首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamics and function of proteins are governed by the structural and energetic properties of the different states they adopt and the barriers separating them. In earlier work, native-state triplet–triplet energy transfer (TTET) on the villin headpiece subdomain (HP35) revealed an equilibrium between a locked native state and an unlocked native state, which are structurally similar but have different dynamic properties. The locked state is restricted to low amplitude motions, whereas the unlocked state shows increased conformational flexibility and undergoes local unfolding reactions. This classified the unlocked state as a dry molten globule (DMG), which was proposed to represent an expanded native state with loosened side-chain interactions and a solvent-shielded core. To test whether the unlocked state of HP35 is actually expanded compared to the locked state, we performed high-pressure TTET measurements. Increasing pressure shifts the equilibrium from the locked toward the unlocked state, with a small negative reaction volume for unlocking (ΔV0 = − 1.6 ± 0.5 cm3/mol). Therefore, rather than being expanded, the unlocked state represents an alternatively packed, compact state, demonstrating that native proteins can exist in several compact folded states, an observation with implications for protein function. The transition state for unlocking/locking, in contrast, has a largely increased volume relative to the locked and unlocked state, with respective activation volumes of 7.1 ± 0.4 cm3/mol and 8.7 ± 0.9 cm3/mol, indicating an expansion of the protein during the locking/unlocking transition. The presented results demonstrate the existence of both compact, low-energy and expanded, high-energy DMGs, prompting a broader definition of this state.  相似文献   

2.
Homocysteine thiolactone is a toxic metabolite produced from homocysteine by amino-acyl t-RNA synthetase in error editing reaction. The basic cause of toxicity of homocysteine thiolactone is believed to be due to the adduct formation with lysine residues (known as protein N-homocysteinylation) leading to protein aggregation and loss of enzyme function. There was no data available until now that showed the effect of homocysteine thiolactone on the native state structural changes that led to aggregate formation. In the present study we have investigated the time dependent structural changes due to homocysteine thiolactone induced modifications on three different proteins having different physico-chemical properties (cytochrome-c, lysozyme and alpha lactalbumin). We discovered that N-homocysteinylation leads to the formation of molten globule state—an important protein folding intermediate in the protein folding pathway. We also found that the formation of the molten globule state might be responsible for the appearance of aggregate formation. The study indicates the importance of protein folding intermediate state in eliciting the homocysteine thiolactone toxicity.  相似文献   

3.
Guanidine hydrochloride-induced unfolding of a carbonic anhydrase molten globule was studied by high-resolution nuclear magnetic resonance spectroscopy. The study resulted in estimation of the number of water and denaturant molecules bound to the molten globule at various denaturant concentrations in solution. When compared with the data on unfolding of native carbonic anhydrase, these estimates indicate that the unfolding is underlain by an increased local concentration of the denaturant near the protein molecule, which results from the increased ratio between guanidine hydrochloride-bound and protein-bound waters.  相似文献   

4.
Type III secretion systems rely on hydrophobic translocator proteins that form a pore in the host cell membrane to deliver effector proteins into targeted host cells. These translocator proteins are stabilized in the cytoplasm and targeted for export with the help of specific chaperone proteins. In Pseudomonas aeruginosa, the chaperone of the pore-forming translocator proteins is PcrH. Although all translocator chaperones dimerize, the location of the dimerization interface is in dispute. Moreover, it has been reported that interfering with dimerization interferes with chaperone function. However, binding of P. aeruginosa chaperone PcrH to its cognate secretion substrate, PopD, results in dissociation of the PcrH dimer in vitro, arguing that dimerization of PcrH is likely not important for substrate binding or targeting translocators for export. We demonstrate that PcrH dimerization occurs in vivo in P. aeruginosa and used a genetic screen to identify a dimerization mutant of PcrH. The mutant protein is fully functional in that it can both stabilize PopB and PopD in the cytoplasm and promote their export via the type III secretion system. The location of the mutation suggests that the dimerization interface of PcrH mirrors that of the Yersinia homolog SycD and not the dimerization interface that had previously been reported for PcrH based on crystallographic evidence. Finally, we present data that the dimerization mutant of PcrH is less stable than the wild-type protein in P. aeruginosa, suggesting that the function of dimerization is stabilization of PcrH in the absence of its cognate cargo.  相似文献   

