首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
8-anilino-1-naphthalenesulfonic acid (ANS) is believed to strongly bind cationic groups of proteins and polyamino acids through ion pair formation. A paucity of data exists on the fluorescent properties of ANS in these interactions. ANS binding to arginine and lysine derivatives was studied by fluorescence and circular dichroism spectroscopies to augment published information attained by isothermal titration calorimetry (ITC). Fluorescence enhancement with a hypsochromic shift results from the interaction of the charged group of lysine and arginine with the sulfonate group of ANS. Ion pairing between Arg (or Lys) and the sulfonate group of ANS reduce the intermolecular charge transfer (CT) rate constant that leads to enhancement of fluorescence. A positive charge near the -NH group of ANS changes the intramolecular CT process producing a blue shift of fluorescence. The Arg side chain compared to that of Lys more effectively interacts with both the -NH and sulfonate groups of ANS. ANS binding also induces a random coil-alpha helix transition in poly-Arg. Our data, in contrast to ITC results, indicate that electrostatic interactions between ANS derivatives and positively charged side chains do not account for binding affinity in the micromolar range. In addition to ion pairing complementary interactions, such as van der Waals, should be considered for high affinity (K(d)<1 mM) external binding sites of proteins.  相似文献   

2.
Although 8-anilinonaphthalene-1-sulfonic acid (ANS) is frequently used in protein folding studies, the structural and thermodynamic effects of its binding to proteins are not well understood. Using high-resolution two-dimensional NMR and human interleukin-1 receptor antagonist (IL-1ra) as a model protein, we obtained detailed information on ANS-protein interactions in the absence and presence of urea. The effects of ambient to elevated temperatures on the affinity and specificity of ANS binding were assessed from experiments performed at 25 degrees C and 37 degrees C. Overall, the affinity of ANS was lower at 37 degrees C compared to 25 degrees C, but no significant change in the site specificity of binding was observed from the chemical shift perturbation data. The same site-specific binding was evident in the presence of 5.2 M urea, well within the unfolding transition region, and resulted in selective stabilization of the folded state. Based on the two-state denaturation mechanism, ANS-dependent changes in the protein stability were estimated from relative intensities of two amide resonances specific to the folded and unfolded states of IL-1ra. No evidence was found for any ANS-induced partially denatured or aggregated forms of IL-1ra throughout the experimental conditions, consistent with a cooperative and reversible denaturation process. The NMR results support earlier observations on the tendency of ANS to interact with solvent-exposed positively charged sites on proteins. Under denaturing conditions, ANS binding appears to be selective to structured states rather than unfolded conformations. Interestingly, the binding occurs within a previously identified aggregation-critical region in IL-1ra, thus providing an insight into ligand-dependent protein aggregation.  相似文献   

3.
Binding to the regulatory subunits of types I and II adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase (RI and RII, respectively) produces large distinctive increases in fluorescence and optical activity of 5,5'-bis[8-(phenylamino)-1-naphthalenesulfonate] [bis(ANS)]. Both specific and nonspecific interactions are involved. Association of the regulatory subunits with either the catalytic subunit or cAMP results in dissociation of a major portion of the bound bis(ANS) as detected by changes in fluorescence and circular dichroism. The results are consistent with the accepted cAMP binding properties of RI and RII, showing cooperativity in case of RI and two heterologous binding sites for RII. cGMP has the same overall effect on bis(ANS) binding as cAMP. However, very high concentrations are required for complete dissociation of bis(ANS) from RII, consistent with the observation that cGMP is inefficient in bringing about the dissociation of the type II holoenzyme. Magnesium binding to sites having dissociation constants of ca. 12 mM increases the interaction of bis(ANS) with both of the isolated regulatory subunits. Experiments involving the 37 000-dalton fragment of RII indicate that the limited proteolytic cleavage was heterogeneous, with only 24-39% of the resulting population interacting strongly with the catalytic subunit.  相似文献   

