 to 11 times/h for RF-VL (7.0 +/- 2.0 times/h) and RF-VM (7.0 +/- 1.9 times/h) pairs, but it was only 0 to 2 times/h for the VL-VM pair (0.5 +/- 0.7 times/h). MVC force after the sustained contraction decreased by 14% (P < 0.01) from 573.6 +/- 145.2 N to 483.3 +/- 130.5 N. The amount of reduction in MVC force was negatively correlated with the frequency of alternate muscle activity for the RF-VL and RF-VM pairs (P < 0.001 and r = 0.65 for both) but not for the VL-VM pair. The results demonstrate that subjects with more frequent alternate muscle activity experience less muscle fatigue. We conclude that the alternate muscle activity between synergist muscles attenuates muscle fatigue.  相似文献   

17.
The purpose of this study was to examine the effect of graded conditioning contractions of the antagonist knee flexor muscles on the output characteristics of knee extensor muscles in healthy humans. Eight male university students performed maximum isometric contractions of knee extensors, preceded by isometric conditioning contractions of the antagonist knee flexors. The developed force and electromyographic (EMG) amplitudes of the knee extensors after the conditioning contraction were measured and compared with those of simple knee extension without conditioning. The forces of the conditioning flexor contraction were set at three levels: low (20% of maximum voluntary contraction: MVC), moderate (60% of MVC), and high (100% of MVC). The EMG amplitudes of the vastus medialis, vastus lateralis, and rectus femoris muscle were recorded and the root mean square amplitudes were calculated. The strongest enhancement of the extension force was obtained by moderate intensity conditioning contraction (108.95+/-1.87% of simple knee extension), although high intensity conditioning also induced a significant increase (105.41+/-2.69%). Low intensity conditioning did not cause a significant enhancement of the contraction force (103.17+/-2.99%). Similarly, the EMG amplitudes were significantly increased by moderate and/or high conditioning. These results suggest that antagonist conditioning contraction of moderate intensities is sufficient and may be optimal to potentiate knee extensor contraction.  相似文献   

18.
Findings from five separate studies of EMG changes and muscle fatigue during prolonged low-level static contractions are summarized, and the possible mechanisms behind the changes are briefly discussed. Sustained static contractions (10%, 7% and 5% MVC) of up to 1 h duration were performed by finger flexors, elbow flexors and extensors, and knee extensors. In one experiment, intermittent static arm pulling (triceps) (10 s contraction and 5 s rest, average work load 14% and 10% MVC) was performed for 7 h. The endurance time for the sustained contractions was around one hour for 10% MVC, and it was shown--all in all--that the concept of "indefinite" endurance times at contractions below 15-20% MVC cannot be maintained. After 5% MVC sustained contractions for one hour a 12% reduction in MVC was seen, and significant increases in EMG amplitude and decreases in the mean spectral frequency of the EMG-power spectrum were found. Marked differences were also seen in the EMG changes in the elbow flexors and extensors, and transcutaneous electrical stimulation of the knee extensors showed that low frequency fatigue was present after the contraction. With intermittent contractions similar changes in the EMG parameters were seen after 2-3 h of contractions at 14% MVC. On average, during contractions of 10% MVC no EMG changes were detected. Increased extracellular potassium concentration in the contracting muscles is suggested as a possible explanation of these findings.  相似文献   

19.
Yu ZB  Jiao B  Wang YY  Li H 《生理学报》2008,60(3):362-368
甲状腺功能亢进(甲亢)时甲状腺素分泌增加,不仅使具有神经支配的慢缩型肌纤维向快缩型转化,而且改变骨骼肌的强直收缩功能.因此,甲亢性肌病的肌肉乏力可能与骨骼肌强直收缩易发生疲劳有关.本实验在离体条件下,观测甲亢4周引起的大鼠慢缩肌--比目鱼肌(soleus, SOL)单收缩与间断强直收缩功能的变化.结果显示,甲亢4周大鼠体重明显低于同步对照组[(292±13)g vs (354±10)g],但SOL湿重没有明显改变[(107.3±8.6)mg vs (115.1±6.9)mg].甲亢大鼠SOL单收缩张力达到峰值的时间(time to peak tension, TPT)、从峰值降至75%舒张时间(time from peak tension to 75% relaxation, TR75)均明显缩短;强直收缩的TR75也明显缩短[(102.8±4.1)ms vs (178.8±15.8)ms];强直收缩的最适频率从对照组的100Hz增加到140Hz;间断强直收缩期间容易发生疲劳.甲亢大鼠SOL肌浆网Ca2 -ATP酶(sarcoplasmic-reticulum Ca2 -ATPase, SERCA)活性增高.采用SERCA特异性抑制剂CPA (1.0μmol/L)处理后,对照组与甲亢大鼠SOL间断强直收缩的TR75均延长,同时不易出现疲劳.5.0μmol/L CPA灌流虽可进一步抵抗甲亢大鼠SOL间断强直收缩引起的疲劳,但强直收缩期间的静息张力却明显升高.将CPA浓度增至10.0μmol/L,甲亢大鼠SOL间断强直收缩又趋向易发生疲劳.这些结果提示,与心肌相同,骨骼肌肌纤维SERCA活性亦可影响单收缩与强直收缩的舒张时间,SERCA活性升高可加速间断强直收缩发生疲劳.  相似文献   

20.
The purpose of this investigation was to determine if antagonizing extracellular calcium influx altered posttetanic twitch potentiation (PTP). Whole muscles and muscle fiber bundles (less than or equal to 25 fibers) dissected from frog sartorius and semitendinosus muscles were mounted at optimal length in a normal Ringer solution (NR). To determine PTP, isometric twitches were evoked every 10 s (0.1 Hz) before and after a 2.5-s tetanic contraction (80 Hz). To antagonize calcium influx, low-calcium Ringer [LCR, calcium replaced by 3 mM magnesium and 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid], NR plus diltiazem (Dilt, 30 microM), NR plus nifedipine (Nif, 10 microM), and NR plus D 600 (30 microM) were also used (n = 8 for each condition). These conditions altered pretetanic twitch tension by only -1.2 +/- 2.4, 4.2 +/- 2.3, 4.7 +/- 3.7, and 1.6 +/- 3.7% (SE), (LCR, Dilt, Nif, and D 600, P greater than 0.05) but caused a noticeable decrease in tension at the end of the tetanus. Under NR conditions, twitches evoked immediately after the tetanus were potentiated by 49.5 +/- 0.4% with the peak rate of tension development (dP/dt) increased by 44.9 +/- 0.5% (P less than 0.05). Antagonizing calcium influx depressed the PTP response by 59.8 +/- 6.2, 55.9 +/- 10.1, 73.2 +/- 6.8, and 29.8 +/- 3.6% (P less than 0.05) and increased dP/dt by 65.8 +/- 11.1, 45.7 +/- 8.6, 55.6 +/- 4.4% and 49.0 +/- 10.5% (P less than 0.05). Addition of drugs immediately after the tetanus only slightly reduced PTP but accelerated recovery of the twitch.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号