5.
Pseudomonas aeruginosa, a Gram‐negative pathogen uses a specialized set of Type III secretion system (T3SS) translocator proteins to establish virulence in the host cell. An understanding of the factors that govern translocation by the translocator protein–chaperone complex is thus of immense importance. In this work, experimental and computational techniques were used to probe into the structure of the major translocator protein PopB from P. aeruginosa and to identify the important regions involved in functioning of the translocator protein. This study reveals that the binding sites of the common chaperone PcrH, needed for maintenance of the translocator PopB within the bacterial cytoplasm, which are primarily localized within the N‐terminal domain. However, disordered and flexible residues located both at the N‐ and C‐terminal domains are also observed to be involved in association with the chaperone. This intrinsic disorderliness of the terminal domains is conserved for all the major T3SS translocator proteins and is functionally important to maintain the intrinsically disordered state of the translocators. Our experimental and computational analyses suggest that a “disorder‐to‐order” transition of PopB protein might take place upon PcrH binding. The long helical coiled‐coil part of PopB protein perhaps helps in pore formation while the flexible apical region is involved in chaperone interaction. Thus, our computational model of translocator protein PopB and its binding analyses provide crucial functional insights into the T3SS translocation mechanism. Proteins 2014; 82:3273–3285. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
7.
Conformational alterations of bovine hemoglobin (Hb) upon sequential addition of glyoxal over a range of 0–90% v/v were investigated. At 20% v/v glyoxal, molten globule (MG) state of Hb was observed by altered tryptophan fluorescence, high ANS binding, existence of intact heme, native-like secondary structure as depicted by far-UV circular dichroism (CD) and ATR-FTIR spectra as well as loss in tertiary structure as confirmed by near-UV CD spectra. In addition, size exclusion chromatography analysis depicted that MG state at 20% v/v glyoxal corresponded to expanded pre-dissociated dimers. Aggregates of Hb were detected at 70% v/v glyoxal. These aggregates of Hb had altered tryptophan environment, low ANS binding, exposed heme, increased β-sheet secondary structure, loss in tertiary structure, enhanced thioflavin T (ThT) fluorescence and red shifted Congo Red (CR) absorbance. On incubating Hb with 30% v/v glyoxal for 0–20 days, advanced glycation end products (AGEs) were detected on day 20. These AGEs were characterised by enhanced tryptophan fluorescence at 450 nm, exposure of heme, increase in intermolecular β-sheets, enhanced ThT fluorescence and red shift in CR absorbance. Comet assay revealed aggregates and AGEs to be genotoxic in nature. Scanning electron microscopy confirmed the amorphous structure of aggregates and branched fibrils of AGEs. The transformation of α-helix to β-sheet usually alters the normal protein to amyloidogenic resulting in a variety of protein conformational disorders such as diabetes, prion and Huntington''s.  相似文献   

8.
The type III secretion system is a widespread apparatus used by pathogenic bacteria to inject effectors directly into the cytoplasm of eukaryotic cells. A key component of this highly conserved system is the translocon, a pore formed in the host membrane that is essential for toxins to bypass this last physical barrier. In Pseudomonas aeruginosa the translocon is composed of PopB and PopD, both of which before secretion are stabilized within the bacterial cytoplasm by a common chaperone, PcrH. In this work we characterize PopB, the major translocator, in both membrane-associated and PcrH-bound forms. By combining sucrose gradient centrifugation experiments, limited proteolysis, one-dimensional NMR, and β-lactamase reporter assays on eukaryotic cells, we show that PopB is stably inserted into bilayers with its flexible N-terminal domain and C-terminal tail exposed to the outside. In addition, we also report the crystal structure of the complex between PcrH and an N-terminal region of PopB (residues 51–59), which reveals that PopB lies within the concave face of PcrH, employing mostly backbone residues for contact. PcrH is thus the first chaperone whose structure has been solved in complex with both type III secretion systems translocators, revealing that both molecules employ the same surface for binding and excluding the possibility of formation of a ternary complex. The characterization of the major type III secretion system translocon component in both membrane-bound and chaperone-bound forms is a key step for the eventual development of antibacterials that block translocon assembly.  相似文献   