4.
Using intrinsic and probe fluorescence, microcalorimetry and isotopic methods, the interactions of prostaglandins (PG) E2 and F2 alpha and some fatty acids with native and alkylated proteins (human serum albumin (HSA) and rat liver plasma membrane PG receptors), were studied. The fatty acid and PG interactions with human serum albumin (HSA) resulted in effective quenching of fluorescence of the probe, 1.8-anilinonaphthalene sulfonate (ANS), bound to the protein. Fatty acids competed with ANS for the binding sites; the efficiency of this process increased with an increase in the number of double bonds in the fatty acid molecule. PG induced a weaker fluorescence quenching of HSA-bound ANS and stabilized the protein molecule in a lesser degree compared to fatty acids. The sites of PG E2 and F2 alpha binding did not overlap with the sites of fatty acid binding on the HSA molecule. Nonenzymatic alkylation of HSA by acetaldehyde resulted in the abnormalities of binding sites for fatty acids and PG. Modification of the plasma membrane proteins with acetaldehyde sharply diminished the density of PG E2 binding sites without changing the association constants. Alkylation did not interfere with the parameters of PG F2 alpha binding to liver membrane proteins.  相似文献   

5.
Interactions of bisANS and ANS to tubulin in the presence and absence of GTP were investigated, and the binding and thermodynamic parameters were determined using isothermal titration calorimetry. Like bisANS binding to tubulin, we observed a large number of lower affinity ANS binding sites (N1 = 1.3, K1 = 3.7 x 10(5) M(-1), N2 = 10.5, K2 = 7 x 10(4)/M(-1)) in addition to 1-2 higher affinity sites. Although the presence of GTP lowers the bisANS binding to both higher and lower affinity sites (N1 = 4.3, N2 = 11.7 in absence and N1 = 1.8, N2 = 3.6 in presence of GTP), the stoichiometries of both higher and lower affinity sites of ANS remain unaffected in the presence of GTP. BisANS-induced structural changes on tubulin were studied using site-specific proteolysis with trypsin and chymotrypsin. Digestion of both alpha and beta tubulin with trypsin and chymotrypsin, respectively, has been found to be very specific in presence of GTP. GTP has dramatic effects on lowering the extent of nonspecific digestion of beta tubulin with trypsin and stabilizing the intermediate bands produced from both alpha and beta. BisANS-treated tubulin is more susceptible to both trypsin and chymotrypsin digestion. At higher bisANS concentration (>20 microM) both alpha and beta tubulins are almost totally digested with enzymes, indicating bisANS-induced unfolding or destabilization of tubulin structure. Again, the addition of GTP has remarkable effect on lowering the bisANS-induced enhanced digestion of tubulin as well as stabilizing effect on intermediate bands. These results of isothermal titration calorimetry, proteolysis and the DTNB-kinetics data clearly established that the addition of GTP makes tubulin compact and rigid and hence the GTP-induced stabilization of tubulin structure. No such destabilization of tubulin structure has been noticed with ANS, although, like bisANS, ANS possesses a large number of lower affinity binding sites. On the basis of these results, we propose that the unique structure of bisANS, which in absence of GTP can bind tubulin as a bifunctional ligand (through its two ANS moieties), is responsible for the structural changes of tubulin.  相似文献   

6.
The mechanism of membrane disturbance by aminoglycoside antibiotics was investigated in liposomes containing the fluorescent probe, 1-anilino-8-naphthalene sulfonate (ANS). Liposomes of PC and different anionic phospholipids (1:1 to 15:1 molar ratios) were challenged with aminoglycosides in the presence of low (1 microM) and high (3 mM) concentrations of calcium. Liposomes containing PIP2 showed the greatest drug-induced changes in ANS fluorescence in the presence of high and low concentrations of calcium and at all PC:PIP2 molar ratios tested. Liposomes containing other anionic phospholipids (PS, PI and PIP) were not reactive toward aminoglycosides in the presence of 3 mM calcium or when the ratio of PC to anionic lipid was increased to 10:1. The aminoglycoside-induced changes of ANS fluorescence were not due to any changes in the emission spectrum of ANS, nor to changes in quantum yield, nor to a change in the binding affinity of ANS. It is concluded that a specific aminoglycoside-PIP2 interaction results in phase separation of PC and PIP2 and thus increases the number of available ANS binding sites in PC:PIP2 liposomes.  相似文献   

