首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chaperone GroEL/GroES and Lon protease were shown to play a role in regulating the expression of the Vibrio fischeri lux operon cloned in Escherichia coli cells. The E. coli groE mutant carrying a plasmid with the full-length V. fischeri lux regulon showed a decreased bioluminescence. The bioluminescence intensity was high in E. coli cells with mutant lonA and the same plasmid. Bioluminescence induction curves lacked the lag period characteristic of lon + strains. Regulatory luxR of V. fischeri was cloned in pGEX-KG to produce the hybrid gene GST-luxR. The product of its expression, GST-LuxR, was isolated together with GroEL and Lon upon affinity chromatography on a column with glutathione-agarose, suggesting complexation of LuxR with these proteins. It was assumed that GroEL/GroES is involved in LuxR folding, while Lon protease degrades LuxR before its folding into an active globule or after denaturation.  相似文献   

2.
The groEL gene of the alkaliphilic Bacillus sp. strain C-125 was cloned in Escherichia coli and sequenced. The groEL gene encoded a polypeptide of 544 amino acids and was preceded by the incomplete groES gene, lacking its 5′-end. The sequence of the derived amino acids was 87.5% identical to that of B. subtilis, 85.4% identical to that of B. stearothemophilus, and 60.9% identical to that of E. coli. The GroEL protein was expressed in E. coli. Purified GroEL protected yeast a-glucosidase from irreversible aggregation at a high temperature and the addition of Mg-ATP was essential for reactivation of the a-glucosidase. The addition of E. coli GroES increased recovery of the enzyme activity, indicating that C-125 GroEL could function in coordination with E. coli GroES.  相似文献   

3.
GroELs which are prokaryotic members of the chaperonin (Cpn)/Hsp60 family are molecular chaperones of which Escherichia coli GroEL is a model for subsequent research. The majority of bacterial species including E. coli and Bacillus subtilis have only one essential groEL gene that forms an operon with the co‐chaperone groES gene. In contrast to these model bacteria, two or three groEL genes exist in cyanobacterial genomes. One of them, groEL2, does not form an operon with the groES gene, whereas the other(s) does. In the case of cyanobacteria containing two GroEL homologs, one of the GroELs, GroEL1, substitutes for the native GroEL in an E. coli cell, but GroEL2 does not. Unlike the E. coli GroEL, GroEL2 is not essential, but it plays an important role which is not substitutable by GroEL1 under stress. Regulation of expression and biochemical properties of GroEL2 are different/diversified from GroEL1 and E. coli GroEL in many aspects. We postulate that the groEL2 gene has acquired a novel, beneficial function especially under stresses and become preserved by natural selection, with the groEL1 gene retaining the original, house‐keeping function. In this review, we will focus on difference between the two GroELs in cyanobacteria, and divergence of GroEL2 from the E. coli GroEL. We will also compare cyanobacterial GroELs with the chloroplast Cpns (60α and 60β) which are thought to be evolved from the cyanobacterial GroEL1. Chloroplast Cpns appear to follow the different path from cyanobacterial GroELs in the evolution after gene duplication of the corresponding ancestral groEL gene.  相似文献   

4.
We developed a new system to improve the overproduction of soluble proteins in E. coli based on a plasmid encoding the small heat-shock protein, Lo18, derived from the lactic acid bacterium Oenococcus oeni. The efficiency of this system was compared with that of another system based on production of the E. coli universal chaperone GroEL/ES. A compatible plasmid encoding β-glucosidase was constructed for the overproduction and aggregation of this enzyme. Co-expression with Lo18 resulted in an increase in soluble β-glucosidase levels similar to that obtained in the GroEL/ES co-expression system. Lo18 was found preferentially in the insoluble fraction, associated with aggregated enzyme. By contrast, GroEL/ES was more abundant in the soluble fraction.  相似文献   

5.
6.
A 4.4-kb DNA fragment was cloned from Actinobacillus pleuropneumoniae (strain 4074, serotype 1) by genetic complementation with Escherichia coli groES-groEL mutant strains. Sequence analysis of this fragment revealed a purine nucleoside phosphorylase (DeoD)-encoding gene homolog (deoD), heat-shock response-encoding genes for the small (groES) and large subunits (groEL) and a partial open reading frame encoding an alcohol dehydrogenase homolog (adhE). The predicted amino-acid sequence of groES and groEL genes showed extensive sequence identity (80–95%) with other Pasteurellaceae. The gene organization surrounding the groE locus was different from that of Haemophilus infuenzae. When expressed in E. coli, groES-groEL genes were capable of complementing the growth of a λ lytic phage, indicating a structural as well as functional conservation.  相似文献   