9.
The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes.  相似文献   

10.
The high resolution dielectric spectra of semidilute solutions of apomyoglobin in native (N, pH = 5), acid-induced molten globule (A, pH = 4), and unfolded (UA, pH = 3) states have been measured in the range from 0.2 to 20 GHz. Based on a two-component mixture theory, we obtained the following hydration numbers per protein molecule: 590 ± 65 for N, 630 ± 73 for A, and 1110 ± 67 for UA. There was no clear difference between N and A states in contrast to the 25% reduction of helix content and the 50% reduction of heat capacity change upon unfolding. This suggests that the association of hydrophobic moieties might follow the disruption of secondary structures from N to A states. The measured hydration number of UA was close to that of the accessible water number (1340) of a protein molecule calculated for a fully extended structure, indicating that the structure of UA is extended but somewhat more compact than that of a fully extended state.  相似文献   

11.
Molten globule and other disordered states of proteins are now known to play important roles in many cellular processes. From equilibrium unfolding studies of two paralogous proteins and their variants, glutaminyl-tRNA synthetase (GlnRS) and two of its variants [glutamyl-tRNA synthetase (GluRS) and its isolated domains, and a GluRS-GlnRS chimera], we demonstrate that only GlnRS forms a molten globule-like intermediate at low urea concentrations. We demonstrated that a loop in the GlnRS C-terminal anticodon binding domain that promotes communication with the N-terminal domain and indirectly modulates amino acid binding is also responsible for stabilization of the molten globule state. This loop was inserted into GluRS in the eukaryotic branch after the archaea-eukarya split, right around the time when GlnRS evolved. Because of the structural and functional importance of the loop, it is proposed that the insertion of the loop into a putative ancestral GluRS in eukaryotes produced a catalytically active molten globule state. Because of their enhanced dynamic nature, catalytically active molten globules are likely to possess broad substrate specificity. It is further proposed that the putative broader substrate specificity allowed the catalytically active molten globule to accept glutamine in addition to glutamic acid, leading to the evolution of GlnRS.  相似文献   

12.
Eukaryotic Cu,Zn-superoxide dismutases (SOD1s) are generally thought to acquire the essential copper cofactor and intramolecular disulfide bond through the action of the CCS copper chaperone. However, several metazoan SOD1s have been shown to acquire activity in vivo in the absence of CCS, and the Cu,Zn-SOD from Caenorhabditis elegans has evolved complete independence from CCS. To investigate SOD1 activation in the absence of CCS, we compared and contrasted the CCS-independent activation of C. elegans and human SOD1 to the strict CCS-dependent activation of Saccharomyces cerevisiae SOD1. Using a yeast expression system, both pathways were seen to acquire copper derived from cell surface transporters and compete for the same intracellular pool of copper. Like CCS, CCS-independent activation occurs rapidly with a preexisting pool of apo-SOD1 without the need for new protein synthesis. The two pathways, however, strongly diverge when assayed for the SOD1 disulfide. SOD1 molecules that are activated without CCS exhibit disulfide oxidation in vivo without oxygen and under copper-depleted conditions. The strict requirement for copper, oxygen, and CCS in disulfide bond oxidation appears exclusive to yeast SOD1, and we find that a unique proline at position 144 in yeast SOD1 is responsible for this disulfide effect. CCS-dependent and -independent pathways also exhibit differential requirements for molecular oxygen. CCS activation of SOD1 requires oxygen, whereas the CCS-independent pathway is able to activate SOD1s even under anaerobic conditions. In this manner, Cu,Zn-SOD from metazoans may retain activity over a wide range of physiological oxygen tensions.Oxygen is essential for aerobic respiration, but reactive byproducts of oxygen metabolism, such as the superoxide anion, can damage cellular molecules, including proteins, DNA, and lipids (13). SOD1s (copper- and zinc-containing superoxide dismutases) provide the primary defense against superoxide damage by catalytically removing it through a disproportionation reaction (4). This reaction involves redox cycling at the copper active site (5). SOD1s require several post-translational modifications to form an active molecule. Copper and zinc are bound by the enzyme, and an intramolecular disulfide bond is formed between two conserved cysteine residues. Although the zinc ion and disulfide bond are not directly involved in the disproportionation reaction, these modifications are required for proper stability and formation of the active site (610). The presence of an intramolecular disulfide bond is intriguing, given the fact that the cytosol favors reduced thiols.The activity of SOD1s in vivo is largely controlled through the aforementioned post-translational modifications. Most of what is currently known about activation of SOD1 in vivo has emerged through studies of the bakers'' yeast Saccharomyces cerevisiae SOD1. Here insertion of the catalytic copper requires the action of the copper chaperone for SOD3 (CCS) (11). CCS physically interacts with SOD1 to deliver the copper ion and catalyze the disulfide bond formation in an oxygen-dependent manner (1215). In fact, S. cerevisiae SOD1 (ySOD1) is completely dependent on CCS for insertion of the catalytic copper and oxidation of the disulfide bond (11, 15, 16).Although ySOD1 is dependent on CCS for activity, other eukaryotic SOD1s are not. Mouse and human SOD1 (hSOD1), when expressed in CCS−/− mouse fibroblasts and in ccs1Δ yeast, still retain some SOD1 activity (1719). Moreover, the genome for the nematode Caenorhabditis elegans does not contain a CCS-like gene, yet harbors several Cu,Zn-SODs. Previous studies with C. elegans SOD-1 (wSOD-1) have shown that this SOD is activated completely independently of CCS (20). Together, these studies present a strong case for a second SOD1 activation mechanism independent of CCS.There must be inherent differences in SOD1 sequences that dictate whether the enzyme uses CCS or the CCS-independent pathway or both. Through targeted mutagenesis, sequences near the C terminus have been previously identified as being important (19). Yeast SOD1 contains dual prolines at positions 142 and 144, which when mutated in combination allow for CCS-independent activation. Conversely, hSOD1 and wSOD-1 contain non-proline residues at these positions, and if dual prolines are introduced, then CSS-independent activation is blocked (19, 20). How this pair of prolines influences SOD1 activation is not understood.It is interesting that nature has developed two activation mechanisms for such a key enzyme in oxidative stress protection, and these are not likely to be redundant. It was previously predicted that the two pathways draw upon distinct sources of copper (19), since the addition of the catalytic copper ion is limiting for enzyme activation. However, since disulfide oxidation is also limiting for enzyme activity, it is possible that the two pathways diverge at this level. In the current study, we investigate the requirements and regulation of the CCS-dependent and -independent SOD1 activation pathways. Our results strongly indicate that the two pathways do not diverge at the level of upstream copper transporter sources or the kinetics of copper incorporation into SOD1 but rather at the level of disulfide bond formation. Copper is required for CCS-mediated disulfide bond oxidation in yeast SOD1, whereas SOD1s that can be activated without CCS show no such requirement for copper in disulfide oxidation. Moreover, oxygen is required for enzyme activation through CCS, but the CCS-independent pathway is able to bypass the need for molecular oxygen. This allows for significant SOD1 activity to be found at a variety of oxygen concentrations by utilizing two activation pathways.  相似文献   