7.
ANS binding parameters--dissociation constant, number of binding sites, rotation freedom--are measured by fluorescence studies of a complex between ANS and lymph node cell plasma membranes. Divalent ions, Mg++ and Ca++, enhance the complex fluorescence intensity without shifting its maximum wavelength : this enhancement is induced by affinity and quantum yield increases, while the number of binding sites remains constant. The complex fluorescence quenching by ethacrynic acid shows the presence of free SH groups in the ANS binding site. An energy transfer takes place between membrane protein tryptophan residues and bound ANS ; the energy transfer yield is unaffected by Ca++ ions. A correlation of these results is postulated with the biological activity of the membrane.  相似文献   

8.
Addition of 8-anilino-1-naphthalenesulfonate (ANS) to acid-denatured pectate lyase C (pelC) leads to a large increase in the fluorescence quantum yield near 480 nm. The conventional interpretation of such an observation is that the ANS is binding to a partially folded intermediate such as a molten globule. Far-ultraviolet circular dichroism demonstrates that the enhanced fluorescence results from the induction of a partially folded protein species that adopts a large fraction of native-like secondary structure on binding ANS. Thus, ANS does not act as a probe to detect a partially folded species, but induces such a species. Near-ultraviolet circular dichroism suggests that ANS is bound to the protein in a specific conformation. The mechanism of ANS binding and structure induction was probed. The interaction of acid-unfolded pelC with several ANS analogs was investigated. The results strongly indicate that the combined effects of hydrophobic and electrostatic interactions account for the relatively high binding affinity of ANS for acid-unfolded pelC. These results demonstrate the need for caution in interpreting enhancement of ANS fluorescence as evidence for the presence of molten globule or other partially folded protein intermediates.  相似文献   

9.
Steady-state and dynamic fluorescence titrations show that: (a) the complex between beta-lactoglobulin (BLG) and 1-anilinonaphthalene-8-sulfonate (ANS) displays a heterogeneous equilibrium with large changes in the binding strength vs. pH and ion concentration; and (b) the fluorescence response of bound ANS reveals two separate lifetimes that suggest two different sites (or binding modes). While steady-state fluorescence titrations yield effective values of the binding constant and of the bound ANS quantum efficiency, it is shown that, by combining steady-state fluorescence and lifetime decay of ANS, it is possible to give quantitative estimates of the association constants for each site. When heading from the acid (pH approximately 2) to the native state (pH approximately 6) the main result is a very large reduction of the effective binding constant. This and the results of titrations vs. ionic strength suggest that electrostatic interactions are a major contribution to ANS binding to BLG.  相似文献   

10.
The addition of the fluorescent dye, ANS, to intact ascites tumor cells results in an enhancement of fluorescence intensity. The increase in fluorescence intensity as a function of time is biphasic which suggests that at least two processes occur. The first associated with the rapid initial rise in fluorescence represents binding to the cell surface while the second or slower phase reflects entrance of ANS into the intracellular phase. The relationship between bound and free ANS in 0.50 mM sulfate medium was used to calculate the apparent dissociation constant of ANS-membrane complex (Kd = 6.53 times 10(-5) M) and the total number of ANS binding sites (4.49 nmoles/mg dry weight). Kinetic analysis of steady state sulfate transport in the presence and absence of ANS suggests that (1) sulfate exchange can be described by Michaelis Menten type kinetics (Km = 2.05 times 10(-3) M), (2) a small fraction of surface associated ANS competitively inhibits sulfate exchange (Ki = 4.28 times 10(-6) M) and (3) the transport system has a higher affinity for ANS than for sulfate. These data are consistent with the hypothesis that inhibition of sulfate exchange is related to the direct, reversible interaction of the negatively charged sulfonate group of ANS with superficial positively charged membrane sites.  相似文献   