7.
8.
The role of the C-terminal segment of the GroEL equatorial domain was analyzed. To understand the molecular basis for the different active temperatures of GroEL from three bacteria, we constructed a series of chimeric GroELs combining the C-terminal segment of the equatorial domain from one species with the remainder of GroEL from another. In each case, the foreign C-terminal segment substantially altered the active temperature range of the chimera. Substitution of L524 of Escherichia coli GroEL with the corresponding residue (isoleucine) from psychrophilic GroEL resulted in a GroE with approximately wild-type activity at 25 °C, but also at 10 °C, a temperature at which wild-type E. coli GroE is inactive. In a detailed look at the temperature dependence of the GroELs, normal E. coli GroEL and the L524I mutant became highly active above 14 °C and 12 °C respectively. Similar temperature dependences were observed in a surface plasmon resonance assay of GroES binding. These results suggested that the C-terminal segment of the GroEL equatorial domain has an important role in the temperature dependence of GroEL. Moreover, E. coli acquired the ability to grow at low temperature through the introduction of cold-adapted chimeric or L524I mutant groEL genes.  相似文献   

9.
Two hydrogenase genes of Citrobacter freundii complementing different Escherichia coli hyd mutations were cloned on the multicopy-plasmid pBR322. Recombinant plasmids pCBH2 and pCFH1 were obtained. Since hydrogenase activities of E. coli transformant HK-8 (pCBH2) and HK-7 (pCFH1) were much the same as E. coli C600 (wild type cells), the reduction in DNA size of recombinant plasmid pCBH2 (10.7 kb) was investigated. Reduced recombinant plasmids pCBH4 (6.2 kb) and pCBH6 (5.7 kb) were obtained, and a hydrogenase gene was found to be located on the 2.35 kb fragment between AvaI and EcoRI sites. Hydrogenase activity and hydrogen-evolving activity of E. coli HK-8 (pCBH4 or pCBH6) from sodium formate, sodium pyruvate or glucose were approximately 2-fold higher than those of E. coli C600 (wild type cells).On the other hand, a reduced recombinant plasmid pCBH10 (6.0 kb), which contained the adjacent DNA fragment (2.15 kb) to a hydrogenase gene, was obtained. Hydrogenase activity of E. coli C600 harboring pCBH10 was half that of E. coli C600. From these results we estimate that in plasmid pCBH2, the repressor gene suppressing the synthesis of hydrogenase might have been cloned together with a hydrogenase gene.  相似文献   

10.
An efficient and user-friendly bacterial transformation method by simple spreading cells with aminoclays was demonstrated. Compared to the reported transformation approaches using DNA adsorption or wrapping onto (in)organic fibers, the spontaneously generated clay-coated DNA suprastructures by mixing DNA with aminoclay resulted in transformants in both Gram-negative (Escherichia coli) and Gram-positive cells (Streptococcus mutans). Notably, the wild type S. mutans showed comparable transformation efficiency to that of the E. coli host for recombinant DNA cloning. This is a potentially promising result because other trials such as heat-shock, electroporation, and treatment with sepiolite for introducing DNA into the wild type S. mutans failed. Under defined conditions, the transformation efficiency of E. coli XL1-Blue and S. mutans exhibited ~ 2 × 105 and ~ 6 × 103 CFU/μg of plasmid DNA using magnesium-aminoclay. In contrast, transformation efficiency was higher in S. mutans than that in E. coli XL1-Blue for calcium-aminoclay. It was also confirmed that each plasmid transformed into E. coli and S. mutans was stably maintained and that they expressed the inserted gene encoding the green fluorescent protein during prolonged growth of up to 80 generations.  相似文献   

11.
12.
A shuttle vector for Gluconobacter suboxydans and Escherichia coli was constructed by ligation of a cryptic plasmid, pMV201, found in G. suboxydans IFO 3130 to E. coli plasmid pACYC177. The chimeric plasmid named pMGlOl carries the ampicillin resistance gene derived from pACYC177 and transforms G. suboxydans var. α IFO 3254 as well as E. coli. The transformation conditions for G. suboxydansvar. α IFO 3254 were examined using pMGlOl DNA. Competent cells were induced efficiently by treatment with LiCl or RbCl CaCl2 which induced the competency of Acetobacter was much less effective. Addition of polyethylene glycol enhanced the transformation efficiency significantly. An efficiency of approximately 102 transformants per μg DNA was finally obtained.  相似文献   