13.
While many proteins are recognized to undergo folding via intermediate(s), the heterogeneity of equilibrium folding intermediate(s) along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD), ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS) were used to study the structural and thermodynamic characteristics of the native (N), denatured (D) and intermediate state (X) of goat cytochorme c (cyt-c) induced by weak salt denaturants (LiBr, LiCl and LiClO4) at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε 400) and CD ([θ]409), is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG) state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1) that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III) axial bond and Trp59-propionate interactions; (2) that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3) that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1), classical (X2) and disordered (X3), i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N.  相似文献   

14.
15.
分子伴侣及其在蛋白质折叠中的作用研究进展   总被引:1,自引:0,他引:1  
蛋白质折叠是一个复杂的、动态的过程,蛋白质的折叠不是自发的,需要其他物质的帮助.了解分子伴侣在蛋白质折叠过程中的的作用,有助于进一步研究蛋白质折叠机制.本文介绍了分子伴侣及其分类,重点综述了各类分子伴侣在蛋白质折叠中的机制,并提出了研究分子伴侣在蛋白质折叠中的作用的重要意义.  相似文献   

16.
Hyperglycemic condition i.e. an increase in blood glucose concentration has been linked to bring about structural alterations in the native state of proteins. Glucose concentrations of 50 and 100 mM in vitro, which correspond to hyperglycemic condition, were tested to investigate their effect on lysozyme native structure. Incubating enzyme with 50 and 100 mM glucose for a period of 7 days, an intermediate state on day 4 and 3 was observed, respectively. The presence of intermediate state was characterized by a 22 % increase in the intrinsic fluorescence intensity with a red shift of 20 nm compared to the native state, a 5 % increase in ANS-fluorescence intensity relative to the native due to the surfacing of hydrophobic clusters and a sharp decrease in near-UV CD signal at around 284 and 291 nm. The state retains substantial native-like secondary structure. This partially unfolded intermediate state can be referred as ‘molten globule’, which finally tends to aggregate on day 6 and 4 with 50 and 100 mM glucose concentration, respectively, as a result of cross-linking between lysozyme molecules. The aggregates were confirmed by the presence of β-sheet structure as depicted by far-UV CD, an increase in ThT fluorescence as well as the fibrillar morphology shown by SEM. Moreover, advanced glycation end products were also accompanied as the emission peak was observed at 460 and 470 nm corresponding to the formation of pentosidine and malonaldehyde, respectively.  相似文献   