11.
The interaction of 1-anilino-8-naphthalene-sulfonate (ANS) with vesicles derived from hog fundic mucosa was studied in the presence of valinomycin and with the addition of ATP. Evidence was found for two classes of sites, those rapidly accessible to ANS with a KD of 7.5 micronM and those slowly accessible, but rapidly accessed in the presence of valinomycin with a KD of 2.5 micronM. ATP transiently increases the quantum yield of the latter ANS binding sites only in the presence of valinomycin, but does not alter the number of KD of those sites. The time course of this increase correlates with H+ uptake and Rb+ extrusion by those vesicles and H+ carries such as tetrachlorsalicylanilide or nigericin abolish the ATP response. With ATP addition in the presence of SC14N and valinomycin there is transient uptake of SCN-. It is concluded that ANS is acting as a probe of a structural change dependent on a potential and H+ gradient.  相似文献   

12.
Although freeze-induced perturbations of the protein native fold are common, the underlying mechanism is poorly understood owing to the difficulty of monitoring their structure in ice. In this report we propose that binding of the fluorescence probe 1-anilino-8-naphthalene sulfonate (ANS) to proteins in ice can provide a useful monitor of ice-induced strains on the native fold. Experiments conducted with copper-free azurin from Pseudomonas aeruginosa, as a model protein system, demonstrate that in frozen solutions the fluorescence of ANS is enhanced several fold and becomes blue shifted relative free ANS. From the enhancement factor it is estimated that, at -13 degrees C, on average at least 1.6 ANS molecules become immobilized within hydrophobic sites of apo-azurin, sites that are destroyed when the structure is largely unfolded by guanidinium hydrochloride. The extent of ANS binding is influenced by temperature of ice as well as by conditions that affect the stability of the globular structure. Lowering the temperature from -4 degrees C to -18 degrees C leads to an apparent increase in the number of binding sites, an indication that low temperature and /or a reduced amount of liquid water augment the strain on the protein tertiary structure. It is significant that ANS binding is practically abolished when the native fold is stabilized upon formation of the Cd(2+) complex or on addition of glycerol to the solution but is further enhanced in the presence of NaSCN, a known destabilizing agent. The results of the present study suggest that the ANS binding method may find practical utility in testing the effectiveness of various additives employed in protein formulations as well as to devise safer freeze-drying protocols of pharmaceutical proteins.  相似文献   

13.
The fluorescence time decay parameters of the beta-lactoglobulin-1-anilinonaphthalene-8-sulfonate complex have been investigated under physical and chemical perturbations (2 < pH < 8 and added electrolyte 0 < NaCl < 0.5 M) to obtain new insight on the nature of the protein binding interactions. A double exponential decay of the bound probe lifetime has been confirmed by the presence of a longer component, 11 to 14.5 ns, and a shorter component, 2.5 to 3.5 ns. The two lifetimes are ascribed to different binding modes associated also with different exposure to the solvent; in particular, the longer component is attributed to binding inside the hydrophobic beta barrel, while a "surface" site is suggested for the shorter component. A detailed analysis of the lifetime fractional intensities correlates the binding constants with ionic strength and supports the presence of electrostatic effects at both sites. A Debye-Hückel approach, applied to extrapolate the electrostatic free energy contribution vs. pH at vanishing ionic strength, gives interesting clues on the effective charge felt by the ANS ligands in the proximity of each site. In particular, binding is found to parallel the aspartate and glutamate titrations between pH 3 and pH 4.5; the "surface" site mainly responds to the presence of these local titrating charges while the "internal" site more closely follows the overall protein net charge.  相似文献   