13.
Summary Mitochondrial DNA has been isolated from a cytoplasmic petite mutant of Saccharomyces cerevisiae which has retained only about 2% of the mitochondrial wild type genome. The denatured DNA was analyzed by agarose gel electrophoresis and a homogeneous, single band of DNA was found. Petite and wild type mitochondrial DNAs exhibited similar gel electrophoretic mobilities. Using denatured DNA from the E. coli phages T4 and T3 for comparison a molecular weight of 55×106 daltons has been calculated for the double-stranded petite mitochondrial DNA. On the basis of this observation most of the mitochondrial DNA of this petite mutant appeared to consist of a polymer of about 50 repeats to account for a size similar to that of the wild type molecule. Thus a regulatory mechanism might exist which keeps constant the physical size of the mitochondrial DNA molecule in spite of the elimination of large fractions of the wild type genome.Dedicated to Dr. Dr. h. c. Peter Michaelis on the occasion of his 75th birthday  相似文献   

14.
The kinetics of transformation of Zymomonas mobilis with plasmid DNA using a modification of the CaCl2 procedure for transformation of Escherichia coli was investigated. Transformation by the plasmid, pNSW301, followed second-order kinetics indicating that two molecules react co-operatively to produce a single transformant.  相似文献   

15.
Topoisomerase I and DNA gyrase are the major topoisomerase activities responsible for the regulation of DNA supercoiling in the bacterium Escherichia coli . The P1 promoter of topA has previously been shown to be a σ32-dependent heat-shock promoter. A mutant strain with a deletion of P1 was constructed. This mutant is >10-fold more sensitive to heat treatment (52°C) than the wild type. After brief treatment at 42°C, wild-type Escherichia coli acquires an enhanced resistance to the effects of a subsequent 52°C treatment. This is not the case for the P1 deletion mutant, which, and under these conditions, is about 100-fold less thermotolerant than the wild type. The presence of a plasmid expressing topoisomerase I restored the heat-survival level of the mutant to that of the wild type. During heat shock, the superhelical density of a plasmid with the heat-inducible rpoD promoter is increased in the P1 deletion mutant. We also note that the pulse-labelling pattern of proteins at 42°C (displayed on SDS–polyacrylamide gels) is different in the mutant, and, most notably, the amounts of DnaK and of GroEL protein are reduced. A model is proposed in order to unify these observations.  相似文献   

16.
17.
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼150 h (∼6 days), providing a good model to characterize the football-shaped complex.  相似文献   

18.
The transformation of Zymomonas mobilis by plasmid DNA was achieved using a modification of the CaCl2 method for Escherichia coli. The highest frequency of transformation obtained was 5 × 103 transformants/μg DNA. The success of the method depended upon the use of a plasmid which is a cointegrate between a Z. mobilis cryptic plasmid and an E. coli plasmid carrying two selectable drug resistance markers.  相似文献   

19.
A DNA fragment with a gene for intracellular alginate lyase in a bacterium A1 isolated from a ditch was cloned using a vector plasmid pKK223-3 and the gene was weakly expressed in Escherichia coli DH1 cells. The alginate lyase produced by E. coli DH1 cells was thought to correspond to A1-I among three kinds of alginate lyases (A1-I, A1-I-1 and A1-I-2) produced by the strain A1. Through this study, CaCl2 was found to be a useful agent for the screening of microbial alginate lyase-producing colonies on agar plates.  相似文献   

20.
A glutamine synthetase (GS) gene, glnA, from the gram-positive obligate anaerobe Clostridium acetobutylicum was cloned on recombinant plasmid pHZ200 and enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. The cloned C. acetobutylicum gene was expressed from a regulatory region contained within the cloned DNA fragment. glnA expression was subject to nitrogen regulation in E. coli. This cloned glnA DNA did not enable an E. coli glnA ntrB ntrC deletion mutant to utilize arginine or low levels of glutamine as sole nitrogen sources, and failed to activate histidase activity in this strain which contained the Klebsiella aerogenes hut operon. The GS produced by pHZ200 was purified and had an apparent subunit molecular weight of approximately 59,000. There was no DNA or protein homology between the cloned C. acetobutylicum glnA gene and GS and the corresponding gene and GS from E. coli. The C. acetobutylicum GS was inhibited by Mg2+ in the γ-glutamyl transferase assay, but there was no evidence that the GS was adenylylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号