17.
Using the pulse radiolysis technique, we have demonstrated that bleomycin-Fe(III) is stoichiometrically reduced by CO2- to bleomycin-Fe(II) with a rate of (1.9 ± 0.2) × 108M-1s-1. In the presence of calf thymus DNA, the reduction proceeds through free bleomycin-Fe(III) and the binding constant of bleomycin-Fe(III) to DNA has been determined to be (3.8 ± 0.5) x 104 M-1. It has also been demonstrated that in the absence of DNA O2-1 reacts with bleomycin-Fe(III) to yield bleomycin-Fe(II)O2, which is in rapid equilibrium with molecular oxygen, and decomposes at room temperature with a rate of (700 ± 200) s-1. The resulting product of the decomposition reaction is Fe(III) which is bound to a modified bleomycin molecule. We have demonstrated that during the reaction of bleomycin-Fe(II) with O2, modification or self-destruction of the drug occurs, while in the presence of DNA no destruction occurs, possibly because the reaction causes degradation of DNA.  相似文献   

18.
The effects of silicates upon erythrocytes depend upon the degree of polymerization. Monomeric silicate does not appear to be taken up by red cells. Polymerized silicates are taken up and bound tightly. In the presence of small polymeric forms erythrocytes are lysed by complement. Larger polymers are bound to erythrocytes but do not sensitize to complement hemolysis. Larger polymers, however, are directly toxic and cause hemolysis in the absence of complement. Red cells exposed to complement-active polymers show characteristic alteration in morphology with the assumption of irregular bell shapes. Larger polymers cause the cells to become spherical before spontaneous rupture occurs. Large polymers cause erythrocyte agglutination but this is minimal or absent with small complement-active polymers. Complement-active polymers cause little or no change in osmotic fragility. Increase in mechanical fragility is a sensitive indication of the presence of larger, agglutinating polymers. The conversion of pneumococci from Gram positivity to negativity appears to be caused principally by complement-active polymers. Possible implications of polymer size and complement activity are discussed in relation to production of silicotic lesions by silica-containing ores.  相似文献   

19.
《Free radical research》2013,47(4-6):259-270
Using the pulse radiolysis technique, we have demonstrated that bleomycin-Fe(III) is stoichiometrically reduced by CO2? to bleomycin-Fe(II) with a rate of (1.9 ± 0.2) × 108M?1s?1. In the presence of calf thymus DNA, the reduction proceeds through free bleomycin-Fe(III) and the binding constant of bleomycin-Fe(III) to DNA has been determined to be (3.8 ± 0.5) x 104 M?1. It has also been demonstrated that in the absence of DNA O2?1 reacts with bleomycin-Fe(III) to yield bleomycin-Fe(II)O2, which is in rapid equilibrium with molecular oxygen, and decomposes at room temperature with a rate of (700 ± 200) s?1. The resulting product of the decomposition reaction is Fe(III) which is bound to a modified bleomycin molecule. We have demonstrated that during the reaction of bleomycin-Fe(II) with O2, modification or self-destruction of the drug occurs, while in the presence of DNA no destruction occurs, possibly because the reaction causes degradation of DNA.  相似文献   

20.
The presence of tannins in the idioblasts of Elodea densa is conclusively disproved. Ten reagents for histochemical detection of tannin (K2Cr2O7, K3Fe(CN)6, FeCl3, (NH4)2MO4, Nessler's reagent, Fehling's reagent, methylene blue, gelatin, iodine-KI and lead acetate) gave negative tests in Elodea idioblasts. Two reagents (1% aqueous caffeine and a saturated solution of Ca(OH)2) gave apparently positive reactions that could be explained by the presence of lipids. Positive tests for lipids were obtained by direct microscopic examination of the removal of lipid materials from freeze-dried leaves, using a 1:1 ether-alcohol mixture. The lipid material was not removed when acetone was substituted for ether-alcohol. A lipoprotein complex was demonstrated by using Serra's method for masked lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号