14.
Singh SK  Kishore N 《Biopolymers》2006,83(3):205-212
Isothermal titration calorimetry has been used to demonstrate that the heat profile associated with the binding of 8-anilino-1-naphthalene sulfonic acid (ANS) with the acid induced molten globule state (A-state) of alpha-lactalbumin (alpha-LA) is different from that with the native and denatured states of the protein. The results corroborate the spectroscopic observations that ANS binds more strongly to the partially folded states of the protein compared to that with the native and denatured states. ANS binds to the A-state of alpha-LA at two independent binding sites that remain nearly the same in the temperature range of 10-35 degrees C. The number of moles of ANS binding at site 1 at 10 degrees C is 14.0+/-0.2 and remains nearly the same with rise in temperature. However, the number of moles of ANS molecules binding at site 2 show an increase from 1.6+/-0.2 at 10 degrees C to 4.1+/-0.1 at 35 degrees C. The deviation of the slope of enthalpy-entropy compensation plot from unity and nonadherence to van't Hoff dictates implies that the binding sites on the A-state of alpha-LA for ANS are not well defined and specific; rather, these binding sites are formed due to greater exposure of hydrophobic clusters in the A-state of the protein. The results for the first time demonstrate the use of isothermal titration calorimetry in characterizing the A-state of alpha-LA both qualitatively and quantitatively.  相似文献   

15.
DREAM (calsenilin or KChIP-3) is a calcium sensor involved in regulation of diverse physiological processes by interactions with multiple intracellular partners including DNA, Kv4 channels, and presenilin, however the detailed mechanism of the recognition of the intracellular partners remains unclear. To identify the surface hydrophobic surfaces on apo and Ca2 +DREAM as a possible interaction sites for target proteins and/or specific regulators of DREAM function the binding interactions of 1,8-ANS and 2,6-ANS with DREAM were characterized by fluorescence and docking studies. Emission intensity of ANS–DREAM complexes increases upon Ca2 + association which is consistent with an overall decrease in surface polarity. The dissociation constants for ANS binding to apoDREAM and Ca2 +DREAM were determined to be 195 ± 20 μM and 62 ± 4 μM, respectively. Fluorescence lifetime measurements indicate that two ANS molecules bind in two independent binding sites on DREAM monomer. One site is near the exiting helix of EF-4 and the second site is located in the hydrophobic crevice between EF-3 and EF-4. 1,8-ANS displacement studies using arachidonic acid demonstrate that the hydrophobic crevice between EF-3 and EF-4 serves as a binding site for fatty acids that modulate functional properties of Kv4 channel:KChIP complexes. Thus, the C-terminal hydrophobic crevice may be involved in DREAM interactions with small hydrophobic ligands as well as other intracellular proteins.  相似文献   

16.
In the current study, ANS fluorescence was established as a powerful tool to study proteins in solid-state. Silk fibroin from Bombyx mori cocoons was used as a paradigm protein. ANS incorporated into the films of silk fibroin exhibits fluorescence with two-lifetime components that can be assigned to the patches and/or cavities with distinct hydrophobicities. Decay associated spectra (DAS) of ANS fluorescence from both sites could be fit to the single log-normal component indicating their homogeneity. ANS binding sites in the protein film are specific and could be saturated by ANS titration. ANS located in the binding site that exhibits the long-lifetime fluorescence is not accessible to the water molecules and its DAS stays homogeneously broadened upon hydration of the protein film. In contrast, ANS from the sites demonstrating the short-lifetime fluorescence is accessible to water molecules. In the hydrated films, solvent-induced fluctuations produce an ensemble of binding sites with similar characters. Therefore, upon hydration, the short-lifetime DAS becomes significantly red-shifted and inhomogeneously broadened. The similar spectral features have previously been observed for ANS complexed with globular proteins in solution. The data reveal the origin of the short-lifetime fluorescence component of ANS bound to the globular proteins in aqueous solution. Findings from this study indicate that ANS is applicable to characterize dehydrated as well as hydrated protein aggregates, amyloids relevant to amyloid diseases, such as Alzheimer's, Parkinson, and prion diseases.  相似文献   

17.
Fluorescent probe N-phenyl-1-amino-8-sulfonaphthalene (ANS) was used for studying pH-dependent structural N-F-transition in human serum albumin of two kinds: in commercial albumin and in natural blood serum. The kinetics of ANS fluorescence decay in albumin solutions was measured. There were found two types of the sites occupied by ANS in albumin under physiological conditions (pH 7.4). In the first binding site ANS fluorescence decay time was 16.6 +/- 0.3 nsec and it was not significantly changed at N-F transition (pH 4.0). In the second binding site the decay time was dependent on pH in commercial albumin and was not significantly changed in serum. In the second binding site there were individual differences of ANS decay time (4.3 +/- 0.6 nsec). The observed ANS fluorescence intensity enhancing (about 40-50%) in N-F transition may be explained by an increase of albumin binding sites capacity for ANS.  相似文献   

18.
V N Uverski? 《Tsitologiia》1999,41(2):183-189
Changes in ANS fluorescence decay parameters induced by the interaction of the probe with proteins have been investigated. The existence of at least two different modes of interactions between the ANS and protein was established. The interactions of the first type are connected with binding of an ANS molecule with the surface of a protein molecule. In this case ANS molecules are well acceptable for a solvent. The interactions of the second type are characteristic of the protein-embedded ANS molecules. The decay time values of the second type complexes change considerably (> 1.5-fold) during the protein molecule transformation into the molten globule-like conformation. The molecular model explaining such a behaviour is suggested.  相似文献   

19.
Basic (encephalitogenic) protein and water-soluble proteolipid apoprotein isolated from bovine brain myelin bind 8-anilino-1-naphthalenesulfonate and 2-p-toluidinylnaphthalene-6-sulfonate with resulting enhancement of dye fluorescence and a blue-shift of the emission spectrum. The dyes had a higher affinity and quantum yield, when bound to the proteolipid (Kans=2.3x10--6,=0.67) than to the basic protein (Kans=3.3x10--5,=0.40). From the efficiency of radiationless energy transfer from trytophan to bound ANS the intramolecular distances were calculated to be 17 and 27 A for the proteolipid and basic protein, respectively. Unlike myelin, incubation with proteolytic enzymes (e.g., Pronase and trypsin) abolished fluorescence enhancement of ANS or TNS by the extracted proteins. In contrast to myelin, the fluorescence of solutions of fluorescent probes plus proteolipid was reduced by Ca-2+,not affected by La-3+, local anesthetics, or polymyxin B, and only slightly increased by low pH or blockade of free carboxyl groups. The reactions of the basic protein were similar under these conditions except for a two- to threefold increase in dye binding in the presence of La-3+, or after blockade of carboxyl groups. N-Bromosuccinimide oxidation of tryptophan groups nearly abolished native protein fluorescence, but did not affect dye binding. However, alkylation of tryptophan groups of both proteins by 2-hydroxy (or methoxy)-5-nitrobenzyl bromide reduced the of bound ANS (excited at 380 nm) to 0.15 normal. The same effect was observed with human serum albumin. The fluorescence emission of ANS bound to myelin was not affected by alkylation of membrane tryptophan groups with the Koshland reagents, except for abolition of energy transfer from tryptophan to bound dye molecules. This suggests that dye binding to protein is negligible in the intact membrane. Proteolipid incorporated into lipid vesicles containing phosphatidylserine did not bind ANS or TNS unless Ca-2+, La-3+, polymyxin B, or local anesthetics were added to reduce the net negative surface potential of the lipid membranes. However, binding to protein in the lipid-protein vesicles remained less than for soluble protein. Basic protein or bovine serum albumin dye binding sites remained accessible after equilibration of these proteins with the same lipid vesicles. It is proposed that in the intact myelin membrane the proteolipid is probably strongly associated with specific anionic membrane lipids (i.e., phosphatidylserine), and most likely deeply embedded within the lipid hydrocarbon matrix of the myelin membrane. Also, in the intact myelin membrane the fluorescent probes are associated primarily, if not solely with the membrane lipids as indicated by the binding data. This is particularly the case for TNS where the total number of myelin binding sites is three to four times the potential protein binding sites.  相似文献   

20.
G Serck-Hanssen  O S?vik 《Life sciences》1987,41(26):2799-2806
Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of 125I-insulin was carried out at 15 degrees C for 3 hrs in the absence or presence of excess unlabelled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. We conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号